Properties

Label 81.10.a.d.1.6
Level $81$
Weight $10$
Character 81.1
Self dual yes
Analytic conductor $41.718$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(1,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2930 x^{6} - 1276 x^{5} + 2487472 x^{4} + 3423248 x^{3} - 586568096 x^{2} + \cdots + 965565184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{18}\cdot 17 \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-15.7185\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+17.7185 q^{2} -198.054 q^{4} +739.877 q^{5} -6027.34 q^{7} -12581.1 q^{8} +13109.5 q^{10} -18431.0 q^{11} +117586. q^{13} -106795. q^{14} -121515. q^{16} +468308. q^{17} +834842. q^{19} -146536. q^{20} -326571. q^{22} -1.32052e6 q^{23} -1.40571e6 q^{25} +2.08345e6 q^{26} +1.19374e6 q^{28} -64246.8 q^{29} +7.41751e6 q^{31} +4.28847e6 q^{32} +8.29773e6 q^{34} -4.45949e6 q^{35} +3.68044e6 q^{37} +1.47922e7 q^{38} -9.30848e6 q^{40} +2.53611e7 q^{41} +2.42839e7 q^{43} +3.65035e6 q^{44} -2.33977e7 q^{46} -7.03371e6 q^{47} -4.02479e6 q^{49} -2.49070e7 q^{50} -2.32884e7 q^{52} +3.10597e7 q^{53} -1.36367e7 q^{55} +7.58306e7 q^{56} -1.13836e6 q^{58} +1.53654e8 q^{59} -1.55161e8 q^{61} +1.31427e8 q^{62} +1.38201e8 q^{64} +8.69992e7 q^{65} -1.39728e7 q^{67} -9.27506e7 q^{68} -7.90155e7 q^{70} +3.45182e8 q^{71} -3.01511e8 q^{73} +6.52119e7 q^{74} -1.65344e8 q^{76} +1.11090e8 q^{77} +3.59669e8 q^{79} -8.99059e7 q^{80} +4.49361e8 q^{82} +1.05014e8 q^{83} +3.46491e8 q^{85} +4.30274e8 q^{86} +2.31883e8 q^{88} -8.60555e8 q^{89} -7.08730e8 q^{91} +2.61536e8 q^{92} -1.24627e8 q^{94} +6.17681e8 q^{95} +9.48522e7 q^{97} -7.13133e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 15 q^{2} + 1793 q^{4} + 453 q^{5} + 343 q^{7} + 7239 q^{8} + 510 q^{10} + 99150 q^{11} - 32435 q^{13} + 394824 q^{14} + 328193 q^{16} + 415539 q^{17} - 85277 q^{19} + 1855164 q^{20} - 529359 q^{22}+ \cdots - 2413650159 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 17.7185 0.783055 0.391527 0.920166i \(-0.371947\pi\)
0.391527 + 0.920166i \(0.371947\pi\)
\(3\) 0 0
\(4\) −198.054 −0.386825
\(5\) 739.877 0.529413 0.264707 0.964329i \(-0.414725\pi\)
0.264707 + 0.964329i \(0.414725\pi\)
\(6\) 0 0
\(7\) −6027.34 −0.948821 −0.474411 0.880304i \(-0.657339\pi\)
−0.474411 + 0.880304i \(0.657339\pi\)
\(8\) −12581.1 −1.08596
\(9\) 0 0
\(10\) 13109.5 0.414560
\(11\) −18431.0 −0.379562 −0.189781 0.981826i \(-0.560778\pi\)
−0.189781 + 0.981826i \(0.560778\pi\)
\(12\) 0 0
\(13\) 117586. 1.14185 0.570927 0.821001i \(-0.306584\pi\)
0.570927 + 0.821001i \(0.306584\pi\)
\(14\) −106795. −0.742979
\(15\) 0 0
\(16\) −121515. −0.463541
\(17\) 468308. 1.35992 0.679958 0.733251i \(-0.261998\pi\)
0.679958 + 0.733251i \(0.261998\pi\)
\(18\) 0 0
\(19\) 834842. 1.46965 0.734824 0.678258i \(-0.237265\pi\)
0.734824 + 0.678258i \(0.237265\pi\)
\(20\) −146536. −0.204790
\(21\) 0 0
\(22\) −326571. −0.297218
\(23\) −1.32052e6 −0.983946 −0.491973 0.870610i \(-0.663724\pi\)
−0.491973 + 0.870610i \(0.663724\pi\)
\(24\) 0 0
\(25\) −1.40571e6 −0.719722
\(26\) 2.08345e6 0.894134
\(27\) 0 0
\(28\) 1.19374e6 0.367028
\(29\) −64246.8 −0.0168679 −0.00843394 0.999964i \(-0.502685\pi\)
−0.00843394 + 0.999964i \(0.502685\pi\)
\(30\) 0 0
\(31\) 7.41751e6 1.44255 0.721274 0.692650i \(-0.243557\pi\)
0.721274 + 0.692650i \(0.243557\pi\)
\(32\) 4.28847e6 0.722982
\(33\) 0 0
\(34\) 8.29773e6 1.06489
\(35\) −4.45949e6 −0.502318
\(36\) 0 0
\(37\) 3.68044e6 0.322843 0.161422 0.986886i \(-0.448392\pi\)
0.161422 + 0.986886i \(0.448392\pi\)
\(38\) 1.47922e7 1.15081
\(39\) 0 0
\(40\) −9.30848e6 −0.574922
\(41\) 2.53611e7 1.40165 0.700827 0.713331i \(-0.252814\pi\)
0.700827 + 0.713331i \(0.252814\pi\)
\(42\) 0 0
\(43\) 2.42839e7 1.08320 0.541601 0.840636i \(-0.317818\pi\)
0.541601 + 0.840636i \(0.317818\pi\)
\(44\) 3.65035e6 0.146824
\(45\) 0 0
\(46\) −2.33977e7 −0.770484
\(47\) −7.03371e6 −0.210254 −0.105127 0.994459i \(-0.533525\pi\)
−0.105127 + 0.994459i \(0.533525\pi\)
\(48\) 0 0
\(49\) −4.02479e6 −0.0997380
\(50\) −2.49070e7 −0.563582
\(51\) 0 0
\(52\) −2.32884e7 −0.441698
\(53\) 3.10597e7 0.540700 0.270350 0.962762i \(-0.412861\pi\)
0.270350 + 0.962762i \(0.412861\pi\)
\(54\) 0 0
\(55\) −1.36367e7 −0.200945
\(56\) 7.58306e7 1.03038
\(57\) 0 0
\(58\) −1.13836e6 −0.0132085
\(59\) 1.53654e8 1.65086 0.825429 0.564506i \(-0.190933\pi\)
0.825429 + 0.564506i \(0.190933\pi\)
\(60\) 0 0
\(61\) −1.55161e8 −1.43482 −0.717410 0.696651i \(-0.754673\pi\)
−0.717410 + 0.696651i \(0.754673\pi\)
\(62\) 1.31427e8 1.12959
\(63\) 0 0
\(64\) 1.38201e8 1.02968
\(65\) 8.69992e7 0.604512
\(66\) 0 0
\(67\) −1.39728e7 −0.0847124 −0.0423562 0.999103i \(-0.513486\pi\)
−0.0423562 + 0.999103i \(0.513486\pi\)
\(68\) −9.27506e7 −0.526049
\(69\) 0 0
