Properties

Label 81.10.c.f.55.1
Level $81$
Weight $10$
Character 81.55
Analytic conductor $41.718$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{14})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 14x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(-1.87083 + 3.24037i\) of defining polynomial
Character \(\chi\) \(=\) 81.55
Dual form 81.10.c.f.28.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-11.2250 + 19.4422i) q^{2} +(4.00000 + 6.92820i) q^{4} +(246.949 + 427.729i) q^{5} +(381.500 - 660.777i) q^{7} -11674.0 q^{8} -11088.0 q^{10} +(28444.1 - 49266.6i) q^{11} +(36507.5 + 63232.8i) q^{13} +(8564.65 + 14834.4i) q^{14} +(128992. - 223421. i) q^{16} +168240. q^{17} -598129. q^{19} +(-1975.60 + 3421.83i) q^{20} +(638568. + 1.10603e6i) q^{22} +(-1.20020e6 - 2.07880e6i) q^{23} +(854594. - 1.48020e6i) q^{25} -1.63918e6 q^{26} +6104.00 q^{28} +(2.32689e6 - 4.03029e6i) q^{29} +(912050. + 1.57972e6i) q^{31} +(-92673.4 - 160515. i) q^{32} +(-1.88849e6 + 3.27096e6i) q^{34} +376845. q^{35} +1.42722e7 q^{37} +(6.71398e6 - 1.16290e7i) q^{38} +(-2.88288e6 - 4.99329e6i) q^{40} +(-1.49122e7 - 2.58286e7i) q^{41} +(-3.87845e6 + 6.71768e6i) q^{43} +455105. q^{44} +5.38887e7 q^{46} +(-1.54952e7 + 2.68384e7i) q^{47} +(1.98857e7 + 3.44431e7i) q^{49} +(1.91856e7 + 3.32304e7i) q^{50} +(-292060. + 505863. i) q^{52} +9.90123e6 q^{53} +2.80970e7 q^{55} +(-4.45362e6 + 7.71390e6i) q^{56} +(5.22386e7 + 9.04799e7i) q^{58} +(6.26049e7 + 1.08435e8i) q^{59} +(7.63832e7 - 1.32300e8i) q^{61} -4.09509e7 q^{62} +1.36249e8 q^{64} +(-1.80310e7 + 3.12306e7i) q^{65} +(1.60376e8 + 2.77779e8i) q^{67} +(672960. + 1.16560e6i) q^{68} +(-4.23007e6 + 7.32670e6i) q^{70} +1.09152e8 q^{71} +6.64640e7 q^{73} +(-1.60205e8 + 2.77483e8i) q^{74} +(-2.39252e6 - 4.14396e6i) q^{76} +(-2.17028e7 - 3.75904e7i) q^{77} +(5.76787e7 - 9.99025e7i) q^{79} +1.27418e8 q^{80} +6.69554e8 q^{82} +(3.07319e8 - 5.32293e8i) q^{83} +(4.15467e7 + 7.19611e7i) q^{85} +(-8.70710e7 - 1.50811e8i) q^{86} +(-3.32055e8 + 5.75137e8i) q^{88} -3.37797e8 q^{89} +5.57104e7 q^{91} +(9.60157e6 - 1.66304e7i) q^{92} +(-3.47865e8 - 6.02520e8i) q^{94} +(-1.47708e8 - 2.55837e8i) q^{95} +(1.17653e8 - 2.03782e8i) q^{97} -8.92867e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4} + 1526 q^{7} - 44352 q^{10} + 146030 q^{13} + 515968 q^{16} - 2392516 q^{19} + 2554272 q^{22} + 3418378 q^{25} + 24416 q^{28} + 3648200 q^{31} - 7553952 q^{34} + 57088700 q^{37} - 11531520 q^{40}+ \cdots + 470613686 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −11.2250 + 19.4422i −0.496078 + 0.859233i −0.999990 0.00452240i \(-0.998560\pi\)
0.503911 + 0.863755i \(0.331894\pi\)
\(3\) 0 0
\(4\) 4.00000 + 6.92820i 0.00781250 + 0.0135316i
\(5\) 246.949 + 427.729i 0.176703 + 0.306058i 0.940749 0.339103i \(-0.110124\pi\)
−0.764047 + 0.645161i \(0.776790\pi\)
\(6\) 0 0
\(7\) 381.500 660.777i 0.0600556 0.104019i −0.834434 0.551107i \(-0.814206\pi\)
0.894490 + 0.447088i \(0.147539\pi\)
\(8\) −11674.0 −1.00766
\(9\) 0 0
\(10\) −11088.0 −0.350633
\(11\) 28444.1 49266.6i 0.585767 1.01458i −0.409012 0.912529i \(-0.634127\pi\)
0.994779 0.102049i \(-0.0325399\pi\)
\(12\) 0 0
\(13\) 36507.5 + 63232.8i 0.354517 + 0.614041i 0.987035 0.160504i \(-0.0513120\pi\)
−0.632518 + 0.774545i \(0.717979\pi\)
\(14\) 8564.65 + 14834.4i 0.0595845 + 0.103203i
\(15\) 0 0
\(16\) 128992. 223421.i 0.492065 0.852282i
\(17\) 168240. 0.488550 0.244275 0.969706i \(-0.421450\pi\)
0.244275 + 0.969706i \(0.421450\pi\)
\(18\) 0 0
\(19\) −598129. −1.05294 −0.526470 0.850194i \(-0.676485\pi\)
−0.526470 + 0.850194i \(0.676485\pi\)
\(20\) −1975.60 + 3421.83i −0.00276098 + 0.00478215i
\(21\) 0 0
\(22\) 638568. + 1.10603e6i 0.581173 + 1.00662i
\(23\) −1.20020e6 2.07880e6i −0.894287 1.54895i −0.834684 0.550729i \(-0.814350\pi\)
−0.0596032 0.998222i \(-0.518984\pi\)
\(24\) 0 0
\(25\) 854594. 1.48020e6i 0.437552 0.757863i
\(26\) −1.63918e6 −0.703473
\(27\) 0 0
\(28\) 6104.00 0.00187674
\(29\) 2.32689e6 4.03029e6i 0.610921 1.05815i −0.380164 0.924919i \(-0.624133\pi\)
0.991085 0.133228i \(-0.0425341\pi\)
\(30\) 0 0
\(31\) 912050. + 1.57972e6i 0.177374 + 0.307222i 0.940980 0.338461i \(-0.109906\pi\)
−0.763606 + 0.645682i \(0.776573\pi\)
\(32\) −92673.4 160515.i −0.0156236 0.0270608i
\(33\) 0 0
\(34\) −1.88849e6 + 3.27096e6i −0.242359 + 0.419778i
\(35\) 376845. 0.0424479
\(36\) 0 0
\(37\) 1.42722e7 1.25194 0.625968 0.779848i \(-0.284704\pi\)
0.625968 + 0.779848i \(0.284704\pi\)
\(38\) 6.71398e6 1.16290e7i 0.522341 0.904721i
\(39\) 0 0
\(40\) −2.88288e6 4.99329e6i −0.178056 0.308402i
\(41\) −1.49122e7 2.58286e7i −0.824163 1.42749i −0.902558 0.430569i \(-0.858313\pi\)
0.0783949 0.996922i \(-0.475021\pi\)
\(42\) 0 0
\(43\) −3.87845e6 + 6.71768e6i −0.173002 + 0.299648i −0.939468 0.342637i \(-0.888680\pi\)
0.766466 + 0.642285i \(0.222013\pi\)
\(44\) 455105. 0.0183052
\(45\) 0 0
\(46\) 5.38887e7 1.77455
\(47\) −1.54952e7 + 2.68384e7i −0.463186 + 0.802262i −0.999118 0.0419996i \(-0.986627\pi\)
0.535932 + 0.844261i \(0.319961\pi\)
\(48\) 0 0
\(49\) 1.98857e7 + 3.44431e7i 0.492787 + 0.853532i
\(50\) 1.91856e7 + 3.32304e7i 0.434121 + 0.751919i
\(51\) 0 0
\(52\) −292060. + 505863.i −0.00553933 + 0.00959440i
\(53\) 9.90123e6 0.172365 0.0861823 0.996279i \(-0.472533\pi\)
0.0861823 + 0.996279i \(0.472533\pi\)
\(54\) 0 0
\(55\) 2.80970e7 0.414026
\(56\) −4.45362e6 + 7.71390e6i −0.0605156 + 0.104816i
\(57\) 0 0
\(58\) 5.22386e7 + 9.04799e7i 0.606130 + 1.04985i
\(59\) 6.26049e7 + 1.08435e8i 0.672627 + 1.16502i 0.977157 + 0.212521i \(0.0681674\pi\)
−0.304530 + 0.952503i \(0.598499\pi\)
\(60\) 0 0
\(61\) 7.63832e7 1.32300e8i 0.706340 1.22342i −0.259866 0.965645i \(-0.583678\pi\)
0.966206 0.257772i \(-0.0829884\pi\)
\(62\) −4.09509e7 −0.351966
\(63\) 0 0
\(64\) 1.36249e8 1.01513
\(65\) −1.80310e7 + 3.12306e7i −0.125288 + 0.217005i
\(66\) 0 0
\(67\) 1.60376e8 + 2.77779e8i 0.972306 + 1.68408i 0.688554 + 0.725185i \(0.258246\pi\)
0.283752 + 0.958898i \(0.408421\pi\)
\(68\) 672960. + 1.16560e6i 0.00381680 + 0.00661088i
\(69\) 0 0
\(70\) −4.23007e6 + 7.32670e6i −0.0210575 + 0.0364726i
\(71\) 1.09152e8 0.509763 0.254881 0.966972i \(-0.417964\pi\)
0.254881 + 0.966972i \(0.417964\pi\)
\(72\) 0 0
