Properties

Label 81.10.c.f
Level $81$
Weight $10$
Character orbit 81.c
Analytic conductor $41.718$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{14})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 14x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - 8 \beta_{2} q^{4} + (22 \beta_{3} + 22 \beta_1) q^{5} + (763 \beta_{2} + 763) q^{7} - 520 \beta_{3} q^{8} - 11088 q^{10} - 2534 \beta_1 q^{11} - 73015 \beta_{2} q^{13} + (763 \beta_{3} + 763 \beta_1) q^{14}+ \cdots - 39771438 \beta_{3} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4} + 1526 q^{7} - 44352 q^{10} + 146030 q^{13} + 515968 q^{16} - 2392516 q^{19} + 2554272 q^{22} + 3418378 q^{25} + 24416 q^{28} + 3648200 q^{31} - 7553952 q^{34} + 57088700 q^{37} - 11531520 q^{40}+ \cdots + 470613686 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 14x^{2} + 196 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 6\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 14 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{3} ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 14\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 7\beta_{3} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
−1.87083 3.24037i
1.87083 + 3.24037i
−1.87083 + 3.24037i
1.87083 3.24037i
−11.2250 19.4422i 0 4.00000 6.92820i 246.949 427.729i 0 381.500 + 660.777i −11674.0 0 −11088.0
28.2 11.2250 + 19.4422i 0 4.00000 6.92820i −246.949 + 427.729i 0 381.500 + 660.777i 11674.0 0 −11088.0
55.1 −11.2250 + 19.4422i 0 4.00000 + 6.92820i 246.949 + 427.729i 0 381.500 660.777i −11674.0 0 −11088.0
55.2 11.2250 19.4422i 0 4.00000 + 6.92820i −246.949 427.729i 0 381.500 660.777i 11674.0 0 −11088.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.10.c.f 4
3.b odd 2 1 inner 81.10.c.f 4
9.c even 3 1 27.10.a.a 2
9.c even 3 1 inner 81.10.c.f 4
9.d odd 6 1 27.10.a.a 2
9.d odd 6 1 inner 81.10.c.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.10.a.a 2 9.c even 3 1
27.10.a.a 2 9.d odd 6 1
81.10.c.f 4 1.a even 1 1 trivial
81.10.c.f 4 3.b odd 2 1 inner
81.10.c.f 4 9.c even 3 1 inner
81.10.c.f 4 9.d odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 504T_{2}^{2} + 254016 \) acting on \(S_{10}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 504 T^{2} + 254016 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 59504772096 \) Copy content Toggle raw display
$7$ \( (T^{2} - 763 T + 582169)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 10\!\cdots\!76 \) Copy content Toggle raw display
$13$ \( (T^{2} - 73015 T + 5331190225)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 28304658144)^{2} \) Copy content Toggle raw display
$19$ \( (T + 598129)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 33\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 46\!\cdots\!96 \) Copy content Toggle raw display
$31$ \( (T^{2} + \cdots + 3327340810000)^{2} \) Copy content Toggle raw display
$37$ \( (T - 14272175)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 79\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{2} + \cdots + 60169559665216)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 92\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( (T^{2} - 98034427661184)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 24\!\cdots\!56 \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots + 23\!\cdots\!49)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + \cdots + 10\!\cdots\!61)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 11\!\cdots\!64)^{2} \) Copy content Toggle raw display
$73$ \( (T - 66463985)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 13\!\cdots\!09)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 14\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( (T^{2} - 11\!\cdots\!04)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots + 55\!\cdots\!49)^{2} \) Copy content Toggle raw display
show more
show less