\(70\) −7.90155e7 −0.393343
\(71\) 3.45182e8 1.61207 0.806037 0.591865i \(-0.201608\pi\)
0.806037 + 0.591865i \(0.201608\pi\)
\(72\) 0 0
\(73\) −3.01511e8 −1.24265 −0.621327 0.783551i \(-0.713406\pi\)
−0.621327 + 0.783551i \(0.713406\pi\)
\(74\) 6.52119e7 0.252804
\(75\) 0 0
\(76\) −1.65344e8 −0.568497
\(77\) 1.11090e8 0.360137
\(78\) 0 0
\(79\) 3.59669e8 1.03892 0.519458 0.854496i \(-0.326134\pi\)
0.519458 + 0.854496i \(0.326134\pi\)
\(80\) −8.99059e7 −0.245405
\(81\) 0 0
\(82\) 4.49361e8 1.09757
\(83\) 1.05014e8 0.242882 0.121441 0.992599i \(-0.461249\pi\)
0.121441 + 0.992599i \(0.461249\pi\)
\(84\) 0 0
\(85\) 3.46491e8 0.719957
\(86\) 4.30274e8 0.848207
\(87\) 0 0
\(88\) 2.31883e8 0.412189
\(89\) −8.60555e8 −1.45386 −0.726932 0.686710i \(-0.759054\pi\)
−0.726932 + 0.686710i \(0.759054\pi\)
\(90\) 0 0
\(91\) −7.08730e8 −1.08342
\(92\) 2.61536e8 0.380615
\(93\) 0 0
\(94\) −1.24627e8 −0.164640
\(95\) 6.17681e8 0.778051
\(96\) 0 0
\(97\) 9.48522e7 0.108786 0.0543932 0.998520i \(-0.482678\pi\)
0.0543932 + 0.998520i \(0.482678\pi\)
\(98\) −7.13133e7 −0.0781004
\(99\) 0 0
\(100\) 2.78406e8 0.278406
\(101\) −4.77159e8 −0.456264 −0.228132 0.973630i \(-0.573262\pi\)
−0.228132 + 0.973630i \(0.573262\pi\)
\(102\) 0 0
\(103\) 3.37112e8 0.295125 0.147563 0.989053i \(-0.452857\pi\)
0.147563 + 0.989053i \(0.452857\pi\)
\(104\) −1.47936e9 −1.24001
\(105\) 0 0
\(106\) 5.50332e8 0.423398
\(107\) 1.05652e9 0.779203 0.389602 0.920983i \(-0.372613\pi\)
0.389602 + 0.920983i \(0.372613\pi\)
\(108\) 0 0
\(109\) 5.44814e8 0.369683 0.184841 0.982768i \(-0.440823\pi\)
0.184841 + 0.982768i \(0.440823\pi\)
\(110\) −2.41622e8 −0.157351
\(111\) 0 0
\(112\) 7.32409e8 0.439818
\(113\) −1.09053e9 −0.629193 −0.314597 0.949225i \(-0.601869\pi\)
−0.314597 + 0.949225i \(0.601869\pi\)
\(114\) 0 0
\(115\) −9.77026e8 −0.520914
\(116\) 1.27244e7 0.00652492
\(117\) 0 0
\(118\) 2.72252e9 1.29271
\(119\) −2.82265e9 −1.29032
\(120\) 0 0
\(121\) −2.01824e9 −0.855933
\(122\) −2.74922e9 −1.12354
\(123\) 0 0
\(124\) −1.46907e9 −0.558014
\(125\) −2.48512e9 −0.910443
\(126\) 0 0
\(127\) −1.90290e9 −0.649082 −0.324541 0.945872i \(-0.605210\pi\)
−0.324541 + 0.945872i \(0.605210\pi\)
\(128\) 2.53015e8 0.0833107
\(129\) 0 0
\(130\) 1.54150e9 0.473366
\(131\) 7.70914e8 0.228710 0.114355 0.993440i \(-0.463520\pi\)
0.114355 + 0.993440i \(0.463520\pi\)
\(132\) 0 0
\(133\) −5.03188e9 −1.39443
\(134\) −2.47577e8 −0.0663345
\(135\) 0 0
\(136\) −5.89184e9 −1.47681
\(137\) 4.23967e8 0.102823 0.0514114 0.998678i \(-0.483628\pi\)
0.0514114 + 0.998678i \(0.483628\pi\)
\(138\) 0 0
\(139\) −2.49710e9 −0.567373 −0.283687 0.958917i \(-0.591558\pi\)
−0.283687 + 0.958917i \(0.591558\pi\)
\(140\) 8.83222e8 0.194309
\(141\) 0 0
\(142\) 6.11610e9 1.26234
\(143\) −2.16723e9 −0.433404
\(144\) 0 0
\(145\) −4.75347e7 −0.00893007
\(146\) −5.34232e9 −0.973066
\(147\) 0 0
\(148\) −7.28927e8 −0.124884
\(149\) −3.54791e9 −0.589705 −0.294853 0.955543i \(-0.595271\pi\)
−0.294853 + 0.955543i \(0.595271\pi\)
\(150\) 0 0
\(151\) 4.24790e9 0.664933 0.332466 0.943115i \(-0.392119\pi\)
0.332466 + 0.943115i \(0.392119\pi\)
\(152\) −1.05032e10 −1.59598
\(153\) 0 0
\(154\) 1.96835e9 0.282007
\(155\) 5.48804e9 0.763704
\(156\) 0 0
\(157\) −1.83176e9 −0.240613 −0.120307 0.992737i \(-0.538388\pi\)
−0.120307 + 0.992737i \(0.538388\pi\)
\(158\) 6.37279e9 0.813528
\(159\) 0 0
\(160\) 3.17294e9 0.382756
\(161\) 7.95925e9 0.933589
\(162\) 0 0
\(163\) 4.81775e9 0.534564 0.267282 0.963618i \(-0.413874\pi\)
0.267282 + 0.963618i \(0.413874\pi\)
\(164\) −5.02288e9 −0.542195
\(165\) 0 0
\(166\) 1.86069e9 0.190190
\(167\) 1.50711e9 0.149941 0.0749704 0.997186i \(-0.476114\pi\)
0.0749704 + 0.997186i \(0.476114\pi\)
\(168\) 0 0
\(169\) 3.22196e9 0.303830
\(170\) 6.13930e9 0.563766
\(171\) 0 0
\(172\) −4.80953e9 −0.419010
\(173\) 2.16043e10 1.83372 0.916859 0.399210i \(-0.130716\pi\)
0.916859 + 0.399210i \(0.130716\pi\)
\(174\) 0 0
\(175\) 8.47267e9 0.682887
\(176\) 2.23964e9 0.175943
\(177\) 0 0
\(178\) −1.52478e10 −1.13845
\(179\) 1.94882e10 1.41884 0.709418 0.704788i \(-0.248958\pi\)
0.709418 + 0.704788i \(0.248958\pi\)
\(180\) 0 0
\(181\) 7.45903e9 0.516569 0.258285 0.966069i \(-0.416843\pi\)
0.258285 + 0.966069i \(0.416843\pi\)
\(182\) −1.25576e10 −0.848373
\(183\) 0 0
\(184\) 1.66137e10 1.06853
\(185\) 2.72307e9 0.170917
\(186\) 0 0
\(187\) −8.63142e9 −0.516172
\(188\) 1.39306e9 0.0813315
\(189\) 0 0
\(190\) 1.09444e10 0.609256
\(191\) 6.56601e9 0.356986 0.178493 0.983941i \(-0.442878\pi\)
0.178493 + 0.983941i \(0.442878\pi\)
\(192\) 0 0
\(193\) −1.88011e10 −0.975386 −0.487693 0.873015i \(-0.662161\pi\)
−0.487693 + 0.873015i \(0.662161\pi\)
\(194\) 1.68064e9 0.0851857
\(195\) 0 0
\(196\) 7.97127e8 0.0385812