\(73\) 6.64640e7 0.273926 0.136963 0.990576i \(-0.456266\pi\)
0.136963 + 0.990576i \(0.456266\pi\)
\(74\) −1.60205e8 + 2.77483e8i −0.621059 + 1.07571i
\(75\) 0 0
\(76\) −2.39252e6 4.14396e6i −0.00822609 0.0142480i
\(77\) −2.17028e7 3.75904e7i −0.0703571 0.121862i
\(78\) 0 0
\(79\) 5.76787e7 9.99025e7i 0.166607 0.288572i −0.770618 0.637298i \(-0.780052\pi\)
0.937225 + 0.348726i \(0.113385\pi\)
\(80\) 1.27418e8 0.347797
\(81\) 0 0
\(82\) 6.69554e8 1.63540
\(83\) 3.07319e8 5.32293e8i 0.710785 1.23112i −0.253777 0.967263i \(-0.581673\pi\)
0.964563 0.263854i \(-0.0849937\pi\)
\(84\) 0 0
\(85\) 4.15467e7 + 7.19611e7i 0.0863280 + 0.149525i
\(86\) −8.70710e7 1.50811e8i −0.171645 0.297298i
\(87\) 0 0
\(88\) −3.32055e8 + 5.75137e8i −0.590253 + 1.02235i
\(89\) −3.37797e8 −0.570691 −0.285345 0.958425i \(-0.592108\pi\)
−0.285345 + 0.958425i \(0.592108\pi\)
\(90\) 0 0
\(91\) 5.57104e7 0.0851629
\(92\) 9.60157e6 1.66304e7i 0.0139732 0.0242024i
\(93\) 0 0
\(94\) −3.47865e8 6.02520e8i −0.459553 0.795970i
\(95\) −1.47708e8 2.55837e8i −0.186057 0.322261i
\(96\) 0 0
\(97\) 1.17653e8 2.03782e8i 0.134937 0.233718i −0.790636 0.612286i \(-0.790250\pi\)
0.925573 + 0.378568i \(0.123583\pi\)
\(98\) −8.92867e8 −0.977843
\(99\) 0 0
\(100\) 1.36735e7 0.0136735
\(101\) 4.58085e8 7.93426e8i 0.438026 0.758683i −0.559511 0.828823i \(-0.689011\pi\)
0.997537 + 0.0701397i \(0.0223445\pi\)
\(102\) 0 0
\(103\) −5.03997e7 8.72949e7i −0.0441225 0.0764225i 0.843121 0.537724i \(-0.180716\pi\)
−0.887243 + 0.461302i \(0.847383\pi\)
\(104\) −4.26187e8 7.38178e8i −0.357232 0.618744i
\(105\) 0 0
\(106\) −1.11141e8 + 1.92502e8i −0.0855063 + 0.148101i
\(107\) 1.50887e9 1.11282 0.556411 0.830907i \(-0.312178\pi\)
0.556411 + 0.830907i \(0.312178\pi\)
\(108\) 0 0
\(109\) −2.26733e9 −1.53849 −0.769247 0.638951i \(-0.779369\pi\)
−0.769247 + 0.638951i \(0.779369\pi\)
\(110\) −3.15388e8 + 5.46268e8i −0.205389 + 0.355745i
\(111\) 0 0
\(112\) −9.84209e7 1.70470e8i −0.0591025 0.102369i
\(113\) −5.79808e8 1.00426e9i −0.334527 0.579418i 0.648867 0.760902i \(-0.275243\pi\)
−0.983394 + 0.181484i \(0.941910\pi\)
\(114\) 0 0
\(115\) 5.92776e8 1.02672e9i 0.316046 0.547407i
\(116\) 3.72303e7 0.0190913
\(117\) 0 0
\(118\) −2.81095e9 −1.33470
\(119\) 6.41835e7 1.11169e8i 0.0293401 0.0508186i
\(120\) 0 0
\(121\) −4.39157e8 7.60643e8i −0.186246 0.322587i
\(122\) 1.71480e9 + 2.97012e9i 0.700800 + 1.21382i
\(123\) 0 0
\(124\) −7.29640e6 + 1.26377e7i −0.00277148 + 0.00480034i
\(125\) 1.80881e9 0.662672
\(126\) 0 0
\(127\) −2.61195e9 −0.890938 −0.445469 0.895297i \(-0.646963\pi\)
−0.445469 + 0.895297i \(0.646963\pi\)
\(128\) −1.48194e9 + 2.56680e9i −0.487962 + 0.845175i
\(129\) 0 0
\(130\) −4.04795e8 7.01126e8i −0.124305 0.215303i
\(131\) 1.63443e9 + 2.83092e9i 0.484893 + 0.839859i 0.999849 0.0173572i \(-0.00552526\pi\)
−0.514956 + 0.857216i \(0.672192\pi\)
\(132\) 0 0
\(133\) −2.28186e8 + 3.95230e8i −0.0632349 + 0.109526i
\(134\) −7.20087e9 −1.92936
\(135\) 0 0
\(136\) −1.96403e9 −0.492292
\(137\) 2.83442e7 4.90936e7i 0.00687419 0.0119064i −0.862568 0.505941i \(-0.831145\pi\)
0.869442 + 0.494035i \(0.164479\pi\)
\(138\) 0 0
\(139\) −3.39949e9 5.88808e9i −0.772408 1.33785i −0.936240 0.351362i \(-0.885719\pi\)
0.163832 0.986488i \(-0.447615\pi\)
\(140\) 1.50738e6 + 2.61086e6i 0.000331624 + 0.000574390i
\(141\) 0 0
\(142\) −1.22523e9 + 2.12215e9i −0.252882 + 0.438005i
\(143\) 4.15369e9 0.830657
\(144\) 0 0
\(145\) 2.29850e9 0.431805
\(146\) −7.46056e8 + 1.29221e9i −0.135889 + 0.235366i
\(147\) 0 0
\(148\) 5.70887e7 + 9.88805e7i 0.00978076 + 0.0169408i
\(149\) −7.29746e8 1.26396e9i −0.121292 0.210085i 0.798985 0.601351i \(-0.205371\pi\)
−0.920278 + 0.391266i \(0.872037\pi\)
\(150\) 0 0
\(151\) −2.47961e9 + 4.29481e9i −0.388139 + 0.672276i −0.992199 0.124663i \(-0.960215\pi\)
0.604061 + 0.796938i \(0.293548\pi\)
\(152\) 6.98254e9 1.06100
\(153\) 0 0
\(154\) 9.74455e8 0.139611
\(155\) −4.50460e8 + 7.80220e8i −0.0626850 + 0.108574i
\(156\) 0 0
\(157\) −2.84547e9 4.92851e9i −0.373772 0.647391i 0.616371 0.787456i \(-0.288602\pi\)
−0.990142 + 0.140065i \(0.955269\pi\)
\(158\) 1.29488e9 + 2.24281e9i 0.165300 + 0.286309i
\(159\) 0 0
\(160\) 4.57713e7 7.92782e7i 0.00552145 0.00956343i
\(161\) −1.83150e9 −0.214828
\(162\) 0 0
\(163\) 7.88882e9 0.875322 0.437661 0.899140i \(-0.355807\pi\)
0.437661 + 0.899140i \(0.355807\pi\)
\(164\) 1.19297e8 2.06629e8i 0.0128775 0.0223046i
\(165\) 0 0
\(166\) 6.89930e9 + 1.19499e10i 0.705211 + 1.22146i
\(167\) −4.62504e9 8.01081e9i −0.460142 0.796989i 0.538826 0.842417i \(-0.318868\pi\)
−0.998968 + 0.0454285i \(0.985535\pi\)
\(168\) 0 0
\(169\) 2.63665e9 4.56682e9i 0.248635 0.430649i
\(170\) −1.86544e9 −0.171302
\(171\) 0 0
\(172\) −6.20552e7 −0.00540630
\(173\) 9.27127e9 1.60583e10i 0.786922 1.36299i −0.140922 0.990021i \(-0.545007\pi\)
0.927844 0.372969i \(-0.121660\pi\)
\(174\) 0 0
\(175\) −6.52056e8 1.12939e9i −0.0525549 0.0910278i
\(176\) −7.33812e9 1.27100e10i −0.576471 0.998477i
\(177\) 0 0
\(178\) 3.79176e9 6.56752e9i 0.283107 0.490356i
\(179\) −1.83931e10 −1.33911 −0.669555 0.742762i \(-0.733515\pi\)
−0.669555 + 0.742762i \(0.733515\pi\)
\(180\) 0 0
\(181\) 1.17014e9 0.0810375 0.0405187 0.999179i \(-0.487099\pi\)
0.0405187 + 0.999179i \(0.487099\pi\)
\(182\) −6.25348e8 + 1.08313e9i −0.0422475 + 0.0731748i
\(183\) 0 0
\(184\) 1.40111e10 + 2.42679e10i 0.901137 + 1.56081i
\(185\) 3.52450e9 + 6.10462e9i 0.221220 + 0.383165i
\(186\) 0 0
\(187\) 4.78543e9 8.28861e9i 0.286176 0.495672i
\(188\) −2.47922e8 −0.0144746
\(189\) 0 0
\(190\) 6.63205e9 0.369196
\(191\) 5.18747e9 8.98496e9i 0.282036 0.488502i −0.689850 0.723953i \(-0.742323\pi\)
0.971886 + 0.235451i \(0.0756567\pi\)
\(192\) 0 0
\(193\) 5.86977e9 + 1.01667e10i 0.304518 + 0.527441i 0.977154 0.212533i \(-0.0681712\pi\)
−0.672636 + 0.739974i \(0.734838\pi\)
\(194\) 2.64131e9 + 4.57489e9i 0.133879 + 0.231885i
\(195\) 0 0
\(196\) −1.59086e8 + 2.75545e8i −0.00769979 + 0.0133364i
\(197\) 2.61163e10 1.23542 0.617708 0.786408i \(-0.288062\pi\)
0.617708 + 0.786408i \(0.288062\pi\)
\(198\) 0 0
\(199\) 2.31315e10 1.04560 0.522800 0.852455i \(-0.324887\pi\)
0.522800 + 0.852455i \(0.324887\pi\)
\(200\) −9.97651e9 + 1.72798e10i −0.440904 + 0.763668i
