Properties

Label 81.10.a.d.1.3
Level $81$
Weight $10$
Character 81.1
Self dual yes
Analytic conductor $41.718$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(1,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2930 x^{6} - 1276 x^{5} + 2487472 x^{4} + 3423248 x^{3} - 586568096 x^{2} + \cdots + 965565184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{18}\cdot 17 \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(23.4832\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-21.4832 q^{2} -50.4713 q^{4} +44.8401 q^{5} +9345.55 q^{7} +12083.7 q^{8} -963.310 q^{10} +55156.9 q^{11} -79968.8 q^{13} -200773. q^{14} -233755. q^{16} -8591.55 q^{17} +643299. q^{19} -2263.14 q^{20} -1.18495e6 q^{22} -533467. q^{23} -1.95111e6 q^{25} +1.71799e6 q^{26} -471682. q^{28} +5.28052e6 q^{29} -3.34323e6 q^{31} -1.16503e6 q^{32} +184574. q^{34} +419056. q^{35} -2.03491e7 q^{37} -1.38201e7 q^{38} +541834. q^{40} +3.18148e7 q^{41} -4.55525e6 q^{43} -2.78384e6 q^{44} +1.14606e7 q^{46} +1.80002e7 q^{47} +4.69858e7 q^{49} +4.19162e7 q^{50} +4.03613e6 q^{52} +6.95534e7 q^{53} +2.47324e6 q^{55} +1.12929e8 q^{56} -1.13443e8 q^{58} -6.48229e7 q^{59} +8.75528e7 q^{61} +7.18233e7 q^{62} +1.44711e8 q^{64} -3.58581e6 q^{65} +1.67405e8 q^{67} +433627. q^{68} -9.00266e6 q^{70} +1.55996e8 q^{71} +3.05377e8 q^{73} +4.37165e8 q^{74} -3.24681e7 q^{76} +5.15472e8 q^{77} -3.59911e8 q^{79} -1.04816e7 q^{80} -6.83484e8 q^{82} -4.63967e8 q^{83} -385246. q^{85} +9.78614e7 q^{86} +6.66500e8 q^{88} +2.70335e8 q^{89} -7.47352e8 q^{91} +2.69248e7 q^{92} -3.86702e8 q^{94} +2.88456e7 q^{95} -1.50985e8 q^{97} -1.00941e9 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 15 q^{2} + 1793 q^{4} + 453 q^{5} + 343 q^{7} + 7239 q^{8} + 510 q^{10} + 99150 q^{11} - 32435 q^{13} + 394824 q^{14} + 328193 q^{16} + 415539 q^{17} - 85277 q^{19} + 1855164 q^{20} - 529359 q^{22}+ \cdots - 2413650159 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −21.4832 −0.949433 −0.474717 0.880139i \(-0.657449\pi\)
−0.474717 + 0.880139i \(0.657449\pi\)
\(3\) 0 0
\(4\) −50.4713 −0.0985768
\(5\) 44.8401 0.0320850 0.0160425 0.999871i \(-0.494893\pi\)
0.0160425 + 0.999871i \(0.494893\pi\)
\(6\) 0 0
\(7\) 9345.55 1.47117 0.735587 0.677431i \(-0.236907\pi\)
0.735587 + 0.677431i \(0.236907\pi\)
\(8\) 12083.7 1.04303
\(9\) 0 0
\(10\) −963.310 −0.0304625
\(11\) 55156.9 1.13588 0.567941 0.823069i \(-0.307740\pi\)
0.567941 + 0.823069i \(0.307740\pi\)
\(12\) 0 0
\(13\) −79968.8 −0.776561 −0.388280 0.921541i \(-0.626931\pi\)
−0.388280 + 0.921541i \(0.626931\pi\)
\(14\) −200773. −1.39678
\(15\) 0 0
\(16\) −233755. −0.891706
\(17\) −8591.55 −0.0249489 −0.0124745 0.999922i \(-0.503971\pi\)
−0.0124745 + 0.999922i \(0.503971\pi\)
\(18\) 0 0
\(19\) 643299. 1.13246 0.566229 0.824248i \(-0.308402\pi\)
0.566229 + 0.824248i \(0.308402\pi\)
\(20\) −2263.14 −0.00316283
\(21\) 0 0
\(22\) −1.18495e6 −1.07844
\(23\) −533467. −0.397495 −0.198748 0.980051i \(-0.563687\pi\)
−0.198748 + 0.980051i \(0.563687\pi\)
\(24\) 0 0
\(25\) −1.95111e6 −0.998971
\(26\) 1.71799e6 0.737292
\(27\) 0 0
\(28\) −471682. −0.145024
\(29\) 5.28052e6 1.38639 0.693195 0.720750i \(-0.256202\pi\)
0.693195 + 0.720750i \(0.256202\pi\)
\(30\) 0 0
\(31\) −3.34323e6 −0.650187 −0.325094 0.945682i \(-0.605396\pi\)
−0.325094 + 0.945682i \(0.605396\pi\)
\(32\) −1.16503e6 −0.196410
\(33\) 0 0
\(34\) 184574. 0.0236873
\(35\) 419056. 0.0472026
\(36\) 0 0
\(37\) −2.03491e7 −1.78500 −0.892500 0.451048i \(-0.851050\pi\)
−0.892500 + 0.451048i \(0.851050\pi\)
\(38\) −1.38201e7 −1.07519
\(39\) 0 0
\(40\) 541834. 0.0334654
\(41\) 3.18148e7 1.75834 0.879168 0.476512i \(-0.158099\pi\)
0.879168 + 0.476512i \(0.158099\pi\)
\(42\) 0 0
\(43\) −4.55525e6 −0.203191 −0.101595 0.994826i \(-0.532395\pi\)
−0.101595 + 0.994826i \(0.532395\pi\)
\(44\) −2.78384e6 −0.111972
\(45\) 0 0
\(46\) 1.14606e7 0.377395
\(47\) 1.80002e7 0.538068 0.269034 0.963131i \(-0.413296\pi\)
0.269034 + 0.963131i \(0.413296\pi\)
\(48\) 0 0
\(49\) 4.69858e7 1.16435
\(50\) 4.19162e7 0.948456
\(51\) 0 0
\(52\) 4.03613e6 0.0765508
\(53\) 6.95534e7 1.21081 0.605406 0.795917i \(-0.293011\pi\)
0.605406 + 0.795917i \(0.293011\pi\)
\(54\) 0 0
\(55\) 2.47324e6 0.0364447
\(56\) 1.12929e8 1.53447
\(57\) 0 0
\(58\) −1.13443e8 −1.31629
\(59\) −6.48229e7 −0.696457 −0.348229 0.937410i \(-0.613217\pi\)
−0.348229 + 0.937410i \(0.613217\pi\)
\(60\) 0 0
\(61\) 8.75528e7 0.809628 0.404814 0.914399i \(-0.367336\pi\)
0.404814 + 0.914399i \(0.367336\pi\)
\(62\) 7.18233e7 0.617309
\(63\) 0 0
\(64\) 1.44711e8 1.07818
\(65\) −3.58581e6 −0.0249159
\(66\) 0 0
\(67\) 1.67405e8 1.01492 0.507461 0.861675i \(-0.330584\pi\)