\(197\) 1.66201e9 0.0786206 0.0393103 0.999227i \(-0.487484\pi\)
0.0393103 + 0.999227i \(0.487484\pi\)
\(198\) 0 0
\(199\) 1.45345e10 0.656996 0.328498 0.944505i \(-0.393458\pi\)
0.328498 + 0.944505i \(0.393458\pi\)
\(200\) 1.76853e10 0.781589
\(201\) 0 0
\(202\) −8.45454e9 −0.357280
\(203\) 3.87237e8 0.0160046
\(204\) 0 0
\(205\) 1.87641e10 0.742054
\(206\) 5.97312e9 0.231099
\(207\) 0 0
\(208\) −1.42884e10 −0.529296
\(209\) −1.53870e10 −0.557823
\(210\) 0 0
\(211\) 1.39321e9 0.0483890 0.0241945 0.999707i \(-0.492298\pi\)
0.0241945 + 0.999707i \(0.492298\pi\)
\(212\) −6.15152e9 −0.209156
\(213\) 0 0
\(214\) 1.87200e10 0.610159
\(215\) 1.79671e10 0.573462
\(216\) 0 0
\(217\) −4.47078e10 −1.36872
\(218\) 9.65330e9 0.289482
\(219\) 0 0
\(220\) 2.70081e9 0.0777307
\(221\) 5.50665e10 1.55282
\(222\) 0 0
\(223\) −2.87367e10 −0.778153 −0.389077 0.921205i \(-0.627206\pi\)
−0.389077 + 0.921205i \(0.627206\pi\)
\(224\) −2.58481e10 −0.685981
\(225\) 0 0
\(226\) −1.93225e10 −0.492693
\(227\) 3.84175e10 0.960313 0.480157 0.877183i \(-0.340580\pi\)
0.480157 + 0.877183i \(0.340580\pi\)
\(228\) 0 0
\(229\) −1.33906e10 −0.321765 −0.160883 0.986974i \(-0.551434\pi\)
−0.160883 + 0.986974i \(0.551434\pi\)
\(230\) −1.73115e10 −0.407904
\(231\) 0 0
\(232\) 8.08296e8 0.0183178
\(233\) −4.50134e10 −1.00055 −0.500276 0.865866i \(-0.666768\pi\)
−0.500276 + 0.865866i \(0.666768\pi\)
\(234\) 0 0
\(235\) −5.20409e9 −0.111311
\(236\) −3.04319e10 −0.638593
\(237\) 0 0
\(238\) −5.00132e10 −1.01039
\(239\) 6.55944e10 1.30040 0.650199 0.759764i \(-0.274686\pi\)
0.650199 + 0.759764i \(0.274686\pi\)
\(240\) 0 0
\(241\) 2.68133e10 0.512005 0.256002 0.966676i \(-0.417595\pi\)
0.256002 + 0.966676i \(0.417595\pi\)
\(242\) −3.57603e10 −0.670242
\(243\) 0 0
\(244\) 3.07303e10 0.555025
\(245\) −2.97785e9 −0.0528026
\(246\) 0 0
\(247\) 9.81657e10 1.67812
\(248\) −9.33204e10 −1.56655
\(249\) 0 0
\(250\) −4.40327e10 −0.712927
\(251\) 4.29625e10 0.683216 0.341608 0.939842i \(-0.389028\pi\)
0.341608 + 0.939842i \(0.389028\pi\)
\(252\) 0 0
\(253\) 2.43387e10 0.373469
\(254\) −3.37166e10 −0.508267
\(255\) 0 0
\(256\) −6.62757e10 −0.964439
\(257\) −9.45505e10 −1.35196 −0.675981 0.736919i \(-0.736280\pi\)
−0.675981 + 0.736919i \(0.736280\pi\)
\(258\) 0 0
\(259\) −2.21832e10 −0.306321
\(260\) −1.72306e10 −0.233841
\(261\) 0 0
\(262\) 1.36594e10 0.179092
\(263\) −1.12469e11 −1.44954 −0.724771 0.688990i \(-0.758055\pi\)
−0.724771 + 0.688990i \(0.758055\pi\)
\(264\) 0 0
\(265\) 2.29804e10 0.286254
\(266\) −8.91574e10 −1.09192
\(267\) 0 0
\(268\) 2.76738e9 0.0327689
\(269\) 1.11208e11 1.29494 0.647472 0.762089i \(-0.275826\pi\)
0.647472 + 0.762089i \(0.275826\pi\)
\(270\) 0 0
\(271\) 1.30075e10 0.146498 0.0732491 0.997314i \(-0.476663\pi\)
0.0732491 + 0.997314i \(0.476663\pi\)
\(272\) −5.69063e10 −0.630377
\(273\) 0 0
\(274\) 7.51207e9 0.0805159
\(275\) 2.59086e10 0.273179
\(276\) 0 0
\(277\) 4.25430e10 0.434180 0.217090 0.976152i \(-0.430344\pi\)
0.217090 + 0.976152i \(0.430344\pi\)
\(278\) −4.42448e10 −0.444284
\(279\) 0 0
\(280\) 5.61053e10 0.545498
\(281\) 1.38366e11 1.32388 0.661941 0.749556i \(-0.269733\pi\)
0.661941 + 0.749556i \(0.269733\pi\)
\(282\) 0 0
\(283\) 8.80789e10 0.816268 0.408134 0.912922i \(-0.366180\pi\)
0.408134 + 0.912922i \(0.366180\pi\)
\(284\) −6.83648e10 −0.623591
\(285\) 0 0
\(286\) −3.84001e10 −0.339379
\(287\) −1.52860e11 −1.32992
\(288\) 0 0
\(289\) 1.00725e11 0.849370
\(290\) −8.42245e8 −0.00699274
\(291\) 0 0
\(292\) 5.97156e10 0.480690
\(293\) 1.51744e11 1.20284 0.601419 0.798934i \(-0.294602\pi\)
0.601419 + 0.798934i \(0.294602\pi\)
\(294\) 0 0
\(295\) 1.13685e11 0.873986
\(296\) −4.63040e10 −0.350595
\(297\) 0 0
\(298\) −6.28638e10 −0.461772
\(299\) −1.55275e11 −1.12352
\(300\) 0 0
\(301\) −1.46367e11 −1.02777
\(302\) 7.52664e10 0.520679
\(303\) 0 0
\(304\) −1.01445e11 −0.681242
\(305\) −1.14800e11 −0.759613
\(306\) 0 0
\(307\) −1.76213e11 −1.13218 −0.566089 0.824344i \(-0.691544\pi\)
−0.566089 + 0.824344i \(0.691544\pi\)
\(308\) −2.20019e10 −0.139310
\(309\) 0 0
\(310\) 9.72400e10 0.598022
\(311\) −9.98964e10 −0.605519 −0.302760 0.953067i \(-0.597908\pi\)
−0.302760 + 0.953067i \(0.597908\pi\)
\(312\) 0 0
\(313\) 1.83425e11 1.08021 0.540106 0.841597i \(-0.318384\pi\)
0.540106 + 0.841597i \(0.318384\pi\)
\(314\) −3.24560e10 −0.188413
\(315\) 0 0
\(316\) −7.12340e10 −0.401879
\(317\) 2.58351e11 1.43696 0.718479 0.695549i \(-0.244839\pi\)
0.718479 + 0.695549i \(0.244839\pi\)
\(318\) 0 0
\(319\) 1.18414e9 0.00640241
\(320\) 1.02252e11 0.545124
\(321\) 0 0
\(322\) 1.41026e11 0.731051
\(323\) 3.90964e11 1.99860
\(324\) 0 0
\(325\) −1.65291e11 −0.821817
\(326\) 8.53633e10 0.418593
\(327\) 0 0
\(328\) −3.19071e11 −1.52214
\(329\) 4.23946e10 0.199494
\(330\) 0 0