\(201\) 0 0
\(202\) 1.02840e10 + 1.78124e10i 0.434590 + 0.752732i
\(203\) −1.77542e9 3.07511e9i −0.0733785 0.127095i
\(204\) 0 0
\(205\) 7.36509e9 1.27567e10i 0.291263 0.504483i
\(206\) 2.26294e9 0.0875530
\(207\) 0 0
\(208\) 1.88367e10 0.697782
\(209\) −1.70132e10 + 2.94678e10i −0.616777 + 1.06829i
\(210\) 0 0
\(211\) −1.28953e10 2.23354e10i −0.447880 0.775750i 0.550368 0.834922i \(-0.314487\pi\)
−0.998248 + 0.0591717i \(0.981154\pi\)
\(212\) 3.96049e7 + 6.85978e7i 0.00134660 + 0.00233238i
\(213\) 0 0
\(214\) −1.69371e10 + 2.93358e10i −0.552047 + 0.956173i
\(215\) −3.83113e9 −0.122279
\(216\) 0 0
\(217\) 1.39179e9 0.0426093
\(218\) 2.54507e10 4.40820e10i 0.763214 1.32193i
\(219\) 0 0
\(220\) 1.12388e8 + 1.94662e8i 0.00323458 + 0.00560246i
\(221\) 6.14202e9 + 1.06383e10i 0.173199 + 0.299990i
\(222\) 0 0
\(223\) 5.01684e8 8.68942e8i 0.0135850 0.0235298i −0.859153 0.511719i \(-0.829009\pi\)
0.872738 + 0.488189i \(0.162342\pi\)
\(224\) −1.41420e8 −0.00375313
\(225\) 0 0
\(226\) 2.60333e10 0.663806
\(227\) −2.63956e10 + 4.57184e10i −0.659803 + 1.14281i 0.320863 + 0.947126i \(0.396027\pi\)
−0.980666 + 0.195687i \(0.937306\pi\)
\(228\) 0 0
\(229\) −1.55455e10 2.69255e10i −0.373546 0.647000i 0.616563 0.787306i \(-0.288525\pi\)
−0.990108 + 0.140306i \(0.955191\pi\)
\(230\) 1.33078e10 + 2.30497e10i 0.313567 + 0.543114i
\(231\) 0 0
\(232\) −2.71641e10 + 4.70495e10i −0.615600 + 1.06625i
\(233\) −3.41332e10 −0.758710 −0.379355 0.925251i \(-0.623854\pi\)
−0.379355 + 0.925251i \(0.623854\pi\)
\(234\) 0 0
\(235\) −1.53061e10 −0.327385
\(236\) −5.00839e8 + 8.67479e8i −0.0105098 + 0.0182035i
\(237\) 0 0
\(238\) 1.44092e9 + 2.49574e9i 0.0291100 + 0.0504200i
\(239\) 4.51335e10 + 7.81735e10i 0.894764 + 1.54978i 0.834096 + 0.551619i \(0.185990\pi\)
0.0606677 + 0.998158i \(0.480677\pi\)
\(240\) 0 0
\(241\) 3.86696e10 6.69778e10i 0.738403 1.27895i −0.214811 0.976656i \(-0.568914\pi\)
0.953214 0.302296i \(-0.0977531\pi\)
\(242\) 1.97181e10 0.369570
\(243\) 0 0
\(244\) 1.22213e9 0.0220731
\(245\) −9.82153e9 + 1.70114e10i −0.174153 + 0.301642i
\(246\) 0 0
\(247\) −2.18362e10 3.78214e10i −0.373285 0.646549i
\(248\) −1.06472e10 1.84416e10i −0.178733 0.309575i
\(249\) 0 0
\(250\) −2.03039e10 + 3.51673e10i −0.328737 + 0.569389i
\(251\) 4.53113e10 0.720568 0.360284 0.932843i \(-0.382680\pi\)
0.360284 + 0.932843i \(0.382680\pi\)
\(252\) 0 0
\(253\) −1.36554e11 −2.09538
\(254\) 2.93190e10 5.07820e10i 0.441975 0.765523i
\(255\) 0 0
\(256\) 1.61022e9 + 2.78898e9i 0.0234317 + 0.0405850i
\(257\) −6.79435e10 1.17682e11i −0.971514 1.68271i −0.690991 0.722864i \(-0.742826\pi\)
−0.280523 0.959847i \(-0.590508\pi\)
\(258\) 0 0
\(259\) 5.44483e9 9.43073e9i 0.0751858 0.130226i
\(260\) −2.88496e8 −0.00391525
\(261\) 0 0
\(262\) −7.33858e10 −0.962179
\(263\) −2.40866e10 + 4.17191e10i −0.310437 + 0.537693i −0.978457 0.206450i \(-0.933809\pi\)
0.668020 + 0.744143i \(0.267142\pi\)
\(264\) 0 0
\(265\) 2.44510e9 + 4.23504e9i 0.0304573 + 0.0527535i
\(266\) −5.12277e9 8.87289e9i −0.0627390 0.108667i
\(267\) 0 0
\(268\) −1.28301e9 + 2.22224e9i −0.0151923 + 0.0263138i
\(269\) −1.33744e11 −1.55736 −0.778682 0.627418i \(-0.784112\pi\)
−0.778682 + 0.627418i \(0.784112\pi\)
\(270\) 0 0
\(271\) −7.03388e10 −0.792197 −0.396098 0.918208i \(-0.629636\pi\)
−0.396098 + 0.918208i \(0.629636\pi\)
\(272\) 2.17016e10 3.75883e10i 0.240398 0.416382i
\(273\) 0 0
\(274\) 6.36326e8 + 1.10215e9i 0.00682028 + 0.0118131i
\(275\) −4.86163e10 8.42059e10i −0.512607 0.887862i
\(276\) 0 0
\(277\) 6.71636e10 1.16331e11i 0.685449 1.18723i −0.287846 0.957677i \(-0.592939\pi\)
0.973295 0.229556i \(-0.0737274\pi\)
\(278\) 1.52637e11 1.53270
\(279\) 0 0
\(280\) −4.39927e9 −0.0427730
\(281\) 5.79256e10 1.00330e11i 0.554233 0.959960i −0.443730 0.896161i \(-0.646345\pi\)
0.997963 0.0637992i \(-0.0203217\pi\)
\(282\) 0 0
\(283\) −7.01438e10 1.21493e11i −0.650055 1.12593i −0.983109 0.183021i \(-0.941412\pi\)
0.333054 0.942908i \(-0.391921\pi\)
\(284\) 4.36607e8 + 7.56225e8i 0.00398252 + 0.00689793i
\(285\) 0 0
\(286\) −4.66250e10 + 8.07569e10i −0.412071 + 0.713728i
\(287\) −2.27559e10 −0.197982
\(288\) 0 0
\(289\) −9.02832e10 −0.761319
\(290\) −2.58006e10 + 4.46879e10i −0.214209 + 0.371021i
\(291\) 0 0
\(292\) 2.65856e8 + 4.60476e8i 0.00214005 + 0.00370667i
\(293\) 7.99709e10 + 1.38514e11i 0.633910 + 1.09796i 0.986745 + 0.162279i \(0.0518844\pi\)
−0.352835 + 0.935686i \(0.614782\pi\)
\(294\) 0 0
\(295\) −3.09205e10 + 5.35558e10i −0.237710 + 0.411725i
\(296\) −1.66613e11 −1.26153
\(297\) 0 0
\(298\) 3.27655e10 0.240682
\(299\) 8.76323e10 1.51784e11i 0.634080 1.09826i
\(300\) 0 0
\(301\) 2.95926e9 + 5.12559e9i 0.0207794 + 0.0359910i
\(302\) −5.56671e10 9.64182e10i −0.385094 0.667003i
\(303\) 0 0
\(304\) −7.71539e10 + 1.33634e11i −0.518115 + 0.897402i
\(305\) 7.54512e10 0.499249
\(306\) 0 0
\(307\) 1.98532e11 1.27558 0.637791 0.770210i \(-0.279849\pi\)
0.637791 + 0.770210i \(0.279849\pi\)
\(308\) 1.73623e8 3.00723e8i 0.00109933 0.00190410i
\(309\) 0 0
\(310\) −1.01128e10 1.75159e10i −0.0621934 0.107722i
\(311\) 1.12406e10 + 1.94692e10i 0.0681344 + 0.118012i 0.898080 0.439832i \(-0.144962\pi\)
−0.829946 + 0.557844i \(0.811629\pi\)
\(312\) 0 0
\(313\) 2.97989e10 5.16132e10i 0.175489 0.303956i −0.764841 0.644219i \(-0.777183\pi\)
0.940330 + 0.340263i \(0.110516\pi\)
\(314\) 1.27761e11 0.741680
\(315\) 0 0
\(316\) 9.22860e8 0.00520647
\(317\) −1.51322e11 + 2.62097e11i −0.841658 + 1.45779i 0.0468350 + 0.998903i \(0.485086\pi\)
−0.888493 + 0.458891i \(0.848247\pi\)
\(318\) 0 0
\(319\) −1.32373e11 2.29276e11i −0.715715 1.23965i
\(320\) 3.36466e10 + 5.82776e10i 0.179377 + 0.310689i
\(321\) 0 0
\(322\) 2.05585e10 3.56084e10i 0.106571 0.184587i
\(323\) −1.00629e11 −0.514414
\(324\) 0 0
\(325\) 1.24796e11 0.620479
\(326\) −8.85518e10 + 1.53376e11i −0.434228 + 0.752105i
\(327\) 0 0
\(328\) 1.74084e11 + 3.01522e11i 0.830475 + 1.43843i
\(329\) 1.18228e10 + 2.04777e10i 0.0556338 + 0.0963606i
\(330\) 0 0
\(331\) −2.25241e10 + 3.90129e10i −0.103139 + 0.178641i −0.912976 0.408013i \(-0.866222\pi\)
0.809838 + 0.586654i \(0.199555\pi\)
\(332\) 4.91711e9 0.0222120
\(333\) 0 0
\(334\) 2.07664e11 0.913065