0.507461 + 0.861675i \(0.330584\pi\)
\(68\) 433627. 0.00245938
\(69\) 0 0
\(70\) −9.00266e6 −0.0448157
\(71\) 1.55996e8 0.728537 0.364268 0.931294i \(-0.381319\pi\)
0.364268 + 0.931294i \(0.381319\pi\)
\(72\) 0 0
\(73\) 3.05377e8 1.25859 0.629294 0.777168i \(-0.283344\pi\)
0.629294 + 0.777168i \(0.283344\pi\)
\(74\) 4.37165e8 1.69474
\(75\) 0 0
\(76\) −3.24681e7 −0.111634
\(77\) 5.15472e8 1.67108
\(78\) 0 0
\(79\) −3.59911e8 −1.03962 −0.519808 0.854283i \(-0.673996\pi\)
−0.519808 + 0.854283i \(0.673996\pi\)
\(80\) −1.04816e7 −0.0286104
\(81\) 0 0
\(82\) −6.83484e8 −1.66942
\(83\) −4.63967e8 −1.07309 −0.536545 0.843872i \(-0.680271\pi\)
−0.536545 + 0.843872i \(0.680271\pi\)
\(84\) 0 0
\(85\) −385246. −0.000800485 0
\(86\) 9.78614e7 0.192916
\(87\) 0 0
\(88\) 6.66500e8 1.18475
\(89\) 2.70335e8 0.456717 0.228358 0.973577i \(-0.426664\pi\)
0.228358 + 0.973577i \(0.426664\pi\)
\(90\) 0 0
\(91\) −7.47352e8 −1.14246
\(92\) 2.69248e7 0.0391838
\(93\) 0 0
\(94\) −3.86702e8 −0.510859
\(95\) 2.88456e7 0.0363349
\(96\) 0 0
\(97\) −1.50985e8 −0.173166 −0.0865828 0.996245i \(-0.527595\pi\)
−0.0865828 + 0.996245i \(0.527595\pi\)
\(98\) −1.00941e9 −1.10547
\(99\) 0 0
\(100\) 9.84753e7 0.0984753
\(101\) −3.12205e8 −0.298534 −0.149267 0.988797i \(-0.547691\pi\)
−0.149267 + 0.988797i \(0.547691\pi\)
\(102\) 0 0
\(103\) 8.58637e8 0.751695 0.375848 0.926681i \(-0.377352\pi\)
0.375848 + 0.926681i \(0.377352\pi\)
\(104\) −9.66318e8 −0.809972
\(105\) 0 0
\(106\) −1.49423e9 −1.14959
\(107\) 2.37971e8 0.175508 0.0877542 0.996142i \(-0.472031\pi\)
0.0877542 + 0.996142i \(0.472031\pi\)
\(108\) 0 0
\(109\) 7.89834e8 0.535940 0.267970 0.963427i \(-0.413647\pi\)
0.267970 + 0.963427i \(0.413647\pi\)
\(110\) −5.31332e7 −0.0346018
\(111\) 0 0
\(112\) −2.18457e9 −1.31185
\(113\) 5.26286e7 0.0303647 0.0151823 0.999885i \(-0.495167\pi\)
0.0151823 + 0.999885i \(0.495167\pi\)
\(114\) 0 0
\(115\) −2.39207e7 −0.0127536
\(116\) −2.66515e8 −0.136666
\(117\) 0 0
\(118\) 1.39260e9 0.661240
\(119\) −8.02928e7 −0.0367042
\(120\) 0 0
\(121\) 6.84341e8 0.290227
\(122\) −1.88092e9 −0.768688
\(123\) 0 0
\(124\) 1.68737e8 0.0640934
\(125\) −1.75067e8 −0.0641369
\(126\) 0 0
\(127\) 1.15652e9 0.394489 0.197244 0.980354i \(-0.436801\pi\)
0.197244 + 0.980354i \(0.436801\pi\)
\(128\) −2.51237e9 −0.827254
\(129\) 0 0
\(130\) 7.70347e7 0.0236560
\(131\) −5.94843e9 −1.76474 −0.882371 0.470554i \(-0.844054\pi\)
−0.882371 + 0.470554i \(0.844054\pi\)
\(132\) 0 0
\(133\) 6.01199e9 1.66604
\(134\) −3.59640e9 −0.963600
\(135\) 0 0
\(136\) −1.03818e8 −0.0260223
\(137\) 1.49470e9 0.362503 0.181252 0.983437i \(-0.441985\pi\)
0.181252 + 0.983437i \(0.441985\pi\)
\(138\) 0 0
\(139\) 5.12874e9 1.16532 0.582658 0.812717i \(-0.302013\pi\)
0.582658 + 0.812717i \(0.302013\pi\)
\(140\) −2.11503e7 −0.00465307
\(141\) 0 0
\(142\) −3.35130e9 −0.691697
\(143\) −4.41083e9 −0.882081
\(144\) 0 0
\(145\) 2.36779e8 0.0444823
\(146\) −6.56048e9 −1.19494
\(147\) 0 0
\(148\) 1.02705e9 0.175959
\(149\) 1.04170e10 1.73143 0.865715 0.500537i \(-0.166864\pi\)
0.865715 + 0.500537i \(0.166864\pi\)
\(150\) 0 0
\(151\) 9.19920e8 0.143997 0.0719985 0.997405i \(-0.477062\pi\)
0.0719985 + 0.997405i \(0.477062\pi\)
\(152\) 7.77343e9 1.18118
\(153\) 0 0
\(154\) −1.10740e10 −1.58658
\(155\) −1.49911e8 −0.0208612
\(156\) 0 0
\(157\) −5.34576e9 −0.702200 −0.351100 0.936338i \(-0.614192\pi\)
−0.351100 + 0.936338i \(0.614192\pi\)
\(158\) 7.73204e9 0.987045
\(159\) 0 0
\(160\) −5.22403e7 −0.00630181
\(161\) −4.98554e9 −0.584785
\(162\) 0 0
\(163\) 6.82475e9 0.757256 0.378628 0.925549i \(-0.376396\pi\)
0.378628 + 0.925549i \(0.376396\pi\)
\(164\) −1.60573e9 −0.173331
\(165\) 0 0
\(166\) 9.96751e9 1.01883
\(167\) −5.81556e9 −0.578585 −0.289293 0.957241i \(-0.593420\pi\)
−0.289293 + 0.957241i \(0.593420\pi\)
\(168\) 0 0
\(169\) −4.20949e9 −0.396954
\(170\) 8.27633e6 0.000760007 0
\(171\) 0 0
\(172\) 2.29909e8 0.0200299
\(173\) 1.23174e10 1.04547 0.522736 0.852495i \(-0.324911\pi\)
0.522736 + 0.852495i \(0.324911\pi\)
\(174\) 0 0
\(175\) −1.82342e10 −1.46966
\(176\) −1.28932e10 −1.01287
\(177\) 0 0
\(178\) −5.80766e9 −0.433622
\(179\) 1.65764e10 1.20684 0.603422 0.797422i \(-0.293804\pi\)
0.603422 + 0.797422i \(0.293804\pi\)
\(180\) 0 0
\(181\) −1.06374e9 −0.0736685 −0.0368343 0.999321i \(-0.511727\pi\)
−0.0368343 + 0.999321i \(0.511727\pi\)
\(182\) 1.60555e10 1.08468
\(183\) 0 0
\(184\) −6.44625e9 −0.414598
\(185\) −9.12457e8 −0.0572716
\(186\) 0 0
\(187\) −4.73884e8 −0.0283390
\(188\) −9.08493e8 −0.0530410
\(189\) 0 0
\(190\) −6.19696e8 −0.0344975