\(331\) −2.83249e11 −1.29701 −0.648503 0.761212i \(-0.724605\pi\)
−0.648503 + 0.761212i \(0.724605\pi\)
\(332\) −2.07984e10 −0.0939528
\(333\) 0 0
\(334\) 2.67037e10 0.117412
\(335\) −1.03382e10 −0.0448479
\(336\) 0 0
\(337\) −2.99587e11 −1.26528 −0.632642 0.774444i \(-0.718030\pi\)
−0.632642 + 0.774444i \(0.718030\pi\)
\(338\) 5.70883e10 0.237915
\(339\) 0 0
\(340\) −6.86240e10 −0.278497
\(341\) −1.36712e11 −0.547537
\(342\) 0 0
\(343\) 2.67484e11 1.04345
\(344\) −3.05518e11 −1.17631
\(345\) 0 0
\(346\) 3.82796e11 1.43590
\(347\) 5.47340e10 0.202663 0.101332 0.994853i \(-0.467690\pi\)
0.101332 + 0.994853i \(0.467690\pi\)
\(348\) 0 0
\(349\) −3.04215e11 −1.09766 −0.548828 0.835935i \(-0.684926\pi\)
−0.548828 + 0.835935i \(0.684926\pi\)
\(350\) 1.50123e11 0.534738
\(351\) 0 0
\(352\) −7.90410e10 −0.274417
\(353\) 5.30034e11 1.81684 0.908421 0.418057i \(-0.137289\pi\)
0.908421 + 0.418057i \(0.137289\pi\)
\(354\) 0 0
\(355\) 2.55392e11 0.853453
\(356\) 1.70437e11 0.562391
\(357\) 0 0
\(358\) 3.45301e11 1.11103
\(359\) 4.60506e11 1.46322 0.731611 0.681722i \(-0.238769\pi\)
0.731611 + 0.681722i \(0.238769\pi\)
\(360\) 0 0
\(361\) 3.74274e11 1.15986
\(362\) 1.32163e11 0.404502
\(363\) 0 0
\(364\) 1.40367e11 0.419092
\(365\) −2.23081e11 −0.657877
\(366\) 0 0
\(367\) −4.52772e11 −1.30281 −0.651407 0.758728i \(-0.725821\pi\)
−0.651407 + 0.758728i \(0.725821\pi\)
\(368\) 1.60463e11 0.456100
\(369\) 0 0
\(370\) 4.82488e10 0.133838
\(371\) −1.87208e11 −0.513028
\(372\) 0 0
\(373\) −1.01130e11 −0.270515 −0.135257 0.990810i \(-0.543186\pi\)
−0.135257 + 0.990810i \(0.543186\pi\)
\(374\) −1.52936e11 −0.404191
\(375\) 0 0
\(376\) 8.84919e10 0.228327
\(377\) −7.55452e9 −0.0192606
\(378\) 0 0
\(379\) −5.06871e11 −1.26189 −0.630944 0.775829i \(-0.717332\pi\)
−0.630944 + 0.775829i \(0.717332\pi\)
\(380\) −1.22334e11 −0.300970
\(381\) 0 0
\(382\) 1.16340e11 0.279540
\(383\) 2.96940e11 0.705137 0.352569 0.935786i \(-0.385308\pi\)
0.352569 + 0.935786i \(0.385308\pi\)
\(384\) 0 0
\(385\) 8.21931e10 0.190661
\(386\) −3.33128e11 −0.763781
\(387\) 0 0
\(388\) −1.87859e10 −0.0420813
\(389\) 5.28340e10 0.116988 0.0584939 0.998288i \(-0.481370\pi\)
0.0584939 + 0.998288i \(0.481370\pi\)
\(390\) 0 0
\(391\) −6.18413e11 −1.33808
\(392\) 5.06363e10 0.108312
\(393\) 0 0
\(394\) 2.94484e10 0.0615642
\(395\) 2.66111e11 0.550016
\(396\) 0 0
\(397\) 4.35046e11 0.878978 0.439489 0.898248i \(-0.355160\pi\)
0.439489 + 0.898248i \(0.355160\pi\)
\(398\) 2.57531e11 0.514464
\(399\) 0 0
\(400\) 1.70814e11 0.333621
\(401\) −4.04110e10 −0.0780459 −0.0390230 0.999238i \(-0.512425\pi\)
−0.0390230 + 0.999238i \(0.512425\pi\)
\(402\) 0 0
\(403\) 8.72195e11 1.64718
\(404\) 9.45034e10 0.176495
\(405\) 0 0
\(406\) 6.86126e9 0.0125325
\(407\) −6.78343e10 −0.122539
\(408\) 0 0
\(409\) 2.41358e11 0.426487 0.213244 0.976999i \(-0.431597\pi\)
0.213244 + 0.976999i \(0.431597\pi\)
\(410\) 3.32472e11 0.581069
\(411\) 0 0
\(412\) −6.67665e10 −0.114162
\(413\) −9.26125e11 −1.56637
\(414\) 0 0
\(415\) 7.76973e10 0.128585
\(416\) 5.04264e11 0.825539
\(417\) 0 0
\(418\) −2.72635e11 −0.436806
\(419\) 3.75371e11 0.594973 0.297486 0.954726i \(-0.403852\pi\)
0.297486 + 0.954726i \(0.403852\pi\)
\(420\) 0 0
\(421\) 7.26393e11 1.12694 0.563472 0.826135i \(-0.309465\pi\)
0.563472 + 0.826135i \(0.309465\pi\)
\(422\) 2.46857e10 0.0378912
\(423\) 0 0
\(424\) −3.90766e11 −0.587179
\(425\) −6.58304e11 −0.978761
\(426\) 0 0
\(427\) 9.35206e11 1.36139
\(428\) −2.09249e11 −0.301415
\(429\) 0 0
\(430\) 3.18350e11 0.449052
\(431\) −8.99614e11 −1.25576 −0.627882 0.778308i \(-0.716078\pi\)
−0.627882 + 0.778308i \(0.716078\pi\)
\(432\) 0 0
\(433\) −7.77024e11 −1.06228 −0.531140 0.847284i \(-0.678236\pi\)
−0.531140 + 0.847284i \(0.678236\pi\)
\(434\) −7.92156e11 −1.07178
\(435\) 0 0
\(436\) −1.07903e11 −0.143003
\(437\) −1.10243e12 −1.44605
\(438\) 0 0
\(439\) −1.52699e12 −1.96221 −0.981104 0.193480i \(-0.938023\pi\)
−0.981104 + 0.193480i \(0.938023\pi\)
\(440\) 1.71565e11 0.218218
\(441\) 0 0
\(442\) 9.75696e11 1.21595
\(443\) −2.78099e11 −0.343070 −0.171535 0.985178i \(-0.554873\pi\)
−0.171535 + 0.985178i \(0.554873\pi\)
\(444\) 0 0
\(445\) −6.36705e11 −0.769694
\(446\) −5.09172e11 −0.609337
\(447\) 0 0
\(448\) −8.32983e11 −0.976978
\(449\) −3.39438e11 −0.394141 −0.197071 0.980389i \(-0.563143\pi\)
−0.197071 + 0.980389i \(0.563143\pi\)
\(450\) 0 0
\(451\) −4.67432e11 −0.532015
\(452\) 2.15984e11 0.243388
\(453\) 0 0
\(454\) 6.80701e11 0.751978
\(455\) −5.24374e11 −0.573574
\(456\) 0 0
\(457\) 8.20378e11 0.879814 0.439907 0.898043i \(-0.355011\pi\)
0.439907 + 0.898043i \(0.355011\pi\)
\(458\) −2.37261e11 −0.251960
\(459\) 0 0
\(460\) 1.93504e11 0.201503
\(461\) −9.91441e11 −1.02238 −0.511190 0.859467i \(-0.670795\pi\)