\(335\) −7.92095e10 + 1.37195e11i −0.343618 + 0.595164i
\(336\) 0 0
\(337\) 5.12401e10 + 8.87505e10i 0.216409 + 0.374832i 0.953708 0.300736i \(-0.0972322\pi\)
−0.737298 + 0.675567i \(0.763899\pi\)
\(338\) 5.91927e10 + 1.02525e11i 0.246685 + 0.427272i
\(339\) 0 0
\(340\) −3.32374e8 + 5.75688e8i −0.00134888 + 0.00233632i
\(341\) 1.03770e11 0.415600
\(342\) 0 0
\(343\) 6.11354e10 0.238490
\(344\) 4.52769e10 7.84220e10i 0.174327 0.301943i
\(345\) 0 0
\(346\) 2.08140e11 + 3.60508e11i 0.780750 + 1.35230i
\(347\) 9.54735e10 + 1.65365e11i 0.353509 + 0.612295i 0.986862 0.161568i \(-0.0516551\pi\)
−0.633353 + 0.773863i \(0.718322\pi\)
\(348\) 0 0
\(349\) 1.08980e11 1.88758e11i 0.393216 0.681070i −0.599656 0.800258i \(-0.704696\pi\)
0.992872 + 0.119188i \(0.0380292\pi\)
\(350\) 2.92772e10 0.104285
\(351\) 0 0
\(352\) −1.05440e10 −0.0366071
\(353\) 1.56665e11 2.71351e11i 0.537013 0.930134i −0.462050 0.886854i \(-0.652886\pi\)
0.999063 0.0432798i \(-0.0137807\pi\)
\(354\) 0 0
\(355\) 2.69550e10 + 4.66873e10i 0.0900764 + 0.156017i
\(356\) −1.35119e9 2.34033e9i −0.00445852 0.00772238i
\(357\) 0 0
\(358\) 2.06462e11 3.57603e11i 0.664304 1.15061i
\(359\) 2.37983e11 0.756173 0.378087 0.925770i \(-0.376582\pi\)
0.378087 + 0.925770i \(0.376582\pi\)
\(360\) 0 0
\(361\) 3.50706e10 0.108683
\(362\) −1.31348e10 + 2.27502e10i −0.0402009 + 0.0696301i
\(363\) 0 0
\(364\) 2.22842e8 + 3.85973e8i 0.000665335 + 0.00115239i
\(365\) 1.64132e10 + 2.84286e10i 0.0484035 + 0.0838373i
\(366\) 0 0
\(367\) −1.62673e11 + 2.81757e11i −0.468077 + 0.810732i −0.999334 0.0364778i \(-0.988386\pi\)
0.531258 + 0.847210i \(0.321720\pi\)
\(368\) −6.19263e11 −1.76019
\(369\) 0 0
\(370\) −1.58250e11 −0.438971
\(371\) 3.77732e9 6.54251e9i 0.0103515 0.0179292i
\(372\) 0 0
\(373\) 2.56950e11 + 4.45050e11i 0.687319 + 1.19047i 0.972702 + 0.232058i \(0.0745458\pi\)
−0.285383 + 0.958414i \(0.592121\pi\)
\(374\) 1.07433e11 + 1.86079e11i 0.283932 + 0.491784i
\(375\) 0 0
\(376\) 1.80890e11 3.13311e11i 0.466734 0.808407i
\(377\) 3.39796e11 0.866328
\(378\) 0 0
\(379\) 6.49235e11 1.61631 0.808156 0.588968i \(-0.200466\pi\)
0.808156 + 0.588968i \(0.200466\pi\)
\(380\) 1.18166e9 2.04670e9i 0.00290714 0.00503532i
\(381\) 0 0
\(382\) 1.16458e11 + 2.01712e11i 0.279824 + 0.484670i
\(383\) −2.84096e11 4.92069e11i −0.674638 1.16851i −0.976574 0.215180i \(-0.930966\pi\)
0.301936 0.953328i \(-0.402367\pi\)
\(384\) 0 0
\(385\) 1.07190e10 1.85659e10i 0.0248646 0.0430667i
\(386\) −2.63552e11 −0.604260
\(387\) 0 0
\(388\) 1.88245e9 0.00421679
\(389\) 9.28790e10 1.60871e11i 0.205657 0.356209i −0.744685 0.667417i \(-0.767400\pi\)
0.950342 + 0.311207i \(0.100733\pi\)
\(390\) 0 0
\(391\) −2.01921e11 3.49737e11i −0.436904 0.756740i
\(392\) −2.32145e11 4.02087e11i −0.496561 0.860069i
\(393\) 0 0
\(394\) −2.93154e11 + 5.07758e11i −0.612863 + 1.06151i
\(395\) 5.69749e10 0.117760
\(396\) 0 0
\(397\) −3.00165e11 −0.606461 −0.303230 0.952917i \(-0.598065\pi\)
−0.303230 + 0.952917i \(0.598065\pi\)
\(398\) −2.59651e11 + 4.49728e11i −0.518700 + 0.898414i
\(399\) 0 0
\(400\) −2.20472e11 3.81868e11i −0.430609 0.745836i
\(401\) −3.06505e11 5.30882e11i −0.591954 1.02529i −0.993969 0.109661i \(-0.965023\pi\)
0.402015 0.915633i \(-0.368310\pi\)
\(402\) 0 0
\(403\) −6.65933e10 + 1.15343e11i −0.125764 + 0.217830i
\(404\) 7.32936e9 0.0136883
\(405\) 0 0
\(406\) 7.97161e10 0.145606
\(407\) 4.05959e11 7.03141e11i 0.733343 1.27019i
\(408\) 0 0
\(409\) −8.92235e10 1.54540e11i −0.157661 0.273077i 0.776364 0.630285i \(-0.217062\pi\)
−0.934025 + 0.357208i \(0.883729\pi\)
\(410\) 1.65346e11 + 2.86388e11i 0.288979 + 0.500526i
\(411\) 0 0
\(412\) 4.03198e8 6.98359e8i 0.000689415 0.00119410i
\(413\) 9.55350e10 0.161580
\(414\) 0 0
\(415\) 3.03569e11 0.502391
\(416\) 6.76655e9 1.17200e10i 0.0110776 0.0191870i
\(417\) 0 0
\(418\) −3.81946e11 6.61550e11i −0.611940 1.05991i
\(419\) −5.67027e10 9.82119e10i −0.0898753 0.155669i 0.817583 0.575811i \(-0.195314\pi\)
−0.907458 + 0.420142i \(0.861980\pi\)
\(420\) 0 0
\(421\) −8.52305e10 + 1.47624e11i −0.132229 + 0.229027i −0.924535 0.381096i \(-0.875547\pi\)
0.792307 + 0.610123i \(0.208880\pi\)
\(422\) 5.78999e11 0.888734
\(423\) 0 0
\(424\) −1.15587e11 −0.173685
\(425\) 1.43777e11 2.49029e11i 0.213766 0.370254i
\(426\) 0 0
\(427\) −5.82804e10 1.00945e11i −0.0848393 0.146946i
\(428\) 6.03549e9 + 1.04538e10i 0.00869392 + 0.0150583i
\(429\) 0 0
\(430\) 4.30043e10 7.44856e10i 0.0606602 0.105066i
\(431\) −6.06017e11 −0.845936 −0.422968 0.906145i \(-0.639012\pi\)
−0.422968 + 0.906145i \(0.639012\pi\)
\(432\) 0 0
\(433\) −8.94608e11 −1.22303 −0.611515 0.791233i \(-0.709440\pi\)
−0.611515 + 0.791233i \(0.709440\pi\)
\(434\) −1.56228e10 + 2.70595e10i −0.0211376 + 0.0366113i
\(435\) 0 0
\(436\) −9.06933e9 1.57085e10i −0.0120195 0.0208184i
\(437\) 7.17872e11 + 1.24339e12i 0.941631 + 1.63095i
\(438\) 0 0
\(439\) −4.08082e11 + 7.06819e11i −0.524393 + 0.908276i 0.475203 + 0.879876i \(0.342375\pi\)
−0.999597 + 0.0284000i \(0.990959\pi\)
\(440\) −3.28003e11 −0.417197
\(441\) 0 0
\(442\) −2.75776e11 −0.343681
\(443\) −1.27889e11 + 2.21510e11i −0.157767 + 0.273260i −0.934063 0.357108i \(-0.883763\pi\)
0.776296 + 0.630368i \(0.217096\pi\)
\(444\) 0 0
\(445\) −8.34188e10 1.44486e11i −0.100843 0.174664i
\(446\) 1.12628e10 + 1.95077e10i 0.0134784 + 0.0233453i
\(447\) 0 0
\(448\) 5.19789e10 9.00301e10i 0.0609644 0.105593i
\(449\) −2.65080e11 −0.307800 −0.153900 0.988086i \(-0.549183\pi\)
−0.153900 + 0.988086i \(0.549183\pi\)
\(450\) 0 0
\(451\) −1.69665e12 −1.93107
\(452\) 4.63846e9 8.03405e9i 0.00522698 0.00905340i
\(453\) 0 0
\(454\) −5.92579e11 1.02638e12i −0.654628 1.13385i
\(455\) 1.37577e10 + 2.38290e10i 0.0150485 + 0.0260648i
\(456\) 0 0
\(457\) 6.27826e11 1.08743e12i 0.673312 1.16621i −0.303647 0.952785i \(-0.598204\pi\)
0.976959 0.213426i \(-0.0684623\pi\)
\(458\) 6.97989e11 0.741232
\(459\) 0 0
\(460\) 9.48441e9 0.00987643
\(461\) −7.48601e11 + 1.29662e12i −0.771963 + 1.33708i 0.164523 + 0.986373i \(0.447392\pi\)
−0.936486 + 0.350706i \(0.885942\pi\)
\(462\) 0 0
\(463\) 9.41238e11 + 1.63027e12i 0.951886 + 1.64871i 0.741339 + 0.671131i \(0.234191\pi\)
0.210547 + 0.977584i \(0.432476\pi\)
\(464\) −6.00301e11 1.03975e12i −0.601226 1.04135i