\(191\) 1.29917e10 0.706344 0.353172 0.935558i \(-0.385103\pi\)
0.353172 + 0.935558i \(0.385103\pi\)
\(192\) 0 0
\(193\) −1.11916e10 −0.580608 −0.290304 0.956934i \(-0.593756\pi\)
−0.290304 + 0.956934i \(0.593756\pi\)
\(194\) 3.24365e9 0.164409
\(195\) 0 0
\(196\) −2.37143e9 −0.114778
\(197\) 3.23317e10 1.52943 0.764716 0.644368i \(-0.222879\pi\)
0.764716 + 0.644368i \(0.222879\pi\)
\(198\) 0 0
\(199\) 7.46055e9 0.337234 0.168617 0.985682i \(-0.446070\pi\)
0.168617 + 0.985682i \(0.446070\pi\)
\(200\) −2.35767e10 −1.04195
\(201\) 0 0
\(202\) 6.70716e9 0.283438
\(203\) 4.93494e10 2.03962
\(204\) 0 0
\(205\) 1.42658e9 0.0564161
\(206\) −1.84463e10 −0.713684
\(207\) 0 0
\(208\) 1.86931e10 0.692464
\(209\) 3.54824e10 1.28634
\(210\) 0 0
\(211\) 3.69635e10 1.28381 0.641907 0.766783i \(-0.278144\pi\)
0.641907 + 0.766783i \(0.278144\pi\)
\(212\) −3.51045e9 −0.119358
\(213\) 0 0
\(214\) −5.11239e9 −0.166633
\(215\) −2.04258e8 −0.00651937
\(216\) 0 0
\(217\) −3.12443e10 −0.956538
\(218\) −1.69682e10 −0.508839
\(219\) 0 0
\(220\) −1.24828e8 −0.00359260
\(221\) 6.87056e8 0.0193743
\(222\) 0 0
\(223\) 1.75526e10 0.475302 0.237651 0.971351i \(-0.423622\pi\)
0.237651 + 0.971351i \(0.423622\pi\)
\(224\) −1.08879e10 −0.288953
\(225\) 0 0
\(226\) −1.13063e9 −0.0288292
\(227\) −3.52219e10 −0.880434 −0.440217 0.897891i \(-0.645099\pi\)
−0.440217 + 0.897891i \(0.645099\pi\)
\(228\) 0 0
\(229\) 3.59990e10 0.865028 0.432514 0.901627i \(-0.357627\pi\)
0.432514 + 0.901627i \(0.357627\pi\)
\(230\) 5.13894e8 0.0121087
\(231\) 0 0
\(232\) 6.38082e10 1.44604
\(233\) −1.22534e10 −0.272367 −0.136184 0.990684i \(-0.543484\pi\)
−0.136184 + 0.990684i \(0.543484\pi\)
\(234\) 0 0
\(235\) 8.07131e8 0.0172639
\(236\) 3.27170e9 0.0686545
\(237\) 0 0
\(238\) 1.72495e9 0.0348482
\(239\) −1.25661e10 −0.249121 −0.124561 0.992212i \(-0.539752\pi\)
−0.124561 + 0.992212i \(0.539752\pi\)
\(240\) 0 0
\(241\) 1.14905e10 0.219413 0.109707 0.993964i \(-0.465009\pi\)
0.109707 + 0.993964i \(0.465009\pi\)
\(242\) −1.47018e10 −0.275551
\(243\) 0 0
\(244\) −4.41890e9 −0.0798105
\(245\) 2.10685e9 0.0373582
\(246\) 0 0
\(247\) −5.14438e10 −0.879422
\(248\) −4.03986e10 −0.678162
\(249\) 0 0
\(250\) 3.76099e9 0.0608937
\(251\) 4.00421e10 0.636774 0.318387 0.947961i \(-0.396859\pi\)
0.318387 + 0.947961i \(0.396859\pi\)
\(252\) 0 0
\(253\) −2.94244e10 −0.451508
\(254\) −2.48457e10 −0.374541
\(255\) 0 0
\(256\) −2.01185e10 −0.292762
\(257\) 4.41455e10 0.631229 0.315615 0.948887i \(-0.397789\pi\)
0.315615 + 0.948887i \(0.397789\pi\)
\(258\) 0 0
\(259\) −1.90174e11 −2.62604
\(260\) 1.80980e8 0.00245613
\(261\) 0 0
\(262\) 1.27791e11 1.67551
\(263\) 2.72553e10 0.351278 0.175639 0.984455i \(-0.443801\pi\)
0.175639 + 0.984455i \(0.443801\pi\)
\(264\) 0 0
\(265\) 3.11878e9 0.0388489
\(266\) −1.29157e11 −1.58179
\(267\) 0 0
\(268\) −8.44916e9 −0.100048
\(269\) −1.37243e11 −1.59810 −0.799051 0.601263i \(-0.794664\pi\)
−0.799051 + 0.601263i \(0.794664\pi\)
\(270\) 0 0
\(271\) 9.04089e9 0.101824 0.0509119 0.998703i \(-0.483787\pi\)
0.0509119 + 0.998703i \(0.483787\pi\)
\(272\) 2.00832e9 0.0222471
\(273\) 0 0
\(274\) −3.21110e10 −0.344173
\(275\) −1.07618e11 −1.13471
\(276\) 0 0
\(277\) 4.12144e10 0.420620 0.210310 0.977635i \(-0.432553\pi\)
0.210310 + 0.977635i \(0.432553\pi\)
\(278\) −1.10182e11 −1.10639
\(279\) 0 0
\(280\) 5.06374e9 0.0492335
\(281\) −1.44729e11 −1.38477 −0.692383 0.721531i \(-0.743439\pi\)
−0.692383 + 0.721531i \(0.743439\pi\)
\(282\) 0 0
\(283\) −3.60385e10 −0.333986 −0.166993 0.985958i \(-0.553406\pi\)
−0.166993 + 0.985958i \(0.553406\pi\)
\(284\) −7.87333e9 −0.0718168
\(285\) 0 0
\(286\) 9.47589e10 0.837477
\(287\) 2.97327e11 2.58682
\(288\) 0 0
\(289\) −1.18514e11 −0.999378
\(290\) −5.08678e9 −0.0422330
\(291\) 0 0
\(292\) −1.54128e10 −0.124067
\(293\) 3.92901e10 0.311443 0.155722 0.987801i \(-0.450230\pi\)
0.155722 + 0.987801i \(0.450230\pi\)
\(294\) 0 0
\(295\) −2.90667e9 −0.0223458
\(296\) −2.45893e11 −1.86180
\(297\) 0 0
\(298\) −2.23791e11 −1.64388
\(299\) 4.26607e10 0.308679
\(300\) 0 0
\(301\) −4.25713e10 −0.298929
\(302\) −1.97628e10 −0.136716
\(303\) 0 0
\(304\) −1.50375e11 −1.00982
\(305\) 3.92588e9 0.0259769
\(306\) 0 0
\(307\) 6.02560e10 0.387148 0.193574 0.981086i \(-0.437992\pi\)
0.193574 + 0.981086i \(0.437992\pi\)
\(308\) −2.60166e10 −0.164730
\(309\) 0 0
\(310\) 3.22057e9 0.0198064
\(311\) 2.81885e11 1.70864 0.854319 0.519750i \(-0.173975\pi\)
0.854319 + 0.519750i \(0.173975\pi\)
\(312\) 0 0
\(313\) 1.48600e11 0.875122 0.437561 0.899189i \(-0.355842\pi\)
0.437561 + 0.899189i \(0.355842\pi\)
\(314\) 1.14844e11 0.666692
\(315\) 0 0
\(316\) 1.81652e10 0.102482