−0.511190 + 0.859467i \(0.670795\pi\)
\(462\) 0 0
\(463\) −4.92923e11 −0.498499 −0.249250 0.968439i \(-0.580184\pi\)
−0.249250 + 0.968439i \(0.580184\pi\)
\(464\) 7.80692e9 0.00781896
\(465\) 0 0
\(466\) −7.97570e11 −0.783487
\(467\) 9.59285e11 0.933301 0.466650 0.884442i \(-0.345461\pi\)
0.466650 + 0.884442i \(0.345461\pi\)
\(468\) 0 0
\(469\) 8.42188e10 0.0803769
\(470\) −9.22086e10 −0.0871628
\(471\) 0 0
\(472\) −1.93314e12 −1.79277
\(473\) −4.47577e11 −0.411143
\(474\) 0 0
\(475\) −1.17354e12 −1.05774
\(476\) 5.59039e11 0.499127
\(477\) 0 0
\(478\) 1.16223e12 1.01828
\(479\) 1.05996e11 0.0919979 0.0459989 0.998941i \(-0.485353\pi\)
0.0459989 + 0.998941i \(0.485353\pi\)
\(480\) 0 0
\(481\) 4.32768e11 0.368640
\(482\) 4.75092e11 0.400928
\(483\) 0 0
\(484\) 3.99722e11 0.331096
\(485\) 7.01790e10 0.0575929
\(486\) 0 0
\(487\) −4.79462e11 −0.386255 −0.193127 0.981174i \(-0.561863\pi\)
−0.193127 + 0.981174i \(0.561863\pi\)
\(488\) 1.95209e12 1.55816
\(489\) 0 0
\(490\) −5.27631e10 −0.0413474
\(491\) −1.21845e12 −0.946108 −0.473054 0.881033i \(-0.656848\pi\)
−0.473054 + 0.881033i \(0.656848\pi\)
\(492\) 0 0
\(493\) −3.00873e10 −0.0229389
\(494\) 1.73935e12 1.31406
\(495\) 0 0
\(496\) −9.01335e11 −0.668680
\(497\) −2.08053e12 −1.52957
\(498\) 0 0
\(499\) 1.87731e12 1.35545 0.677724 0.735316i \(-0.262966\pi\)
0.677724 + 0.735316i \(0.262966\pi\)
\(500\) 4.92190e11 0.352182
\(501\) 0 0
\(502\) 7.61232e11 0.534996
\(503\) −1.91484e12 −1.33375 −0.666877 0.745168i \(-0.732370\pi\)
−0.666877 + 0.745168i \(0.732370\pi\)
\(504\) 0 0
\(505\) −3.53039e11 −0.241552
\(506\) 4.31245e11 0.292447
\(507\) 0 0
\(508\) 3.76878e11 0.251081
\(509\) 1.34641e12 0.889095 0.444548 0.895755i \(-0.353364\pi\)
0.444548 + 0.895755i \(0.353364\pi\)
\(510\) 0 0
\(511\) 1.81731e12 1.17906
\(512\) −1.30385e12 −0.838519
\(513\) 0 0
\(514\) −1.67529e12 −1.05866
\(515\) 2.49421e11 0.156243
\(516\) 0 0
\(517\) 1.29639e11 0.0798045
\(518\) −3.93054e11 −0.239866
\(519\) 0 0
\(520\) −1.09455e12 −0.656476
\(521\) −1.22696e12 −0.729557 −0.364778 0.931094i \(-0.618855\pi\)
−0.364778 + 0.931094i \(0.618855\pi\)
\(522\) 0 0
\(523\) 2.16646e12 1.26617 0.633087 0.774080i \(-0.281787\pi\)
0.633087 + 0.774080i \(0.281787\pi\)
\(524\) −1.52683e11 −0.0884707
\(525\) 0 0
\(526\) −1.99278e12 −1.13507
\(527\) 3.47368e12 1.96174
\(528\) 0 0
\(529\) −5.73668e10 −0.0318500
\(530\) 4.07178e11 0.224152
\(531\) 0 0
\(532\) 9.96586e11 0.539402
\(533\) 2.98211e12 1.60048
\(534\) 0 0
\(535\) 7.81695e11 0.412520
\(536\) 1.75793e11 0.0919943
\(537\) 0 0
\(538\) 1.97044e12 1.01401
\(539\) 7.41811e10 0.0378568
\(540\) 0 0
\(541\) −1.66976e12 −0.838041 −0.419021 0.907977i \(-0.637626\pi\)
−0.419021 + 0.907977i \(0.637626\pi\)
\(542\) 2.30473e11 0.114716
\(543\) 0 0
\(544\) 2.00833e12 0.983194
\(545\) 4.03096e11 0.195715
\(546\) 0 0
\(547\) 1.74317e12 0.832526 0.416263 0.909244i \(-0.363340\pi\)
0.416263 + 0.909244i \(0.363340\pi\)
\(548\) −8.39686e10 −0.0397745
\(549\) 0 0
\(550\) 4.59063e11 0.213914
\(551\) −5.36359e10 −0.0247898
\(552\) 0 0
\(553\) −2.16784e12 −0.985746
\(554\) 7.53799e11 0.339987
\(555\) 0 0
\(556\) 4.94561e11 0.219474
\(557\) 3.88681e12 1.71098 0.855490 0.517820i \(-0.173256\pi\)
0.855490 + 0.517820i \(0.173256\pi\)
\(558\) 0 0
\(559\) 2.85544e12 1.23686
\(560\) 5.41893e11 0.232845
\(561\) 0 0
\(562\) 2.45163e12 1.03667
\(563\) −2.81208e12 −1.17961 −0.589806 0.807545i \(-0.700796\pi\)
−0.589806 + 0.807545i \(0.700796\pi\)
\(564\) 0 0
\(565\) −8.06858e11 −0.333103
\(566\) 1.56063e12 0.639183
\(567\) 0 0
\(568\) −4.34277e12 −1.75065
\(569\) −1.82196e12 −0.728675 −0.364338 0.931267i \(-0.618705\pi\)
−0.364338 + 0.931267i \(0.618705\pi\)
\(570\) 0 0
\(571\) −3.36495e12 −1.32470 −0.662348 0.749196i \(-0.730440\pi\)
−0.662348 + 0.749196i \(0.730440\pi\)
\(572\) 4.29230e11 0.167652
\(573\) 0 0
\(574\) −2.70845e12 −1.04140
\(575\) 1.85627e12 0.708167
\(576\) 0 0
\(577\) 2.47809e12 0.930737 0.465368 0.885117i \(-0.345922\pi\)
0.465368 + 0.885117i \(0.345922\pi\)
\(578\) 1.78470e12 0.665103
\(579\) 0 0
\(580\) 9.41447e9 0.00345438
\(581\) −6.32954e11 −0.230451
\(582\) 0 0
\(583\) −5.72464e11 −0.205229
\(584\) 3.79334e12 1.34947
\(585\) 0 0
\(586\) 2.68868e12 0.941888
\(587\) 1.14701e12 0.398746 0.199373 0.979924i \(-0.436110\pi\)
0.199373 + 0.979924i \(0.436110\pi\)
\(588\) 0 0
\(589\) 6.19245e12 2.12004
\(590\) 2.01433e12 0.684379
\(591\) 0 0
\(592\) −4.47227e11 −0.149651
\(593\) −3.07354e12 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(594\) 0 0
\(595\) −2.08842e12 −0.683111
\(596\) 7.02680e11 0.228113
\(597\) 0 0
\(598\) −2.75124e12 −0.879780
\(599\) −1.30326e12 −0.413630 −0.206815 0.978380i \(-0.566310\pi\)
−0.206815 + 0.978380i \(0.566310\pi\)
\(600\) 0 0