\(465\) 0 0
\(466\) 3.83144e11 6.63626e11i 0.376379 0.651908i
\(467\) 1.43018e11 0.139145 0.0695723 0.997577i \(-0.477837\pi\)
0.0695723 + 0.997577i \(0.477837\pi\)
\(468\) 0 0
\(469\) 2.44734e11 0.233570
\(470\) 1.71810e11 2.97584e11i 0.162408 0.281300i
\(471\) 0 0
\(472\) −7.30848e11 1.26587e12i −0.677779 1.17395i
\(473\) 2.20638e11 + 3.82156e11i 0.202677 + 0.351047i
\(474\) 0 0
\(475\) −5.11158e11 + 8.85351e11i −0.460716 + 0.797984i
\(476\) 1.02694e9 0.000916879
\(477\) 0 0
\(478\) −2.02649e12 −1.77549
\(479\) −1.89378e11 + 3.28013e11i −0.164369 + 0.284696i −0.936431 0.350852i \(-0.885892\pi\)
0.772062 + 0.635547i \(0.219225\pi\)
\(480\) 0 0
\(481\) 5.21041e11 + 9.02470e11i 0.443833 + 0.768741i
\(482\) 8.68131e11 + 1.50365e12i 0.732612 + 1.26892i
\(483\) 0 0
\(484\) 3.51326e9 6.08514e9i 0.00291009 0.00504042i
\(485\) 1.16218e11 0.0953750
\(486\) 0 0
\(487\) 9.66599e9 0.00778692 0.00389346 0.999992i \(-0.498761\pi\)
0.00389346 + 0.999992i \(0.498761\pi\)
\(488\) −8.91696e11 + 1.54446e12i −0.711750 + 1.23279i
\(489\) 0 0
\(490\) −2.20493e11 3.81905e11i −0.172787 0.299277i
\(491\) 3.45410e11 + 5.98267e11i 0.268205 + 0.464545i 0.968398 0.249408i \(-0.0802361\pi\)
−0.700193 + 0.713954i \(0.746903\pi\)
\(492\) 0 0
\(493\) 3.91476e11 6.78056e11i 0.298465 0.516957i
\(494\) 9.80443e11 0.740715
\(495\) 0 0
\(496\) 4.70589e11 0.349119
\(497\) 4.16414e10 7.21250e10i 0.0306141 0.0530252i
\(498\) 0 0
\(499\) −3.98823e11 6.90782e11i −0.287957 0.498756i 0.685365 0.728200i \(-0.259643\pi\)
−0.973322 + 0.229443i \(0.926309\pi\)
\(500\) 7.23525e9 + 1.25318e10i 0.00517712 + 0.00896704i
\(501\) 0 0
\(502\) −5.08618e11 + 8.80952e11i −0.357458 + 0.619135i
\(503\) 4.71233e11 0.328231 0.164116 0.986441i \(-0.447523\pi\)
0.164116 + 0.986441i \(0.447523\pi\)
\(504\) 0 0
\(505\) 4.52495e11 0.309601
\(506\) 1.53281e12 2.65491e12i 1.03947 1.80042i
\(507\) 0 0
\(508\) −1.04478e10 1.80961e10i −0.00696045 0.0120559i
\(509\) −1.04994e12 1.81855e12i −0.693320 1.20086i −0.970744 0.240117i \(-0.922814\pi\)
0.277424 0.960748i \(-0.410519\pi\)
\(510\) 0 0
\(511\) 2.53560e10 4.39179e10i 0.0164508 0.0284936i
\(512\) −1.58981e12 −1.02242
\(513\) 0 0
\(514\) 3.05066e12 1.92779
\(515\) 2.48924e10 4.31148e10i 0.0155931 0.0270081i
\(516\) 0 0
\(517\) 8.81491e11 + 1.52679e12i 0.542638 + 0.939877i
\(518\) 1.22236e11 + 2.11719e11i 0.0745961 + 0.129204i
\(519\) 0 0
\(520\) 2.10493e11 3.64585e11i 0.126248 0.218667i
\(521\) −2.49095e12 −1.48114 −0.740569 0.671980i \(-0.765444\pi\)
−0.740569 + 0.671980i \(0.765444\pi\)
\(522\) 0 0
\(523\) 9.27462e11 0.542049 0.271024 0.962572i \(-0.412638\pi\)
0.271024 + 0.962572i \(0.412638\pi\)
\(524\) −1.30754e10 + 2.26473e10i −0.00757645 + 0.0131228i
\(525\) 0 0
\(526\) −5.40742e11 9.36592e11i −0.308002 0.533476i
\(527\) 1.53443e11 + 2.65771e11i 0.0866562 + 0.150093i
\(528\) 0 0
\(529\) −1.98037e12 + 3.43010e12i −1.09950 + 1.90439i
\(530\) −1.09785e11 −0.0604368
\(531\) 0 0
\(532\) −3.65098e9 −0.00197609
\(533\) 1.08881e12 1.88588e12i 0.584359 1.01214i
\(534\) 0 0
\(535\) 3.72615e11 + 6.45389e11i 0.196639 + 0.340588i
\(536\) −1.87223e12 3.24279e12i −0.979753 1.69698i
\(537\) 0 0
\(538\) 1.50128e12 2.60029e12i 0.772575 1.33814i
\(539\) 2.26252e12 1.15463
\(540\) 0 0
\(541\) 1.99506e12 1.00131 0.500655 0.865647i \(-0.333093\pi\)
0.500655 + 0.865647i \(0.333093\pi\)
\(542\) 7.89551e11 1.36754e12i 0.392992 0.680682i
\(543\) 0 0
\(544\) −1.55914e10 2.70050e10i −0.00763289 0.0132205i
\(545\) −5.59916e11 9.69804e11i −0.271856 0.470868i
\(546\) 0 0
\(547\) 7.49141e10 1.29755e11i 0.0357784 0.0619699i −0.847582 0.530665i \(-0.821942\pi\)
0.883360 + 0.468695i \(0.155276\pi\)
\(548\) 4.53507e8 0.000214818
\(549\) 0 0
\(550\) 2.18287e12 1.01717
\(551\) −1.39178e12 + 2.41064e12i −0.643263 + 1.11416i
\(552\) 0 0
\(553\) −4.40089e10 7.62256e10i −0.0200114 0.0346607i
\(554\) 1.50782e12 + 2.61162e12i 0.680073 + 1.17792i
\(555\) 0 0
\(556\) 2.71959e10 4.71047e10i 0.0120689 0.0209039i
\(557\) 6.75741e11 0.297462 0.148731 0.988878i \(-0.452481\pi\)
0.148731 + 0.988878i \(0.452481\pi\)
\(558\) 0 0
\(559\) −5.66370e11 −0.245328
\(560\) 4.86100e10 8.41949e10i 0.0208871 0.0361776i
\(561\) 0 0
\(562\) 1.30043e12 + 2.25241e12i 0.549886 + 0.952431i
\(563\) −6.26828e11 1.08570e12i −0.262943 0.455430i 0.704080 0.710121i \(-0.251360\pi\)
−0.967023 + 0.254691i \(0.918026\pi\)
\(564\) 0 0
\(565\) 2.86366e11 4.96001e11i 0.118224 0.204769i
\(566\) 3.14945e12 1.28991
\(567\) 0 0
\(568\) −1.27423e12 −0.513667
\(569\) −1.57582e12 + 2.72940e12i −0.630233 + 1.09160i 0.357271 + 0.934001i \(0.383707\pi\)
−0.987504 + 0.157595i \(0.949626\pi\)
\(570\) 0 0
\(571\) 2.11655e12 + 3.66597e12i 0.833233 + 1.44320i 0.895461 + 0.445139i \(0.146846\pi\)
−0.0622286 + 0.998062i \(0.519821\pi\)
\(572\) 1.66148e10 + 2.87776e10i 0.00648951 + 0.0112402i
\(573\) 0 0
\(574\) 2.55435e11 4.42426e11i 0.0982147 0.170113i
\(575\) −4.10273e12 −1.56519
\(576\) 0 0
\(577\) 4.23367e12 1.59011 0.795053 0.606540i \(-0.207443\pi\)
0.795053 + 0.606540i \(0.207443\pi\)
\(578\) 1.01343e12 1.75531e12i 0.377674 0.654150i
\(579\) 0 0
\(580\) 9.19399e9 + 1.59245e10i 0.00337348 + 0.00584304i
\(581\) −2.34485e11 4.06139e11i −0.0853733 0.147871i
\(582\) 0 0
\(583\) 2.81631e11 4.87800e11i 0.100965 0.174877i
\(584\) −7.75899e11 −0.276024
\(585\) 0 0
\(586\) −3.59068e12 −1.25788
\(587\) 6.98767e11 1.21030e12i 0.242919 0.420747i −0.718626 0.695397i \(-0.755229\pi\)
0.961544 + 0.274650i \(0.0885619\pi\)
\(588\) 0 0
\(589\) −5.45524e11 9.44875e11i −0.186765 0.323486i
\(590\) −6.94163e11 1.20233e12i −0.235845 0.408496i
\(591\) 0 0
\(592\) 1.84100e12 3.18870e12i 0.616035 1.06700i
\(593\) 6.32131e11 0.209923 0.104962 0.994476i \(-0.466528\pi\)
0.104962 + 0.994476i \(0.466528\pi\)
\(594\) 0 0
\(595\) 6.34003e10 0.0207379
\(596\) 5.83797e9 1.01117e10i 0.00189519 0.00328257i
\(597\) 0 0
\(598\) 1.96734e12 + 3.40754e12i 0.629107 + 1.08964i
\(599\) 2.57726e12 + 4.46394e12i 0.817970 + 1.41676i 0.907176 + 0.420752i \(0.138234\pi\)
−0.0892062 + 0.996013i \(0.528433\pi\)
\(600\) 0 0
\(601\) 3.68522e11 6.38299e11i 0.115220 0.199567i −0.802648 0.596454i \(-0.796576\pi\)
0.917868 + 0.396886i \(0.129909\pi\)