\(317\) 1.40319e11 0.780458 0.390229 0.920718i \(-0.372396\pi\)
0.390229 + 0.920718i \(0.372396\pi\)
\(318\) 0 0
\(319\) 2.91257e11 1.57478
\(320\) 6.48888e9 0.0345935
\(321\) 0 0
\(322\) 1.07106e11 0.555214
\(323\) −5.52694e9 −0.0282536
\(324\) 0 0
\(325\) 1.56028e11 0.775761
\(326\) −1.46618e11 −0.718963
\(327\) 0 0
\(328\) 3.84440e11 1.83399
\(329\) 1.68222e11 0.791591
\(330\) 0 0
\(331\) −1.19210e11 −0.545867 −0.272934 0.962033i \(-0.587994\pi\)
−0.272934 + 0.962033i \(0.587994\pi\)
\(332\) 2.34170e10 0.105782
\(333\) 0 0
\(334\) 1.24937e11 0.549328
\(335\) 7.50647e9 0.0325637
\(336\) 0 0
\(337\) −3.51241e11 −1.48344 −0.741720 0.670709i \(-0.765990\pi\)
−0.741720 + 0.670709i \(0.765990\pi\)
\(338\) 9.04335e10 0.376881
\(339\) 0 0
\(340\) 1.94439e7 7.89092e−5 0
\(341\) −1.84402e11 −0.738536
\(342\) 0 0
\(343\) 6.19811e10 0.241789
\(344\) −5.50443e10 −0.211933
\(345\) 0 0
\(346\) −2.64618e11 −0.992606
\(347\) −3.57306e11 −1.32299 −0.661496 0.749949i \(-0.730078\pi\)
−0.661496 + 0.749949i \(0.730078\pi\)
\(348\) 0 0
\(349\) 4.30212e11 1.55227 0.776136 0.630565i \(-0.217177\pi\)
0.776136 + 0.630565i \(0.217177\pi\)
\(350\) 3.91730e11 1.39534
\(351\) 0 0
\(352\) −6.42597e10 −0.223099
\(353\) 5.18997e11 1.77901 0.889505 0.456925i \(-0.151049\pi\)
0.889505 + 0.456925i \(0.151049\pi\)
\(354\) 0 0
\(355\) 6.99489e9 0.0233751
\(356\) −1.36441e10 −0.0450217
\(357\) 0 0
\(358\) −3.56114e11 −1.14582
\(359\) 4.22565e11 1.34267 0.671334 0.741155i \(-0.265721\pi\)
0.671334 + 0.741155i \(0.265721\pi\)
\(360\) 0 0
\(361\) 9.11460e10 0.282459
\(362\) 2.28526e10 0.0699433
\(363\) 0 0
\(364\) 3.77199e10 0.112620
\(365\) 1.36931e10 0.0403817
\(366\) 0 0
\(367\) −1.87479e11 −0.539456 −0.269728 0.962937i \(-0.586934\pi\)
−0.269728 + 0.962937i \(0.586934\pi\)
\(368\) 1.24701e11 0.354449
\(369\) 0 0
\(370\) 1.96025e10 0.0543756
\(371\) 6.50015e11 1.78131
\(372\) 0 0
\(373\) 3.54499e10 0.0948254 0.0474127 0.998875i \(-0.484902\pi\)
0.0474127 + 0.998875i \(0.484902\pi\)
\(374\) 1.01805e10 0.0269060
\(375\) 0 0
\(376\) 2.17509e11 0.561218
\(377\) −4.22277e11 −1.07662
\(378\) 0 0
\(379\) 2.58921e11 0.644602 0.322301 0.946637i \(-0.395544\pi\)
0.322301 + 0.946637i \(0.395544\pi\)
\(380\) −1.45588e9 −0.00358177
\(381\) 0 0
\(382\) −2.79104e11 −0.670626
\(383\) −1.17011e11 −0.277864 −0.138932 0.990302i \(-0.544367\pi\)
−0.138932 + 0.990302i \(0.544367\pi\)
\(384\) 0 0
\(385\) 2.31138e10 0.0536165
\(386\) 2.40431e11 0.551249
\(387\) 0 0
\(388\) 7.62042e9 0.0170701
\(389\) −4.16368e11 −0.921942 −0.460971 0.887415i \(-0.652499\pi\)
−0.460971 + 0.887415i \(0.652499\pi\)
\(390\) 0 0
\(391\) 4.58331e9 0.00991708
\(392\) 5.67762e11 1.21445
\(393\) 0 0
\(394\) −6.94588e11 −1.45209
\(395\) −1.61384e10 −0.0333560
\(396\) 0 0
\(397\) −4.63043e11 −0.935544 −0.467772 0.883849i \(-0.654943\pi\)
−0.467772 + 0.883849i \(0.654943\pi\)
\(398\) −1.60277e11 −0.320181
\(399\) 0 0
\(400\) 4.56083e11 0.890788
\(401\) 6.35971e11 1.22825 0.614127 0.789208i \(-0.289508\pi\)
0.614127 + 0.789208i \(0.289508\pi\)
\(402\) 0 0
\(403\) 2.67354e11 0.504910
\(404\) 1.57574e10 0.0294285
\(405\) 0 0
\(406\) −1.06018e12 −1.93648
\(407\) −1.12240e12 −2.02755
\(408\) 0 0
\(409\) −1.22939e11 −0.217237 −0.108619 0.994084i \(-0.534643\pi\)
−0.108619 + 0.994084i \(0.534643\pi\)
\(410\) −3.06475e10 −0.0535634
\(411\) 0 0
\(412\) −4.33365e10 −0.0740997
\(413\) −6.05806e11 −1.02461
\(414\) 0 0
\(415\) −2.08043e10 −0.0344300
\(416\) 9.31664e10 0.152524
\(417\) 0 0
\(418\) −7.62276e11 −1.22129
\(419\) −8.58084e11 −1.36009 −0.680044 0.733171i \(-0.738039\pi\)
−0.680044 + 0.733171i \(0.738039\pi\)
\(420\) 0 0
\(421\) 2.65092e11 0.411270 0.205635 0.978629i \(-0.434074\pi\)
0.205635 + 0.978629i \(0.434074\pi\)
\(422\) −7.94095e11 −1.21890
\(423\) 0 0
\(424\) 8.40462e11 1.26291
\(425\) 1.67631e10 0.0249232
\(426\) 0 0
\(427\) 8.18229e11 1.19110
\(428\) −1.20107e10 −0.0173011
\(429\) 0 0
\(430\) 4.38812e9 0.00618971
\(431\) 2.69116e11 0.375658 0.187829 0.982202i \(-0.439855\pi\)
0.187829 + 0.982202i \(0.439855\pi\)
\(432\) 0 0
\(433\) −1.07088e12 −1.46401 −0.732006 0.681298i \(-0.761416\pi\)
−0.732006 + 0.681298i \(0.761416\pi\)
\(434\) 6.71229e11 0.908169
\(435\) 0 0
\(436\) −3.98639e10 −0.0528313
\(437\) −3.43179e11 −0.450146
\(438\) 0 0
\(439\) −5.12835e11 −0.659003 −0.329502 0.944155i \(-0.606881\pi\)
−0.329502 + 0.944155i \(0.606881\pi\)
\(440\) 2.98859e10 0.0380128
\(441\) 0 0
\(442\) −1.47602e10 −0.0183946
\(443\) −2.30225e11 −0.284011 −0.142006 0.989866i \(-0.545355\pi\)
−0.142006 + 0.989866i \(0.545355\pi\)
\(444\) 0 0
\(445\) 1.21218e10 0.0146537
\(446\) −3.77087e11 −0.451268