\(601\) −6.05451e12 −1.89297 −0.946486 0.322745i \(-0.895394\pi\)
−0.946486 + 0.322745i \(0.895394\pi\)
\(602\) −2.59341e12 −0.804797
\(603\) 0 0
\(604\) −8.41315e11 −0.257213
\(605\) −1.49325e12 −0.453142
\(606\) 0 0
\(607\) −4.07835e12 −1.21937 −0.609685 0.792643i \(-0.708704\pi\)
−0.609685 + 0.792643i \(0.708704\pi\)
\(608\) 3.58020e12 1.06253
\(609\) 0 0
\(610\) −2.03408e12 −0.594819
\(611\) −8.27066e11 −0.240079
\(612\) 0 0
\(613\) 2.84192e12 0.812904 0.406452 0.913672i \(-0.366766\pi\)
0.406452 + 0.913672i \(0.366766\pi\)
\(614\) −3.12223e12 −0.886557
\(615\) 0 0
\(616\) −1.39764e12 −0.391094
\(617\) −5.82246e12 −1.61742 −0.808711 0.588206i \(-0.799835\pi\)
−0.808711 + 0.588206i \(0.799835\pi\)
\(618\) 0 0
\(619\) 5.50829e12 1.50803 0.754014 0.656859i \(-0.228115\pi\)
0.754014 + 0.656859i \(0.228115\pi\)
\(620\) −1.08693e12 −0.295420
\(621\) 0 0
\(622\) −1.77001e12 −0.474155
\(623\) 5.18686e12 1.37946
\(624\) 0 0
\(625\) 9.06834e11 0.237721
\(626\) 3.25002e12 0.845865
\(627\) 0 0
\(628\) 3.62788e11 0.0930752
\(629\) 1.72358e12 0.439039
\(630\) 0 0
\(631\) −3.74010e12 −0.939184 −0.469592 0.882884i \(-0.655599\pi\)
−0.469592 + 0.882884i \(0.655599\pi\)
\(632\) −4.52503e12 −1.12822
\(633\) 0 0
\(634\) 4.57760e12 1.12522
\(635\) −1.40791e12 −0.343633
\(636\) 0 0
\(637\) −4.73259e11 −0.113886
\(638\) 2.09811e10 0.00501344
\(639\) 0 0
\(640\) 1.87200e11 0.0441058
\(641\) 1.41848e12 0.331866 0.165933 0.986137i \(-0.446936\pi\)
0.165933 + 0.986137i \(0.446936\pi\)
\(642\) 0 0
\(643\) −7.10131e11 −0.163828 −0.0819142 0.996639i \(-0.526103\pi\)
−0.0819142 + 0.996639i \(0.526103\pi\)
\(644\) −1.57637e12 −0.361136
\(645\) 0 0
\(646\) 6.92729e12 1.56501
\(647\) −1.71001e12 −0.383645 −0.191823 0.981430i \(-0.561440\pi\)
−0.191823 + 0.981430i \(0.561440\pi\)
\(648\) 0 0
\(649\) −2.83200e12 −0.626603
\(650\) −2.92872e12 −0.643528
\(651\) 0 0
\(652\) −9.54176e11 −0.206783
\(653\) 1.87672e12 0.403916 0.201958 0.979394i \(-0.435270\pi\)
0.201958 + 0.979394i \(0.435270\pi\)
\(654\) 0 0
\(655\) 5.70382e11 0.121082
\(656\) −3.08175e12 −0.649725
\(657\) 0 0
\(658\) 7.51169e11 0.156214
\(659\) −2.10240e12 −0.434242 −0.217121 0.976145i \(-0.569667\pi\)
−0.217121 + 0.976145i \(0.569667\pi\)
\(660\) 0 0
\(661\) −6.14986e12 −1.25302 −0.626511 0.779413i \(-0.715518\pi\)
−0.626511 + 0.779413i \(0.715518\pi\)
\(662\) −5.01874e12 −1.01563
\(663\) 0 0
\(664\) −1.32119e12 −0.263760
\(665\) −3.72297e12 −0.738231
\(666\) 0 0
\(667\) 8.48395e10 0.0165971
\(668\) −2.98489e11 −0.0580009
\(669\) 0 0
\(670\) −1.83177e11 −0.0351183
\(671\) 2.85978e12 0.544604
\(672\) 0 0
\(673\) 3.74185e12 0.703102 0.351551 0.936169i \(-0.385654\pi\)
0.351551 + 0.936169i \(0.385654\pi\)
\(674\) −5.30823e12 −0.990787
\(675\) 0 0
\(676\) −6.38124e11 −0.117529
\(677\) −3.95982e12 −0.724480 −0.362240 0.932085i \(-0.617988\pi\)
−0.362240 + 0.932085i \(0.617988\pi\)
\(678\) 0 0
\(679\) −5.71706e11 −0.103219
\(680\) −4.35924e12 −0.781845
\(681\) 0 0
\(682\) −2.42234e12 −0.428751
\(683\) −3.62977e12 −0.638243 −0.319121 0.947714i \(-0.603388\pi\)
−0.319121 + 0.947714i \(0.603388\pi\)
\(684\) 0 0
\(685\) 3.13684e11 0.0544358
\(686\) 4.73941e12 0.817082
\(687\) 0 0
\(688\) −2.95084e12 −0.502109
\(689\) 3.65219e12 0.617400
\(690\) 0 0
\(691\) −3.26815e12 −0.545319 −0.272660 0.962111i \(-0.587903\pi\)
−0.272660 + 0.962111i \(0.587903\pi\)
\(692\) −4.27883e12 −0.709328
\(693\) 0 0
\(694\) 9.69805e11 0.158696
\(695\) −1.84755e12 −0.300375
\(696\) 0 0
\(697\) 1.18768e13 1.90613
\(698\) −5.39023e12 −0.859525
\(699\) 0 0
\(700\) −1.67805e12 −0.264158
\(701\) 5.82077e12 0.910435 0.455218 0.890380i \(-0.349561\pi\)
0.455218 + 0.890380i \(0.349561\pi\)
\(702\) 0 0
\(703\) 3.07258e12 0.474466
\(704\) −2.54718e12 −0.390826
\(705\) 0 0
\(706\) 9.39140e12 1.42269
\(707\) 2.87600e12 0.432913
\(708\) 0 0
\(709\) −6.83280e12 −1.01553 −0.507763 0.861497i \(-0.669527\pi\)
−0.507763 + 0.861497i \(0.669527\pi\)
\(710\) 4.52517e12 0.668301
\(711\) 0 0
\(712\) 1.08267e13 1.57884
\(713\) −9.79500e12 −1.41939
\(714\) 0 0
\(715\) −1.60349e12 −0.229450
\(716\) −3.85972e12 −0.548841
\(717\) 0 0
\(718\) 8.15948e12 1.14578
\(719\) 5.93643e12 0.828411 0.414205 0.910183i \(-0.364060\pi\)
0.414205 + 0.910183i \(0.364060\pi\)
\(720\) 0 0
\(721\) −2.03189e12 −0.280021
\(722\) 6.63158e12 0.908237
\(723\) 0 0
\(724\) −1.47729e12 −0.199822
\(725\) 9.03121e10 0.0121402
\(726\) 0 0
\(727\) 5.97848e12 0.793754 0.396877 0.917872i \(-0.370094\pi\)
0.396877 + 0.917872i \(0.370094\pi\)
\(728\) 8.91661e12 1.17655
\(729\) 0 0
\(730\) −3.95266e12 −0.515154
\(731\) 1.13723e13 1.47306
\(732\) 0 0
\(733\) 9.47010e11 0.121168 0.0605838 0.998163i \(-0.480704\pi\)
0.0605838 + 0.998163i \(0.480704\pi\)
\(734\) −8.02245e12 −1.02018
\(735\) 0 0