\(602\) −1.32870e11 −0.0412329
\(603\) 0 0
\(604\) −3.96737e10 −0.0121293
\(605\) 2.16899e11 3.75681e11i 0.0658202 0.114004i
\(606\) 0 0
\(607\) −9.36945e11 1.62284e12i −0.280134 0.485206i 0.691284 0.722583i \(-0.257045\pi\)
−0.971417 + 0.237378i \(0.923712\pi\)
\(608\) 5.54306e10 + 9.60087e10i 0.0164507 + 0.0284934i
\(609\) 0 0
\(610\) −8.46937e11 + 1.46694e12i −0.247666 + 0.428971i
\(611\) −2.26276e12 −0.656829
\(612\) 0 0
\(613\) −1.62540e12 −0.464931 −0.232465 0.972605i \(-0.574679\pi\)
−0.232465 + 0.972605i \(0.574679\pi\)
\(614\) −2.22852e12 + 3.85991e12i −0.632788 + 1.09602i
\(615\) 0 0
\(616\) 2.53358e11 + 4.38829e11i 0.0708960 + 0.122796i
\(617\) 2.24278e12 + 3.88460e12i 0.623021 + 1.07910i 0.988920 + 0.148449i \(0.0474282\pi\)
−0.365899 + 0.930654i \(0.619239\pi\)
\(618\) 0 0
\(619\) −1.32245e12 + 2.29054e12i −0.362051 + 0.627091i −0.988298 0.152534i \(-0.951257\pi\)
0.626247 + 0.779625i \(0.284590\pi\)
\(620\) −7.20737e9 −0.00195891
\(621\) 0 0
\(622\) −5.04700e11 −0.135200
\(623\) −1.28870e11 + 2.23209e11i −0.0342732 + 0.0593628i
\(624\) 0 0
\(625\) −1.22244e12 2.11734e12i −0.320457 0.555047i
\(626\) 6.68983e11 + 1.15871e12i 0.174113 + 0.301572i
\(627\) 0 0
\(628\) 2.27638e10 3.94281e10i 0.00584018 0.0101155i
\(629\) 2.40115e12 0.611633
\(630\) 0 0
\(631\) −2.53561e12 −0.636723 −0.318361 0.947969i \(-0.603133\pi\)
−0.318361 + 0.947969i \(0.603133\pi\)
\(632\) −6.73340e11 + 1.16626e12i −0.167883 + 0.290782i
\(633\) 0 0
\(634\) −3.39717e12 5.88407e12i −0.835056 1.44636i
\(635\) −6.45018e11 1.11720e12i −0.157431 0.272679i
\(636\) 0 0
\(637\) −1.45196e12 + 2.51486e12i −0.349402 + 0.605183i
\(638\) 5.94351e12 1.42020
\(639\) 0 0
\(640\) −1.46386e12 −0.344897
\(641\) 3.55984e11 6.16583e11i 0.0832856 0.144255i −0.821374 0.570390i \(-0.806792\pi\)
0.904659 + 0.426135i \(0.140125\pi\)
\(642\) 0 0
\(643\) 2.98845e11 + 5.17615e11i 0.0689441 + 0.119415i 0.898437 0.439103i \(-0.144704\pi\)
−0.829493 + 0.558518i \(0.811370\pi\)
\(644\) −7.32600e9 1.26890e10i −0.00167834 0.00290697i
\(645\) 0 0
\(646\) 1.12956e12 1.95645e12i 0.255189 0.442001i
\(647\) 3.90064e12 0.875119 0.437559 0.899189i \(-0.355843\pi\)
0.437559 + 0.899189i \(0.355843\pi\)
\(648\) 0 0
\(649\) 7.12295e12 1.57601
\(650\) −1.40084e12 + 2.42632e12i −0.307806 + 0.533136i
\(651\) 0 0
\(652\) 3.15553e10 + 5.46553e10i 0.00683845 + 0.0118445i
\(653\) −1.36814e11 2.36968e11i −0.0294456 0.0510013i 0.850927 0.525284i \(-0.176041\pi\)
−0.880373 + 0.474283i \(0.842708\pi\)
\(654\) 0 0
\(655\) −8.07244e11 + 1.39819e12i −0.171364 + 0.296811i
\(656\) −7.69419e12 −1.62217
\(657\) 0 0
\(658\) −5.30843e11 −0.110395
\(659\) 9.66194e11 1.67350e12i 0.199563 0.345653i −0.748824 0.662769i \(-0.769381\pi\)
0.948387 + 0.317116i \(0.102714\pi\)
\(660\) 0 0
\(661\) −4.49910e12 7.79266e12i −0.916682 1.58774i −0.804420 0.594061i \(-0.797524\pi\)
−0.112262 0.993679i \(-0.535810\pi\)
\(662\) −5.05665e11 8.75838e11i −0.102330 0.177240i
\(663\) 0 0
\(664\) −3.58764e12 + 6.21397e12i −0.716230 + 1.24055i
\(665\) −2.25402e11 −0.0446951
\(666\) 0 0
\(667\) −1.11709e13 −2.18536
\(668\) 3.70003e10 6.40865e10i 0.00718971 0.0124529i
\(669\) 0 0
\(670\) −1.77825e12 3.08002e12i −0.340923 0.590496i
\(671\) −4.34530e12 7.52628e12i −0.827501 1.43327i
\(672\) 0 0
\(673\) 1.90075e12 3.29219e12i 0.357155 0.618610i −0.630330 0.776328i \(-0.717080\pi\)
0.987484 + 0.157718i \(0.0504136\pi\)
\(674\) −2.30068e12 −0.429424
\(675\) 0 0
\(676\) 4.21865e10 0.00776986
\(677\) 1.25508e12 2.17385e12i 0.229626 0.397724i −0.728071 0.685501i \(-0.759583\pi\)
0.957697 + 0.287778i \(0.0929164\pi\)
\(678\) 0 0
\(679\) −8.97696e10 1.55485e11i −0.0162075 0.0280722i
\(680\) −4.85015e11 8.40071e11i −0.0869892 0.150670i
\(681\) 0 0
\(682\) −1.16481e12 + 2.01751e12i −0.206170 + 0.357097i
\(683\) −1.00278e12 −0.176325 −0.0881623 0.996106i \(-0.528099\pi\)
−0.0881623 + 0.996106i \(0.528099\pi\)
\(684\) 0 0
\(685\) 2.79983e10 0.00485875
\(686\) −6.86243e11 + 1.18861e12i −0.118309 + 0.204918i
\(687\) 0 0
\(688\) 1.00058e12 + 1.73305e12i 0.170256 + 0.294893i
\(689\) 3.61469e11 + 6.26083e11i 0.0611061 + 0.105839i
\(690\) 0 0
\(691\) −5.71239e11 + 9.89415e11i −0.0953161 + 0.165092i −0.909741 0.415177i \(-0.863720\pi\)
0.814424 + 0.580270i \(0.197053\pi\)
\(692\) 1.48340e11 0.0245913
\(693\) 0 0
\(694\) −4.28675e12 −0.701472
\(695\) 1.67900e12 2.90812e12i 0.272973 0.472803i
\(696\) 0 0
\(697\) −2.50882e12 4.34540e12i −0.402644 0.697401i
\(698\) 2.44659e12 + 4.23761e12i 0.390132 + 0.675728i
\(699\) 0 0
\(700\) 5.21644e9 9.03515e9i 0.000821171 0.00142231i
\(701\) −5.29555e12 −0.828285 −0.414143 0.910212i \(-0.635919\pi\)
−0.414143 + 0.910212i \(0.635919\pi\)
\(702\) 0 0
\(703\) −8.53660e12 −1.31821
\(704\) 3.87547e12 6.71252e12i 0.594631 1.02993i
\(705\) 0 0
\(706\) 3.51711e12 + 6.09182e12i 0.532801 + 0.922838i
\(707\) −3.49519e11 6.05384e11i −0.0526118 0.0911263i
\(708\) 0 0
\(709\) 5.07483e12 8.78986e12i 0.754246 1.30639i −0.191502 0.981492i \(-0.561336\pi\)
0.945748 0.324901i \(-0.105331\pi\)
\(710\) −1.21027e12 −0.178740
\(711\) 0 0
\(712\) 3.94343e12 0.575062
\(713\) 2.18928e12 3.79194e12i 0.317247 0.549489i
\(714\) 0 0
\(715\) 1.02575e12 + 1.77665e12i 0.146779 + 0.254229i
\(716\) −7.35724e10 1.27431e11i −0.0104618 0.0181204i
\(717\) 0 0
\(718\) −2.67136e12 + 4.62692e12i −0.375121 + 0.649729i
\(719\) 5.75277e12 0.802780 0.401390 0.915907i \(-0.368527\pi\)
0.401390 + 0.915907i \(0.368527\pi\)
\(720\) 0 0
\(721\) −7.69100e10 −0.0105992
\(722\) −3.93667e11 + 6.81850e11i −0.0539152 + 0.0933838i
\(723\) 0 0
\(724\) 4.68058e9 + 8.10700e9i 0.000633105 + 0.00109657i
\(725\) −3.97710e12 6.88854e12i −0.534620 0.925989i
\(726\) 0 0
\(727\) 5.50847e12 9.54095e12i 0.731351 1.26674i −0.224954 0.974369i \(-0.572223\pi\)
0.956306 0.292368i \(-0.0944434\pi\)
\(728\) −6.50362e11 −0.0858152
\(729\) 0 0
\(730\) −7.36953e11 −0.0960476
\(731\) −6.52510e11 + 1.13018e12i −0.0845199 + 0.146393i
\(732\) 0 0
\(733\) 8.78360e11 + 1.52136e12i 0.112384 + 0.194655i 0.916731 0.399505i \(-0.130818\pi\)
−0.804347 + 0.594160i \(0.797485\pi\)
\(734\) −3.65199e12 6.32543e12i −0.464405 0.804374i
\(735\) 0 0
\(736\) −2.22453e11 + 3.85299e11i −0.0279439 + 0.0484003i
\(737\) 1.82470e13 2.27818