\(447\) 0 0
\(448\) 1.35241e12 1.58620
\(449\) 1.09130e12 1.26717 0.633586 0.773672i \(-0.281582\pi\)
0.633586 + 0.773672i \(0.281582\pi\)
\(450\) 0 0
\(451\) 1.75481e12 1.99726
\(452\) −2.65623e9 −0.00299325
\(453\) 0 0
\(454\) 7.56681e11 0.835914
\(455\) −3.35114e10 −0.0366556
\(456\) 0 0
\(457\) −9.15864e10 −0.0982219 −0.0491109 0.998793i \(-0.515639\pi\)
−0.0491109 + 0.998793i \(0.515639\pi\)
\(458\) −7.73373e11 −0.821286
\(459\) 0 0
\(460\) 1.20731e9 0.00125721
\(461\) −4.65818e11 −0.480355 −0.240177 0.970729i \(-0.577206\pi\)
−0.240177 + 0.970729i \(0.577206\pi\)
\(462\) 0 0
\(463\) −1.06973e12 −1.08183 −0.540916 0.841077i \(-0.681922\pi\)
−0.540916 + 0.841077i \(0.681922\pi\)
\(464\) −1.23435e12 −1.23625
\(465\) 0 0
\(466\) 2.63243e11 0.258595
\(467\) −1.30619e12 −1.27081 −0.635406 0.772178i \(-0.719167\pi\)
−0.635406 + 0.772178i \(0.719167\pi\)
\(468\) 0 0
\(469\) 1.56449e12 1.49313
\(470\) −1.73398e10 −0.0163909
\(471\) 0 0
\(472\) −7.83300e11 −0.726422
\(473\) −2.51254e11 −0.230801
\(474\) 0 0
\(475\) −1.25515e12 −1.13129
\(476\) 4.05248e9 0.00361818
\(477\) 0 0
\(478\) 2.69961e11 0.236524
\(479\) −2.13641e12 −1.85428 −0.927139 0.374717i \(-0.877740\pi\)
−0.927139 + 0.374717i \(0.877740\pi\)
\(480\) 0 0
\(481\) 1.62729e12 1.38616
\(482\) −2.46853e11 −0.208318
\(483\) 0 0
\(484\) −3.45396e10 −0.0286097
\(485\) −6.77019e9 −0.00555601
\(486\) 0 0
\(487\) −1.44314e12 −1.16259 −0.581297 0.813692i \(-0.697454\pi\)
−0.581297 + 0.813692i \(0.697454\pi\)
\(488\) 1.05796e12 0.844463
\(489\) 0 0
\(490\) −4.52618e10 −0.0354691
\(491\) 7.73531e11 0.600636 0.300318 0.953839i \(-0.402907\pi\)
0.300318 + 0.953839i \(0.402907\pi\)
\(492\) 0 0
\(493\) −4.53679e10 −0.0345889
\(494\) 1.10518e12 0.834952
\(495\) 0 0
\(496\) 7.81498e11 0.579776
\(497\) 1.45787e12 1.07180
\(498\) 0 0
\(499\) −5.19884e11 −0.375366 −0.187683 0.982230i \(-0.560098\pi\)
−0.187683 + 0.982230i \(0.560098\pi\)
\(500\) 8.83584e9 0.00632241
\(501\) 0 0
\(502\) −8.60234e11 −0.604575
\(503\) −1.32324e12 −0.921683 −0.460842 0.887482i \(-0.652452\pi\)
−0.460842 + 0.887482i \(0.652452\pi\)
\(504\) 0 0
\(505\) −1.39993e10 −0.00957844
\(506\) 6.32131e11 0.428676
\(507\) 0 0
\(508\) −5.83708e10 −0.0388874
\(509\) −1.65550e12 −1.09320 −0.546600 0.837394i \(-0.684078\pi\)
−0.546600 + 0.837394i \(0.684078\pi\)
\(510\) 0 0
\(511\) 2.85392e12 1.85160
\(512\) 1.71854e12 1.10521
\(513\) 0 0
\(514\) −9.48387e11 −0.599310
\(515\) 3.85014e10 0.0241181
\(516\) 0 0
\(517\) 9.92836e11 0.611181
\(518\) 4.08555e12 2.49325
\(519\) 0 0
\(520\) −4.33298e10 −0.0259879
\(521\) −3.36913e11 −0.200331 −0.100165 0.994971i \(-0.531937\pi\)
−0.100165 + 0.994971i \(0.531937\pi\)
\(522\) 0 0
\(523\) −2.63804e12 −1.54179 −0.770893 0.636964i \(-0.780190\pi\)
−0.770893 + 0.636964i \(0.780190\pi\)
\(524\) 3.00225e11 0.173963
\(525\) 0 0
\(526\) −5.85532e11 −0.333515
\(527\) 2.87235e10 0.0162215
\(528\) 0 0
\(529\) −1.51657e12 −0.841997
\(530\) −6.70014e10 −0.0368844
\(531\) 0 0
\(532\) −3.03433e11 −0.164233
\(533\) −2.54419e12 −1.36545
\(534\) 0 0
\(535\) 1.06707e10 0.00563118
\(536\) 2.02287e12 1.05859
\(537\) 0 0
\(538\) 2.94842e12 1.51729
\(539\) 2.59159e12 1.32256
\(540\) 0 0
\(541\) −2.84689e12 −1.42884 −0.714419 0.699718i \(-0.753309\pi\)
−0.714419 + 0.699718i \(0.753309\pi\)
\(542\) −1.94227e11 −0.0966749
\(543\) 0 0
\(544\) 1.00095e10 0.00490022
\(545\) 3.54162e10 0.0171956
\(546\) 0 0
\(547\) −3.97570e12 −1.89876 −0.949381 0.314127i \(-0.898288\pi\)
−0.949381 + 0.314127i \(0.898288\pi\)
\(548\) −7.54396e10 −0.0357344
\(549\) 0 0
\(550\) 2.31197e12 1.07733
\(551\) 3.39695e12 1.57003
\(552\) 0 0
\(553\) −3.36356e12 −1.52945
\(554\) −8.85417e11 −0.399350
\(555\) 0 0
\(556\) −2.58854e11 −0.114873
\(557\) −3.04474e12 −1.34030 −0.670151 0.742225i \(-0.733771\pi\)
−0.670151 + 0.742225i \(0.733771\pi\)
\(558\) 0 0
\(559\) 3.64278e11 0.157790
\(560\) −9.79565e10 −0.0420908
\(561\) 0 0
\(562\) 3.10924e12 1.31474
\(563\) 2.41196e12 1.01177 0.505886 0.862600i \(-0.331166\pi\)
0.505886 + 0.862600i \(0.331166\pi\)
\(564\) 0 0
\(565\) 2.35987e9 0.000974250 0
\(566\) 7.74224e11 0.317097
\(567\) 0 0
\(568\) 1.88501e12 0.759882
\(569\) −1.43197e12 −0.572702 −0.286351 0.958125i \(-0.592442\pi\)
−0.286351 + 0.958125i \(0.592442\pi\)
\(570\) 0 0
\(571\) 2.17567e10 0.00856508 0.00428254 0.999991i \(-0.498637\pi\)
0.00428254 + 0.999991i \(0.498637\pi\)
\(572\) 2.22620e11 0.0869527
\(573\) 0 0
\(574\) −6.38754e12 −2.45601
\(575\) 1.04085e12 0.397086
\(576\) 0 0
\(577\) 2.44386e12 0.917879 0.458940 0.888467i \(-0.348229\pi\)
0.458940 + 0.888467i \(0.348229\pi\)
\(578\) 2.54606e12 0.948842
