Defining parameters
Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 81.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(81, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 174 | 74 | 100 |
Cusp forms | 150 | 70 | 80 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(81, [\chi])\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(81, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(81, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)