\(738\) 0 0
\(739\) −4.52901e12 −0.558603 −0.279301 0.960204i \(-0.590103\pi\)
−0.279301 + 0.960204i \(0.590103\pi\)
\(740\) −2.81960e10 + 4.88370e10i −0.00345657 + 0.00598695i
\(741\) 0 0
\(742\) 8.48006e10 + 1.46879e11i 0.0102703 + 0.0177886i
\(743\) 1.12798e12 + 1.95371e12i 0.135784 + 0.235186i 0.925897 0.377776i \(-0.123311\pi\)
−0.790112 + 0.612962i \(0.789978\pi\)
\(744\) 0 0
\(745\) 3.60421e11 6.24267e11i 0.0428654 0.0742450i
\(746\) −1.15370e13 −1.36386
\(747\) 0 0
\(748\) 7.65669e10 0.00894301
\(749\) 5.75635e11 9.97029e11i 0.0668312 0.115755i
\(750\) 0 0
\(751\) 4.64621e12 + 8.04747e12i 0.532990 + 0.923165i 0.999258 + 0.0385219i \(0.0122649\pi\)
−0.466268 + 0.884644i \(0.654402\pi\)
\(752\) 3.99750e12 + 6.92388e12i 0.455836 + 0.789531i
\(753\) 0 0
\(754\) −3.81420e12 + 6.60639e12i −0.429766 + 0.744377i
\(755\) −2.44935e12 −0.274340
\(756\) 0 0
\(757\) 7.28505e12 0.806308 0.403154 0.915132i \(-0.367914\pi\)
0.403154 + 0.915132i \(0.367914\pi\)
\(758\) −7.28764e12 + 1.26226e13i −0.801818 + 1.38879i
\(759\) 0 0
\(760\) 1.72433e12 + 2.98663e12i 0.187482 + 0.324729i
\(761\) −1.39337e12 2.41339e12i −0.150604 0.260853i 0.780846 0.624724i \(-0.214788\pi\)
−0.931449 + 0.363871i \(0.881455\pi\)
\(762\) 0 0
\(763\) −8.64988e11 + 1.49820e12i −0.0923952 + 0.160033i
\(764\) 8.29995e10 0.00881364
\(765\) 0 0
\(766\) 1.27559e13 1.33869
\(767\) −4.57110e12 + 7.91737e12i −0.476915 + 0.826041i
\(768\) 0 0
\(769\) −2.31500e12 4.00969e12i −0.238716 0.413469i 0.721630 0.692279i \(-0.243393\pi\)
−0.960346 + 0.278810i \(0.910060\pi\)
\(770\) 2.40641e11 + 4.16802e11i 0.0246696 + 0.0427289i
\(771\) 0 0
\(772\) −4.69582e10 + 8.13340e10i −0.00475810 + 0.00824127i
\(773\) −8.49811e12 −0.856080 −0.428040 0.903760i \(-0.640796\pi\)
−0.428040 + 0.903760i \(0.640796\pi\)
\(774\) 0 0
\(775\) 3.11773e12 0.310442
\(776\) −1.37348e12 + 2.37894e12i −0.135971 + 0.235508i
\(777\) 0 0
\(778\) 2.08513e12 + 3.61155e12i 0.204044 + 0.353415i
\(779\) 8.91939e12 + 1.54488e13i 0.867794 + 1.50306i
\(780\) 0 0
\(781\) 3.10472e12 5.37753e12i 0.298602 0.517194i
\(782\) 9.06623e12 0.866954
\(783\) 0 0
\(784\) 1.02604e13 0.969933
\(785\) 1.40538e12 2.43418e12i 0.132093 0.228791i
\(786\) 0 0
\(787\) −1.78539e12 3.09239e12i −0.165900 0.287348i 0.771074 0.636745i \(-0.219720\pi\)
−0.936975 + 0.349397i \(0.886386\pi\)
\(788\) 1.04465e11 + 1.80939e11i 0.00965168 + 0.0167172i
\(789\) 0 0
\(790\) −6.39542e11 + 1.10772e12i −0.0584180 + 0.101183i
\(791\) −8.84787e11 −0.0803608
\(792\) 0 0
\(793\) 1.11542e13 1.00164
\(794\) 3.36934e12 5.83587e12i 0.300852 0.521091i
\(795\) 0 0
\(796\) 9.25262e10 + 1.60260e11i 0.00816875 + 0.0141487i
\(797\) 4.53442e12 + 7.85384e12i 0.398070 + 0.689477i 0.993488 0.113939i \(-0.0363469\pi\)
−0.595418 + 0.803416i \(0.703014\pi\)
\(798\) 0 0
\(799\) −2.60690e12 + 4.51529e12i −0.226289 + 0.391945i
\(800\) −3.16793e11 −0.0273445
\(801\) 0 0
\(802\) 1.37620e13 1.17462
\(803\) 1.89051e12 3.27445e12i 0.160457 0.277919i
\(804\) 0 0
\(805\) −4.52288e11 7.83385e11i −0.0379606 0.0657497i
\(806\) −1.49502e12 2.58944e12i −0.124778 0.216122i
\(807\) 0 0
\(808\) −5.34767e12 + 9.26243e12i −0.441381 + 0.764494i
\(809\) −1.10403e13 −0.906173 −0.453087 0.891467i \(-0.649677\pi\)
−0.453087 + 0.891467i \(0.649677\pi\)
\(810\) 0 0
\(811\) −1.04507e12 −0.0848302 −0.0424151 0.999100i \(-0.513505\pi\)
−0.0424151 + 0.999100i \(0.513505\pi\)
\(812\) 1.42033e10 2.46009e10i 0.00114654 0.00198586i
\(813\) 0 0
\(814\) 9.11375e12 + 1.57855e13i 0.727591 + 1.26023i
\(815\) 1.94814e12 + 3.37428e12i 0.154672 + 0.267899i
\(816\) 0 0
\(817\) 2.31981e12 4.01804e12i 0.182160 0.315511i
\(818\) 4.00612e12 0.312849
\(819\) 0 0
\(820\) 1.17841e11 0.00910198
\(821\) −5.21592e12 + 9.03424e12i −0.400670 + 0.693981i −0.993807 0.111121i \(-0.964556\pi\)
0.593137 + 0.805102i \(0.297889\pi\)
\(822\) 0 0
\(823\) −3.51649e12 6.09074e12i −0.267184 0.462776i 0.700950 0.713211i \(-0.252760\pi\)
−0.968133 + 0.250435i \(0.919426\pi\)
\(824\) 5.88365e11 + 1.01908e12i 0.0444605 + 0.0770078i
\(825\) 0 0
\(826\) −1.07238e12 + 1.85741e12i −0.0801563 + 0.138835i
\(827\) 1.69223e13 1.25801 0.629006 0.777400i \(-0.283462\pi\)
0.629006 + 0.777400i \(0.283462\pi\)
\(828\) 0 0
\(829\) 2.27155e12 0.167042 0.0835212 0.996506i \(-0.473383\pi\)
0.0835212 + 0.996506i \(0.473383\pi\)
\(830\) −3.40756e12 + 5.90206e12i −0.249225 + 0.431671i
\(831\) 0 0
\(832\) 4.97410e12 + 8.61540e12i 0.359882 + 0.623334i
\(833\) 3.34557e12 + 5.79470e12i 0.240751 + 0.416993i
\(834\) 0 0
\(835\) 2.28430e12 3.95653e12i 0.162616 0.281660i
\(836\) −2.72212e11 −0.0192743
\(837\) 0 0
\(838\) 2.54594e12 0.178341
\(839\) 8.97286e12 1.55414e13i 0.625175 1.08284i −0.363332 0.931660i \(-0.618361\pi\)
0.988507 0.151176i \(-0.0483059\pi\)
\(840\) 0 0
\(841\) −3.57528e12 6.19256e12i −0.246449 0.426863i
\(842\) −1.91342e12 3.31414e12i −0.131192 0.227230i
\(843\) 0 0
\(844\) 1.03163e11 1.78683e11i 0.00699812 0.0121211i
\(845\) 2.60448e12 0.175738
\(846\) 0 0
\(847\) −6.70154e11 −0.0447404
\(848\) 1.27718e12 2.21214e12i 0.0848146 0.146903i
\(849\) 0 0
\(850\) 3.22778e12 + 5.59068e12i 0.212089 + 0.367350i
\(851\) −1.71294e13 2.96690e13i −1.11959 1.93919i
\(852\) 0 0
\(853\) 1.10051e13 1.90614e13i 0.711744 1.23278i −0.252458 0.967608i \(-0.581239\pi\)
0.964202 0.265169i \(-0.0854279\pi\)
\(854\) 2.61678e12 0.168348
\(855\) 0 0
\(856\) −1.76145e13 −1.12135
\(857\) −1.17024e13 + 2.02692e13i −0.741074 + 1.28358i 0.210933 + 0.977500i \(0.432350\pi\)
−0.952007 + 0.306077i \(0.900984\pi\)
\(858\) 0 0
\(859\) −2.13404e10 3.69627e10i −0.00133732 0.00231630i 0.865356 0.501158i \(-0.167092\pi\)
−0.866693 + 0.498841i \(0.833759\pi\)
\(860\) −1.53245e10 2.65428e10i −0.000955308 0.00165464i
\(861\) 0 0
\(862\) 6.80253e12 1.17823e13i 0.419650 0.726856i
\(863\) −3.10119e13 −1.90318 −0.951590 0.307370i \(-0.900551\pi\)
−0.951590 + 0.307370i \(0.900551\pi\)
\(864\) 0 0
\(865\) 9.15814e12 0.556205
\(866\) 1.00419e13 1.73932e13i 0.606719 1.05087i
\(867\) 0 0
\(868\) 5.56715e9 + 9.64259e9i 0.000332885 + 0.000576574i
\(869\) −3.28124e12 5.68327e12i −0.195186 0.338072i
\(870\) 0 0
\(871\) −1.17099e13 + 2.02821e13i −0.689398 + 1.19407i
\(872\) 2.64688e13 1.55028