\(579\) 0 0
\(580\) −1.19505e10 −0.00438492
\(581\) −4.33603e12 −1.57870
\(582\) 0 0
\(583\) 3.83635e12 1.37534
\(584\) 3.69008e12 1.31274
\(585\) 0 0
\(586\) −8.44078e11 −0.295694
\(587\) 4.14752e12 1.44184 0.720919 0.693019i \(-0.243720\pi\)
0.720919 + 0.693019i \(0.243720\pi\)
\(588\) 0 0
\(589\) −2.15070e12 −0.736309
\(590\) 6.24446e10 0.0212159
\(591\) 0 0
\(592\) 4.75672e12 1.59169
\(593\) 1.12036e12 0.372059 0.186029 0.982544i \(-0.440438\pi\)
0.186029 + 0.982544i \(0.440438\pi\)
\(594\) 0 0
\(595\) −3.60034e9 −0.00117765
\(596\) −5.25760e11 −0.170679
\(597\) 0 0
\(598\) −9.16489e11 −0.293070
\(599\) −9.68704e10 −0.0307447 −0.0153724 0.999882i \(-0.504893\pi\)
−0.0153724 + 0.999882i \(0.504893\pi\)
\(600\) 0 0
\(601\) 8.43997e11 0.263880 0.131940 0.991258i \(-0.457879\pi\)
0.131940 + 0.991258i \(0.457879\pi\)
\(602\) 9.14569e11 0.283813
\(603\) 0 0
\(604\) −4.64295e10 −0.0141948
\(605\) 3.06859e10 0.00931193
\(606\) 0 0
\(607\) −3.12241e12 −0.933558 −0.466779 0.884374i \(-0.654586\pi\)
−0.466779 + 0.884374i \(0.654586\pi\)
\(608\) −7.49465e11 −0.222426
\(609\) 0 0
\(610\) −8.43405e10 −0.0246633
\(611\) −1.43945e12 −0.417842
\(612\) 0 0
\(613\) 5.54993e12 1.58751 0.793753 0.608240i \(-0.208124\pi\)
0.793753 + 0.608240i \(0.208124\pi\)
\(614\) −1.29449e12 −0.367572
\(615\) 0 0
\(616\) 6.22881e12 1.74298
\(617\) 2.74184e12 0.761655 0.380828 0.924646i \(-0.375639\pi\)
0.380828 + 0.924646i \(0.375639\pi\)
\(618\) 0 0
\(619\) 2.83694e12 0.776679 0.388339 0.921516i \(-0.373049\pi\)
0.388339 + 0.921516i \(0.373049\pi\)
\(620\) 7.56619e9 0.00205643
\(621\) 0 0
\(622\) −6.05579e12 −1.62224
\(623\) 2.52643e12 0.671909
\(624\) 0 0
\(625\) 3.80292e12 0.996913
\(626\) −3.19240e12 −0.830870
\(627\) 0 0
\(628\) 2.69808e11 0.0692207
\(629\) 1.74831e11 0.0445338
\(630\) 0 0
\(631\) 4.50954e12 1.13240 0.566200 0.824268i \(-0.308413\pi\)
0.566200 + 0.824268i \(0.308413\pi\)
\(632\) −4.34905e12 −1.08434
\(633\) 0 0
\(634\) −3.01450e12 −0.740993
\(635\) 5.18583e10 0.0126572
\(636\) 0 0
\(637\) −3.75739e12 −0.904189
\(638\) −6.25715e12 −1.49514
\(639\) 0 0
\(640\) −1.12655e11 −0.0265424
\(641\) −5.63735e12 −1.31891 −0.659453 0.751746i \(-0.729212\pi\)
−0.659453 + 0.751746i \(0.729212\pi\)
\(642\) 0 0
\(643\) 4.49329e12 1.03661 0.518304 0.855196i \(-0.326563\pi\)
0.518304 + 0.855196i \(0.326563\pi\)
\(644\) 2.51627e11 0.0576462
\(645\) 0 0
\(646\) 1.18736e11 0.0268249
\(647\) −2.52863e12 −0.567304 −0.283652 0.958927i \(-0.591546\pi\)
−0.283652 + 0.958927i \(0.591546\pi\)
\(648\) 0 0
\(649\) −3.57543e12 −0.791093
\(650\) −3.35199e12 −0.736533
\(651\) 0 0
\(652\) −3.44454e11 −0.0746478
\(653\) −9.58850e11 −0.206368 −0.103184 0.994662i \(-0.532903\pi\)
−0.103184 + 0.994662i \(0.532903\pi\)
\(654\) 0 0
\(655\) −2.66728e11 −0.0566217
\(656\) −7.43688e12 −1.56792
\(657\) 0 0
\(658\) −3.61395e12 −0.751562
\(659\) −1.37907e12 −0.284840 −0.142420 0.989806i \(-0.545488\pi\)
−0.142420 + 0.989806i \(0.545488\pi\)
\(660\) 0 0
\(661\) −1.16187e12 −0.236729 −0.118365 0.992970i \(-0.537765\pi\)
−0.118365 + 0.992970i \(0.537765\pi\)
\(662\) 2.56102e12 0.518265
\(663\) 0 0
\(664\) −5.60644e12 −1.11926
\(665\) 2.69578e11 0.0534549
\(666\) 0 0
\(667\) −2.81698e12 −0.551084
\(668\) 2.93519e11 0.0570351
\(669\) 0 0
\(670\) −1.61263e11 −0.0309171
\(671\) 4.82914e12 0.919642
\(672\) 0 0
\(673\) 2.27994e12 0.428406 0.214203 0.976789i \(-0.431285\pi\)
0.214203 + 0.976789i \(0.431285\pi\)
\(674\) 7.54578e12 1.40843
\(675\) 0 0
\(676\) 2.12459e11 0.0391304
\(677\) −2.13897e12 −0.391340 −0.195670 0.980670i \(-0.562688\pi\)
−0.195670 + 0.980670i \(0.562688\pi\)
\(678\) 0 0
\(679\) −1.41104e12 −0.254757
\(680\) −4.65520e9 −0.000834926 0
\(681\) 0 0
\(682\) 3.96155e12 0.701190
\(683\) −4.62393e11 −0.0813051 −0.0406526 0.999173i \(-0.512944\pi\)
−0.0406526 + 0.999173i \(0.512944\pi\)
\(684\) 0 0
\(685\) 6.70226e10 0.0116309
\(686\) −1.33155e12 −0.229562
\(687\) 0 0
\(688\) 1.06481e12 0.181186
\(689\) −5.56210e12 −0.940269
\(690\) 0 0
\(691\) 9.21097e12 1.53693 0.768465 0.639892i \(-0.221021\pi\)
0.768465 + 0.639892i \(0.221021\pi\)
\(692\) −6.21676e11 −0.103059
\(693\) 0 0
\(694\) 7.67607e12 1.25609
\(695\) 2.29973e11 0.0373891
\(696\) 0 0
\(697\) −2.73338e11 −0.0438685
\(698\) −9.24234e12 −1.47378
\(699\) 0 0
\(700\) 9.20306e11 0.144874
\(701\) −1.30164e12 −0.203592 −0.101796 0.994805i \(-0.532459\pi\)
−0.101796 + 0.994805i \(0.532459\pi\)
\(702\) 0 0
\(703\) −1.30906e13 −2.02143
\(704\) 7.98184e12 1.22469
\(705\) 0 0
\(706\) −1.11497e13 −1.68905
\(707\) −2.91772e12 −0.439195
\(708\) 0 0
\(709\) −1.23312e13 −1.83272 −0.916361 0.400353i \(-0.868888\pi\)