\(736\) −5.66303e12 −0.711375
\(737\) 2.57533e11 0.0321536
\(738\) 0 0
\(739\) 8.03141e12 0.990585 0.495293 0.868726i \(-0.335061\pi\)
0.495293 + 0.868726i \(0.335061\pi\)
\(740\) −5.39317e11 −0.0661152
\(741\) 0 0
\(742\) −3.31704e12 −0.401729
\(743\) 4.44579e12 0.535179 0.267590 0.963533i \(-0.413773\pi\)
0.267590 + 0.963533i \(0.413773\pi\)
\(744\) 0 0
\(745\) −2.62502e12 −0.312198
\(746\) −1.79188e12 −0.211828
\(747\) 0 0
\(748\) 1.70949e12 0.199668
\(749\) −6.36800e12 −0.739325
\(750\) 0 0
\(751\) −2.21770e12 −0.254403 −0.127202 0.991877i \(-0.540600\pi\)
−0.127202 + 0.991877i \(0.540600\pi\)
\(752\) 8.54699e11 0.0974614
\(753\) 0 0
\(754\) −1.33855e11 −0.0150821
\(755\) 3.14292e12 0.352024
\(756\) 0 0
\(757\) −9.93039e12 −1.09909 −0.549547 0.835463i \(-0.685200\pi\)
−0.549547 + 0.835463i \(0.685200\pi\)
\(758\) −8.98099e12 −0.988127
\(759\) 0 0
\(760\) −7.77111e12 −0.844932
\(761\) 8.52851e11 0.0921811 0.0460906 0.998937i \(-0.485324\pi\)
0.0460906 + 0.998937i \(0.485324\pi\)
\(762\) 0 0
\(763\) −3.28378e12 −0.350763
\(764\) −1.30043e12 −0.138091
\(765\) 0 0
\(766\) 5.26133e12 0.552161
\(767\) 1.80676e13 1.88504
\(768\) 0 0
\(769\) −6.77247e12 −0.698359 −0.349179 0.937056i \(-0.613540\pi\)
−0.349179 + 0.937056i \(0.613540\pi\)
\(770\) 1.45634e12 0.149298
\(771\) 0 0
\(772\) 3.72365e12 0.377304
\(773\) −3.60630e12 −0.363291 −0.181645 0.983364i \(-0.558142\pi\)
−0.181645 + 0.983364i \(0.558142\pi\)
\(774\) 0 0
\(775\) −1.04268e13 −1.03823
\(776\) −1.19335e12 −0.118138
\(777\) 0 0
\(778\) 9.36140e11 0.0916079
\(779\) 2.11725e13 2.05994
\(780\) 0 0
\(781\) −6.36206e12 −0.611883
\(782\) −1.09574e13 −1.04779
\(783\) 0 0
\(784\) 4.89071e11 0.0462327
\(785\) −1.35528e12 −0.127384
\(786\) 0 0
\(787\) 3.58864e12 0.333460 0.166730 0.986003i \(-0.446679\pi\)
0.166730 + 0.986003i \(0.446679\pi\)
\(788\) −3.29169e11 −0.0304124
\(789\) 0 0
\(790\) 4.71508e12 0.430693
\(791\) 6.57299e12 0.596992
\(792\) 0 0
\(793\) −1.82447e13 −1.63835
\(794\) 7.70837e12 0.688288
\(795\) 0 0
\(796\) −2.87863e12 −0.254143
\(797\) −5.25346e12 −0.461194 −0.230597 0.973049i \(-0.574068\pi\)
−0.230597 + 0.973049i \(0.574068\pi\)
\(798\) 0 0
\(799\) −3.29395e12 −0.285928
\(800\) −6.02833e12 −0.520346
\(801\) 0 0
\(802\) −7.16023e11 −0.0611142
\(803\) 5.55716e12 0.471664
\(804\) 0 0
\(805\) 5.88887e12 0.494254
\(806\) 1.54540e13 1.28983
\(807\) 0 0
\(808\) 6.00318e12 0.495485
\(809\) 7.22017e12 0.592623 0.296312 0.955091i \(-0.404243\pi\)
0.296312 + 0.955091i \(0.404243\pi\)
\(810\) 0 0
\(811\) −8.41322e12 −0.682918 −0.341459 0.939897i \(-0.610921\pi\)
−0.341459 + 0.939897i \(0.610921\pi\)
\(812\) −7.66940e10 −0.00619098
\(813\) 0 0
\(814\) −1.20192e12 −0.0959548
\(815\) 3.56454e12 0.283005
\(816\) 0 0
\(817\) 2.02732e13 1.59193
\(818\) 4.27650e12 0.333963
\(819\) 0 0
\(820\) −3.71632e12 −0.287045
\(821\) 3.47602e12 0.267016 0.133508 0.991048i \(-0.457376\pi\)
0.133508 + 0.991048i \(0.457376\pi\)
\(822\) 0 0
\(823\) 1.32343e12 0.100555 0.0502774 0.998735i \(-0.483989\pi\)
0.0502774 + 0.998735i \(0.483989\pi\)
\(824\) −4.24124e12 −0.320494
\(825\) 0 0
\(826\) −1.64095e13 −1.22655
\(827\) −3.65944e11 −0.0272044 −0.0136022 0.999907i \(-0.504330\pi\)
−0.0136022 + 0.999907i \(0.504330\pi\)
\(828\) 0 0
\(829\) 2.59469e13 1.90805 0.954025 0.299728i \(-0.0968960\pi\)
0.954025 + 0.299728i \(0.0968960\pi\)
\(830\) 1.37668e12 0.100689
\(831\) 0 0
\(832\) 1.62505e13 1.17574
\(833\) −1.88484e12 −0.135635
\(834\) 0 0
\(835\) 1.11507e12 0.0793806
\(836\) 3.04747e12 0.215780
\(837\) 0 0
\(838\) 6.65101e12 0.465896
\(839\) 1.42569e13 0.993337 0.496669 0.867940i \(-0.334556\pi\)
0.496669 + 0.867940i \(0.334556\pi\)
\(840\) 0 0
\(841\) −1.45030e13 −0.999715
\(842\) 1.28706e13 0.882459
\(843\) 0 0
\(844\) −2.75932e11 −0.0187181
\(845\) 2.38386e12 0.160851
\(846\) 0 0
\(847\) 1.21646e13 0.812127
\(848\) −3.77421e12 −0.250637
\(849\) 0 0
\(850\) −1.16642e13 −0.766423
\(851\) −4.86011e12 −0.317660
\(852\) 0 0
\(853\) −3.58103e10 −0.00231600 −0.00115800 0.999999i \(-0.500369\pi\)
−0.00115800 + 0.999999i \(0.500369\pi\)
\(854\) 1.65705e13 1.06604
\(855\) 0 0
\(856\) −1.32922e13 −0.846184
\(857\) −1.39468e13 −0.883207 −0.441603 0.897210i \(-0.645590\pi\)
−0.441603 + 0.897210i \(0.645590\pi\)
\(858\) 0 0
\(859\) −1.41204e13 −0.884864 −0.442432 0.896802i \(-0.645884\pi\)
−0.442432 + 0.896802i \(0.645884\pi\)
\(860\) −3.55846e12 −0.221829
\(861\) 0 0
\(862\) −1.59398e13 −0.983333
\(863\) 2.25669e13 1.38492 0.692458 0.721458i \(-0.256528\pi\)
0.692458 + 0.721458i \(0.256528\pi\)
\(864\) 0 0
\(865\) 1.59845e13 0.970795
\(866\) −1.37677e13 −0.831823
\(867\) 0 0
\(868\) 8.85458e12 0.529455
\(869\) −6.62907e12 −0.394333
\(870\) 0 0
\(871\) −1.64301e12 −0.0967292
\(872\) −6.85437e12 −0.401461