\(873\) 0 0
\(874\) −3.22324e13 −1.86849
\(875\) 6.90062e11 1.19522e12i 0.0397971 0.0689307i
\(876\) 0 0
\(877\) 8.20232e12 + 1.42068e13i 0.468208 + 0.810960i 0.999340 0.0363292i \(-0.0115665\pi\)
−0.531132 + 0.847289i \(0.678233\pi\)
\(878\) −9.16142e12 1.58680e13i −0.520280 0.901152i
\(879\) 0 0
\(880\) 3.62429e12 6.27745e12i 0.203728 0.352867i
\(881\) −2.25741e13 −1.26246 −0.631231 0.775595i \(-0.717450\pi\)
−0.631231 + 0.775595i \(0.717450\pi\)
\(882\) 0 0
\(883\) −7.75871e12 −0.429503 −0.214752 0.976669i \(-0.568894\pi\)
−0.214752 + 0.976669i \(0.568894\pi\)
\(884\) −4.91361e10 + 8.51063e10i −0.00270624 + 0.00468734i
\(885\) 0 0
\(886\) −2.87109e12 4.97288e12i −0.156529 0.271117i
\(887\) 2.22018e12 + 3.84546e12i 0.120429 + 0.208589i 0.919937 0.392066i \(-0.128240\pi\)
−0.799508 + 0.600656i \(0.794906\pi\)
\(888\) 0 0
\(889\) −9.96457e11 + 1.72591e12i −0.0535058 + 0.0926747i
\(890\) 3.74549e12 0.200103
\(891\) 0 0
\(892\) 8.02694e9 0.000424530
\(893\) 9.26810e12 1.60528e13i 0.487707 0.844734i
\(894\) 0 0
\(895\) −4.54217e12 7.86726e12i −0.236624 0.409845i
\(896\) 1.13072e12 + 1.95847e12i 0.0586097 + 0.101515i
\(897\) 0 0
\(898\) 2.97552e12 5.15375e12i 0.152693 0.264472i
\(899\) 8.48897e12 0.433447
\(900\) 0 0
\(901\) 1.66578e12 0.0842087
\(902\) 1.90448e13 3.29866e13i 0.957961 1.65924i
\(903\) 0 0
\(904\) 6.76866e12 + 1.17237e13i 0.337089 + 0.583856i
\(905\) 2.88966e11 + 5.00505e11i 0.0143195 + 0.0248022i
\(906\) 0 0
\(907\) −8.55346e12 + 1.48150e13i −0.419671 + 0.726891i −0.995906 0.0903925i \(-0.971188\pi\)
0.576235 + 0.817284i \(0.304521\pi\)
\(908\) −4.22329e11 −0.0206189
\(909\) 0 0
\(910\) −6.17717e11 −0.0298609
\(911\) −9.41178e12 + 1.63017e13i −0.452730 + 0.784151i −0.998555 0.0537482i \(-0.982883\pi\)
0.545825 + 0.837899i \(0.316216\pi\)
\(912\) 0 0
\(913\) −1.74828e13 3.02812e13i −0.832709 1.44229i
\(914\) 1.40947e13 + 2.44127e13i 0.668031 + 1.15706i
\(915\) 0 0
\(916\) 1.24364e11 2.15404e11i 0.00583665 0.0101094i
\(917\) 2.49414e12 0.116482
\(918\) 0 0
\(919\) −4.20992e13 −1.94695 −0.973473 0.228800i \(-0.926520\pi\)
−0.973473 + 0.228800i \(0.926520\pi\)
\(920\) −6.92004e12 + 1.19859e13i −0.318466 + 0.551600i
\(921\) 0 0
\(922\) −1.68061e13 2.91090e13i −0.765908 1.32659i
\(923\) 3.98486e12 + 6.90197e12i 0.180720 + 0.313015i
\(924\) 0 0
\(925\) 1.21969e13 2.11257e13i 0.547788 0.948797i
\(926\) −4.22615e13 −1.88884
\(927\) 0 0
\(928\) −8.62564e11 −0.0381791
\(929\) −6.18447e12 + 1.07118e13i −0.272415 + 0.471837i −0.969480 0.245171i \(-0.921156\pi\)
0.697064 + 0.717009i \(0.254489\pi\)
\(930\) 0 0
\(931\) −1.18942e13 2.06014e13i −0.518875 0.898718i
\(932\) −1.36533e11 2.36482e11i −0.00592742 0.0102666i
\(933\) 0 0
\(934\) −1.60538e12 + 2.78060e12i −0.0690266 + 0.119558i
\(935\) 4.72703e12 0.202272
\(936\) 0 0
\(937\) 2.10110e13 0.890467 0.445234 0.895414i \(-0.353121\pi\)
0.445234 + 0.895414i \(0.353121\pi\)
\(938\) −2.74713e12 + 4.75817e12i −0.115869 + 0.200691i
\(939\) 0 0
\(940\) −6.12243e10 1.06044e11i −0.00255769 0.00443005i
\(941\) −7.49876e12 1.29882e13i −0.311771 0.540004i 0.666975 0.745080i \(-0.267589\pi\)
−0.978746 + 0.205077i \(0.934256\pi\)
\(942\) 0 0
\(943\) −3.57950e13 + 6.19988e13i −1.47408 + 2.55318i
\(944\) 3.23021e13 1.32391
\(945\) 0 0
\(946\) −9.90662e12 −0.402175
\(947\) −6.54160e11 + 1.13304e12i −0.0264307 + 0.0457794i −0.878938 0.476936i \(-0.841747\pi\)
0.852507 + 0.522715i \(0.175081\pi\)
\(948\) 0 0
\(949\) 2.42643e12 + 4.20271e12i 0.0971115 + 0.168202i
\(950\) −1.14755e13 1.98761e13i −0.457103 0.791725i
\(951\) 0 0
\(952\) −7.49276e11 + 1.29778e12i −0.0295649 + 0.0512078i
\(953\) 4.18691e13 1.64428 0.822140 0.569285i \(-0.192780\pi\)
0.822140 + 0.569285i \(0.192780\pi\)
\(954\) 0 0
\(955\) 5.12417e12 0.199346
\(956\) −3.61068e11 + 6.25388e11i −0.0139807 + 0.0242153i
\(957\) 0 0
\(958\) −4.25153e12 7.36386e12i −0.163080 0.282463i
\(959\) −2.16266e10 3.74584e10i −0.000825667 0.00143010i
\(960\) 0 0
\(961\) 1.15561e13 2.00158e13i 0.437077 0.757039i
\(962\) −2.33947e13 −0.880703
\(963\) 0 0
\(964\) 6.18714e11 0.0230751
\(965\) −2.89907e12 + 5.02134e12i −0.107618 + 0.186401i
\(966\) 0 0
\(967\) 5.53530e11 + 9.58742e11i 0.0203574 + 0.0352600i 0.876025 0.482266i \(-0.160186\pi\)
−0.855667 + 0.517526i \(0.826853\pi\)
\(968\) 5.12671e12 + 8.87972e12i 0.187672 + 0.325058i
\(969\) 0 0
\(970\) −1.30454e12 + 2.25953e12i −0.0473135 + 0.0819494i
\(971\) −2.21624e13 −0.800075 −0.400038 0.916499i \(-0.631003\pi\)
−0.400038 + 0.916499i \(0.631003\pi\)
\(972\) 0 0
\(973\) −5.18762e12 −0.185550
\(974\) −1.08500e11 + 1.87928e11i −0.00386292 + 0.00669078i
\(975\) 0 0
\(976\) −1.97057e13 3.41312e13i −0.695131 1.20400i
\(977\) 1.09841e13 + 1.90251e13i 0.385692 + 0.668038i 0.991865 0.127295i \(-0.0406293\pi\)
−0.606173 + 0.795333i \(0.707296\pi\)
\(978\) 0 0
\(979\) −9.60832e12 + 1.66421e13i −0.334292 + 0.579010i
\(980\) −1.57145e11 −0.00544229
\(981\) 0 0
\(982\) −1.55088e13 −0.532204
\(983\) −2.03615e13 + 3.52671e13i −0.695533 + 1.20470i 0.274467 + 0.961596i \(0.411499\pi\)
−0.970001 + 0.243103i \(0.921835\pi\)
\(984\) 0 0
\(985\) 6.44939e12 + 1.11707e13i 0.218301 + 0.378109i
\(986\) 8.78861e12 + 1.52223e13i 0.296124 + 0.512903i
\(987\) 0 0
\(988\) 1.74690e11 3.02571e11i 0.00583258 0.0101023i
\(989\) 1.86196e13 0.618853
\(990\) 0 0
\(991\) 1.69138e13 0.557070 0.278535 0.960426i \(-0.410151\pi\)
0.278535 + 0.960426i \(0.410151\pi\)
\(992\) 1.69045e11 2.92795e11i 0.00554244 0.00959979i
\(993\) 0 0
\(994\) 9.34847e11 + 1.61920e12i 0.0303740 + 0.0526093i
\(995\) 5.71232e12 + 9.89403e12i 0.184760 + 0.320014i
\(996\) 0 0
\(997\) 2.00331e13 3.46983e13i 0.642125 1.11219i −0.342833 0.939396i \(-0.611386\pi\)
0.984958 0.172796i \(-0.0552802\pi\)
\(998\) 1.79071e13 0.571397
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.c.f.55.1 4
3.2 odd 2 inner 81.10.c.f.55.2 4
9.2 odd 6 27.10.a.a.1.1 2
9.4 even 3 inner 81.10.c.f.28.1 4
9.5 odd 6 inner 81.10.c.f.28.2 4
9.7 even 3 27.10.a.a.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.10.a.a.1.1 2 9.2 odd 6
27.10.a.a.1.2 yes 2 9.7 even 3
81.10.c.f.28.1 4 9.4 even 3 inner
81.10.c.f.28.2 4 9.5 odd 6 inner
81.10.c.f.55.1 4 1.1 even 1 trivial
81.10.c.f.55.2 4 3.2 odd 2 inner