−0.916361 + 0.400353i \(0.868888\pi\)
\(710\) −1.50273e11 −0.0221931
\(711\) 0 0
\(712\) 3.26664e12 0.476367
\(713\) 1.78350e12 0.258446
\(714\) 0 0
\(715\) −1.97782e11 −0.0283015
\(716\) −8.36631e11 −0.118967
\(717\) 0 0
\(718\) −9.07807e12 −1.27477
\(719\) 1.63948e12 0.228784 0.114392 0.993436i \(-0.463508\pi\)
0.114392 + 0.993436i \(0.463508\pi\)
\(720\) 0 0
\(721\) 8.02443e12 1.10587
\(722\) −1.95811e12 −0.268176
\(723\) 0 0
\(724\) 5.36883e10 0.00726200
\(725\) −1.03029e13 −1.38496
\(726\) 0 0
\(727\) −6.03339e12 −0.801045 −0.400522 0.916287i \(-0.631171\pi\)
−0.400522 + 0.916287i \(0.631171\pi\)
\(728\) −9.03078e12 −1.19161
\(729\) 0 0
\(730\) −2.94173e11 −0.0383398
\(731\) 3.91367e10 0.00506939
\(732\) 0 0
\(733\) 9.43666e11 0.120740 0.0603699 0.998176i \(-0.480772\pi\)
0.0603699 + 0.998176i \(0.480772\pi\)
\(734\) 4.02766e12 0.512177
\(735\) 0 0
\(736\) 6.21507e11 0.0780721
\(737\) 9.23356e12 1.15283
\(738\) 0 0
\(739\) 2.35026e12 0.289879 0.144939 0.989441i \(-0.453701\pi\)
0.144939 + 0.989441i \(0.453701\pi\)
\(740\) 4.60529e10 0.00564565
\(741\) 0 0
\(742\) −1.39644e13 −1.69124
\(743\) 1.06015e13 1.27620 0.638098 0.769955i \(-0.279722\pi\)
0.638098 + 0.769955i \(0.279722\pi\)
\(744\) 0 0
\(745\) 4.67100e11 0.0555529
\(746\) −7.61577e11 −0.0900304
\(747\) 0 0
\(748\) 2.39175e10 0.00279357
\(749\) 2.22398e12 0.258203
\(750\) 0 0
\(751\) 1.42801e13 1.63814 0.819072 0.573691i \(-0.194489\pi\)
0.819072 + 0.573691i \(0.194489\pi\)
\(752\) −4.20764e12 −0.479798
\(753\) 0 0
\(754\) 9.07186e12 1.02218
\(755\) 4.12493e10 0.00462014
\(756\) 0 0
\(757\) 2.98242e12 0.330094 0.165047 0.986286i \(-0.447222\pi\)
0.165047 + 0.986286i \(0.447222\pi\)
\(758\) −5.56247e12 −0.612006
\(759\) 0 0
\(760\) 3.48561e11 0.0378982
\(761\) 1.15072e13 1.24377 0.621885 0.783109i \(-0.286367\pi\)
0.621885 + 0.783109i \(0.286367\pi\)
\(762\) 0 0
\(763\) 7.38143e12 0.788461
\(764\) −6.55709e11 −0.0696291
\(765\) 0 0
\(766\) 2.51377e12 0.263813
\(767\) 5.18381e12 0.540841
\(768\) 0 0
\(769\) 1.53574e13 1.58361 0.791807 0.610771i \(-0.209140\pi\)
0.791807 + 0.610771i \(0.209140\pi\)
\(770\) −4.96559e11 −0.0509053
\(771\) 0 0
\(772\) 5.64853e11 0.0572345
\(773\) 1.55153e13 1.56298 0.781491 0.623917i \(-0.214460\pi\)
0.781491 + 0.623917i \(0.214460\pi\)
\(774\) 0 0
\(775\) 6.52302e12 0.649518
\(776\) −1.82446e12 −0.180616
\(777\) 0 0
\(778\) 8.94491e12 0.875322
\(779\) 2.04664e13 1.99124
\(780\) 0 0
\(781\) 8.60428e12 0.827532
\(782\) −9.84642e10 −0.00941560
\(783\) 0 0
\(784\) −1.09832e13 −1.03826
\(785\) −2.39705e11 −0.0225301
\(786\) 0 0
\(787\) −1.49230e13 −1.38666 −0.693329 0.720621i \(-0.743857\pi\)
−0.693329 + 0.720621i \(0.743857\pi\)
\(788\) −1.63182e12 −0.150766
\(789\) 0 0
\(790\) 3.46705e11 0.0316693
\(791\) 4.91843e11 0.0446717
\(792\) 0 0
\(793\) −7.00149e12 −0.628725
\(794\) 9.94766e12 0.888237
\(795\) 0 0
\(796\) −3.76544e11 −0.0332435
\(797\) 8.06094e11 0.0707657 0.0353829 0.999374i \(-0.488735\pi\)
0.0353829 + 0.999374i \(0.488735\pi\)
\(798\) 0 0
\(799\) −1.54650e11 −0.0134242
\(800\) 2.27312e12 0.196208
\(801\) 0 0
\(802\) −1.36627e13 −1.16614
\(803\) 1.68437e13 1.42961
\(804\) 0 0
\(805\) −2.23552e11 −0.0187628
\(806\) −5.74362e12 −0.479378
\(807\) 0 0
\(808\) −3.77258e12 −0.311378
\(809\) −1.37229e13 −1.12636 −0.563179 0.826335i \(-0.690422\pi\)
−0.563179 + 0.826335i \(0.690422\pi\)
\(810\) 0 0
\(811\) 6.34290e12 0.514866 0.257433 0.966296i \(-0.417123\pi\)
0.257433 + 0.966296i \(0.417123\pi\)
\(812\) −2.49073e12 −0.201059
\(813\) 0 0
\(814\) 2.41127e13 1.92502
\(815\) 3.06023e11 0.0242965
\(816\) 0 0
\(817\) −2.93039e12 −0.230105
\(818\) 2.64112e12 0.206252
\(819\) 0 0
\(820\) −7.20013e10 −0.00556132
\(821\) −1.23943e13 −0.952093 −0.476046 0.879420i \(-0.657931\pi\)
−0.476046 + 0.879420i \(0.657931\pi\)
\(822\) 0 0
\(823\) −1.14112e13 −0.867023 −0.433511 0.901148i \(-0.642726\pi\)
−0.433511 + 0.901148i \(0.642726\pi\)
\(824\) 1.03755e13 0.784037
\(825\) 0 0
\(826\) 1.30147e13 0.972798
\(827\) 1.74662e13 1.29844 0.649222 0.760599i \(-0.275095\pi\)
0.649222 + 0.760599i \(0.275095\pi\)
\(828\) 0 0
\(829\) −4.32053e12 −0.317718 −0.158859 0.987301i \(-0.550781\pi\)
−0.158859 + 0.987301i \(0.550781\pi\)
\(830\) 4.46944e11 0.0326890
\(831\) 0 0
\(832\) −1.15724e13 −0.837275
\(833\) −4.03681e11 −0.0290493
\(834\) 0 0
\(835\) −2.60770e11 −0.0185639
\(836\) −1.79084e12 −0.126803
\(837\) 0 0
\(838\) 1.84344e13 1.29131
\(839\) −3.95249e12 −0.275386 −0.137693 0.990475i \(-0.543969\pi\)
−0.137693 + 0.990475i \(0.543969\pi\)
\(840\) 0 0
\(841\) 1.33767e13 0.922080
\(842\) −5.69503e12 −0.390473