\(873\) 0 0
\(874\) −1.95334e13 −1.13234
\(875\) 1.49787e13 0.863848
\(876\) 0 0
\(877\) 3.05269e13 1.74255 0.871273 0.490799i \(-0.163295\pi\)
0.871273 + 0.490799i \(0.163295\pi\)
\(878\) −2.70559e13 −1.53652
\(879\) 0 0
\(880\) 1.65706e12 0.0931464
\(881\) −2.00261e13 −1.11997 −0.559983 0.828504i \(-0.689192\pi\)
−0.559983 + 0.828504i \(0.689192\pi\)
\(882\) 0 0
\(883\) 1.87899e13 1.04016 0.520080 0.854117i \(-0.325902\pi\)
0.520080 + 0.854117i \(0.325902\pi\)
\(884\) −1.09062e13 −0.600671
\(885\) 0 0
\(886\) −4.92749e12 −0.268642
\(887\) −2.88989e13 −1.56756 −0.783781 0.621037i \(-0.786712\pi\)
−0.783781 + 0.621037i \(0.786712\pi\)
\(888\) 0 0
\(889\) 1.14694e13 0.615863
\(890\) −1.12815e13 −0.602713
\(891\) 0 0
\(892\) 5.69143e12 0.301009
\(893\) −5.87204e12 −0.308999
\(894\) 0 0
\(895\) 1.44188e13 0.751150
\(896\) −1.52500e12 −0.0790469
\(897\) 0 0
\(898\) −6.01433e12 −0.308634
\(899\) −4.76551e11 −0.0243327
\(900\) 0 0
\(901\) 1.45455e13 0.735306
\(902\) −8.28220e12 −0.416597
\(903\) 0 0
\(904\) 1.37201e13 0.683279
\(905\) 5.51876e12 0.273479
\(906\) 0 0
\(907\) 2.77468e12 0.136138 0.0680691 0.997681i \(-0.478316\pi\)
0.0680691 + 0.997681i \(0.478316\pi\)
\(908\) −7.60876e12 −0.371473
\(909\) 0 0
\(910\) −9.29112e12 −0.449140
\(911\) −3.58019e13 −1.72216 −0.861079 0.508471i \(-0.830211\pi\)
−0.861079 + 0.508471i \(0.830211\pi\)
\(912\) 0 0
\(913\) −1.93551e12 −0.0921887
\(914\) 1.45359e13 0.688943
\(915\) 0 0
\(916\) 2.65206e12 0.124467
\(917\) −4.64656e12 −0.217005
\(918\) 0 0
\(919\) −1.46068e13 −0.675516 −0.337758 0.941233i \(-0.609669\pi\)
−0.337758 + 0.941233i \(0.609669\pi\)
\(920\) 1.22921e13 0.565692
\(921\) 0 0
\(922\) −1.75669e13 −0.800580
\(923\) 4.05885e13 1.84075
\(924\) 0 0
\(925\) −5.17361e12 −0.232357
\(926\) −8.73386e12 −0.390352
\(927\) 0 0
\(928\) −2.75520e11 −0.0121952
\(929\) 3.96447e13 1.74628 0.873142 0.487467i \(-0.162079\pi\)
0.873142 + 0.487467i \(0.162079\pi\)
\(930\) 0 0
\(931\) −3.36006e12 −0.146580
\(932\) 8.91510e12 0.387039
\(933\) 0 0
\(934\) 1.69971e13 0.730826
\(935\) −6.38619e12 −0.273268
\(936\) 0 0
\(937\) −1.72240e13 −0.729973 −0.364987 0.931013i \(-0.618926\pi\)
−0.364987 + 0.931013i \(0.618926\pi\)
\(938\) 1.49223e12 0.0629396
\(939\) 0 0
\(940\) 1.03069e12 0.0430580
\(941\) −4.12899e13 −1.71668 −0.858341 0.513079i \(-0.828505\pi\)
−0.858341 + 0.513079i \(0.828505\pi\)
\(942\) 0 0
\(943\) −3.34900e13 −1.37915
\(944\) −1.86712e13 −0.765241
\(945\) 0 0
\(946\) −7.93040e12 −0.321947
\(947\) −1.76185e13 −0.711859 −0.355929 0.934513i \(-0.615836\pi\)
−0.355929 + 0.934513i \(0.615836\pi\)
\(948\) 0 0
\(949\) −3.54535e13 −1.41893
\(950\) −2.07934e13 −0.828266
\(951\) 0 0
\(952\) 3.55121e13 1.40123
\(953\) −4.44553e13 −1.74584 −0.872922 0.487859i \(-0.837778\pi\)
−0.872922 + 0.487859i \(0.837778\pi\)
\(954\) 0 0
\(955\) 4.85804e12 0.188993
\(956\) −1.29913e13 −0.503026
\(957\) 0 0
\(958\) 1.87808e12 0.0720394
\(959\) −2.55539e12 −0.0975605
\(960\) 0 0
\(961\) 2.85798e13 1.08094
\(962\) 7.66800e12 0.288665
\(963\) 0 0
\(964\) −5.31050e12 −0.198056
\(965\) −1.39105e13 −0.516382
\(966\) 0 0
\(967\) −1.48376e13 −0.545688 −0.272844 0.962058i \(-0.587964\pi\)
−0.272844 + 0.962058i \(0.587964\pi\)
\(968\) 2.53917e13 0.929509
\(969\) 0 0
\(970\) 1.24347e12 0.0450984
\(971\) 3.34482e13 1.20750 0.603749 0.797174i \(-0.293673\pi\)
0.603749 + 0.797174i \(0.293673\pi\)
\(972\) 0 0
\(973\) 1.50508e13 0.538336
\(974\) −8.49535e12 −0.302459
\(975\) 0 0
\(976\) 1.88543e13 0.665098
\(977\) −2.04042e13 −0.716463 −0.358231 0.933633i \(-0.616620\pi\)
−0.358231 + 0.933633i \(0.616620\pi\)
\(978\) 0 0
\(979\) 1.58609e13 0.551832
\(980\) 5.89777e11 0.0204254
\(981\) 0 0
\(982\) −2.15891e13 −0.740855
\(983\) −2.30999e13 −0.789077 −0.394539 0.918879i \(-0.629096\pi\)
−0.394539 + 0.918879i \(0.629096\pi\)
\(984\) 0 0
\(985\) 1.22968e12 0.0416228
\(986\) −5.33102e11 −0.0179624
\(987\) 0 0
\(988\) −1.94422e13 −0.649140
\(989\) −3.20674e13 −1.06581
\(990\) 0 0
\(991\) −4.59514e13 −1.51345 −0.756724 0.653734i \(-0.773201\pi\)
−0.756724 + 0.653734i \(0.773201\pi\)
\(992\) 3.18097e13 1.04294
\(993\) 0 0
\(994\) −3.68638e13 −1.19774
\(995\) 1.07538e13 0.347822
\(996\) 0 0
\(997\) −4.39528e13 −1.40883 −0.704414 0.709790i \(-0.748790\pi\)
−0.704414 + 0.709790i \(0.748790\pi\)
\(998\) 3.32631e13 1.06139
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.a.d.1.6 8
3.2 odd 2 81.10.a.c.1.3 8
9.2 odd 6 9.10.c.a.4.6 16
9.4 even 3 27.10.c.a.19.3 16
9.5 odd 6 9.10.c.a.7.6 yes 16
9.7 even 3 27.10.c.a.10.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.10.c.a.4.6 16 9.2 odd 6
9.10.c.a.7.6 yes 16 9.5 odd 6
27.10.c.a.10.3 16 9.7 even 3
27.10.c.a.19.3 16 9.4 even 3
81.10.a.c.1.3 8 3.2 odd 2
81.10.a.d.1.6 8 1.1 even 1 trivial