\(843\) 0 0
\(844\) −1.86560e12 −0.126554
\(845\) −1.88754e11 −0.0127362
\(846\) 0 0
\(847\) 6.39554e12 0.426975
\(848\) −1.62585e13 −1.07969
\(849\) 0 0
\(850\) −3.60125e11 −0.0236629
\(851\) 1.08556e13 0.709529
\(852\) 0 0
\(853\) −1.49915e13 −0.969560 −0.484780 0.874636i \(-0.661100\pi\)
−0.484780 + 0.874636i \(0.661100\pi\)
\(854\) −1.75782e13 −1.13087
\(855\) 0 0
\(856\) 2.87557e12 0.183060
\(857\) 1.41058e13 0.893272 0.446636 0.894716i \(-0.352622\pi\)
0.446636 + 0.894716i \(0.352622\pi\)
\(858\) 0 0
\(859\) −2.24956e13 −1.40971 −0.704853 0.709353i \(-0.748987\pi\)
−0.704853 + 0.709353i \(0.748987\pi\)
\(860\) 1.03092e10 0.000642659 0
\(861\) 0 0
\(862\) −5.78149e12 −0.356662
\(863\) 1.15572e13 0.709259 0.354629 0.935007i \(-0.384607\pi\)
0.354629 + 0.935007i \(0.384607\pi\)
\(864\) 0 0
\(865\) 5.52315e11 0.0335439
\(866\) 2.30059e13 1.38998
\(867\) 0 0
\(868\) 1.57694e12 0.0942924
\(869\) −1.98516e13 −1.18088
\(870\) 0 0
\(871\) −1.33872e13 −0.788148
\(872\) 9.54411e12 0.558999
\(873\) 0 0
\(874\) 7.37258e12 0.427384
\(875\) −1.63609e12 −0.0943565
\(876\) 0 0
\(877\) −1.94644e13 −1.11107 −0.555536 0.831493i \(-0.687487\pi\)
−0.555536 + 0.831493i \(0.687487\pi\)
\(878\) 1.10174e13 0.625680
\(879\) 0 0
\(880\) −5.78134e11 −0.0324980
\(881\) 8.46829e12 0.473592 0.236796 0.971559i \(-0.423903\pi\)
0.236796 + 0.971559i \(0.423903\pi\)
\(882\) 0 0
\(883\) −1.77577e13 −0.983025 −0.491513 0.870870i \(-0.663556\pi\)
−0.491513 + 0.870870i \(0.663556\pi\)
\(884\) −3.46766e10 −0.00190986
\(885\) 0 0
\(886\) 4.94597e12 0.269650
\(887\) −2.46237e13 −1.33567 −0.667833 0.744311i \(-0.732778\pi\)
−0.667833 + 0.744311i \(0.732778\pi\)
\(888\) 0 0
\(889\) 1.08083e13 0.580361
\(890\) −2.60416e11 −0.0139127
\(891\) 0 0
\(892\) −8.85903e11 −0.0468538
\(893\) 1.15795e13 0.609338
\(894\) 0 0
\(895\) 7.43286e11 0.0387215
\(896\) −2.34795e13 −1.21703
\(897\) 0 0
\(898\) −2.34446e13 −1.20310
\(899\) −1.76540e13 −0.901414
\(900\) 0 0
\(901\) −5.97571e11 −0.0302084
\(902\) −3.76989e13 −1.89627
\(903\) 0 0
\(904\) 6.35948e11 0.0316711
\(905\) −4.76982e10 −0.00236365
\(906\) 0 0
\(907\) −2.26386e12 −0.111075 −0.0555376 0.998457i \(-0.517687\pi\)
−0.0555376 + 0.998457i \(0.517687\pi\)
\(908\) 1.77770e12 0.0867904
\(909\) 0 0
\(910\) 7.19932e11 0.0348021
\(911\) 2.44219e13 1.17475 0.587377 0.809313i \(-0.300160\pi\)
0.587377 + 0.809313i \(0.300160\pi\)
\(912\) 0 0
\(913\) −2.55910e13 −1.21890
\(914\) 1.96757e12 0.0932551
\(915\) 0 0
\(916\) −1.81691e12 −0.0852717
\(917\) −5.55914e13 −2.59624
\(918\) 0 0
\(919\) −9.43274e12 −0.436233 −0.218116 0.975923i \(-0.569991\pi\)
−0.218116 + 0.975923i \(0.569991\pi\)
\(920\) −2.89051e11 −0.0133024
\(921\) 0 0
\(922\) 1.00073e13 0.456065
\(923\) −1.24748e13 −0.565753
\(924\) 0 0
\(925\) 3.97035e13 1.78316
\(926\) 2.29812e13 1.02713
\(927\) 0 0
\(928\) −6.15199e12 −0.272301
\(929\) −2.76401e13 −1.21750 −0.608749 0.793363i \(-0.708328\pi\)
−0.608749 + 0.793363i \(0.708328\pi\)
\(930\) 0 0
\(931\) 3.02259e13 1.31858
\(932\) 6.18445e11 0.0268491
\(933\) 0 0
\(934\) 2.80612e13 1.20655
\(935\) −2.12490e10 −0.000909256 0
\(936\) 0 0
\(937\) −2.24945e13 −0.953341 −0.476671 0.879082i \(-0.658157\pi\)
−0.476671 + 0.879082i \(0.658157\pi\)
\(938\) −3.36104e13 −1.41762
\(939\) 0 0
\(940\) −4.07369e10 −0.00170182
\(941\) 3.28332e12 0.136508 0.0682542 0.997668i \(-0.478257\pi\)
0.0682542 + 0.997668i \(0.478257\pi\)
\(942\) 0 0
\(943\) −1.69721e13 −0.698930
\(944\) 1.51527e13 0.621035
\(945\) 0 0
\(946\) 5.39774e12 0.219130
\(947\) −4.65124e13 −1.87929 −0.939645 0.342151i \(-0.888845\pi\)
−0.939645 + 0.342151i \(0.888845\pi\)
\(948\) 0 0
\(949\) −2.44206e13 −0.977370
\(950\) 2.69647e13 1.07409
\(951\) 0 0
\(952\) −9.70234e11 −0.0382834
\(953\) −3.34707e13 −1.31446 −0.657229 0.753691i \(-0.728271\pi\)
−0.657229 + 0.753691i \(0.728271\pi\)
\(954\) 0 0
\(955\) 5.82550e11 0.0226630
\(956\) 6.34229e11 0.0245576
\(957\) 0 0
\(958\) 4.58970e13 1.76051
\(959\) 1.39688e13 0.533305
\(960\) 0 0
\(961\) −1.52624e13 −0.577257
\(962\) −3.49595e13 −1.31607
\(963\) 0 0
\(964\) −5.79941e11 −0.0216290
\(965\) −5.01831e11 −0.0186288
\(966\) 0 0
\(967\) 4.98325e13 1.83271 0.916354 0.400370i \(-0.131118\pi\)
0.916354 + 0.400370i \(0.131118\pi\)
\(968\) 8.26936e12 0.302714
\(969\) 0 0
\(970\) 1.45445e11 0.00527506
\(971\) 2.07241e13 0.748149 0.374075 0.927399i \(-0.377960\pi\)
0.374075 + 0.927399i \(0.377960\pi\)
\(972\) 0 0
\(973\) 4.79309e13 1.71438
\(974\) 3.10033e13 1.10380
\(975\) 0 0
\(976\) −2.04659e13 −0.721950
\(977\) 7.94484e11 0.0278971 0.0139486 0.999903i \(-0.495560\pi\)
0.0139486 + 0.999903i \(0.495560\pi\)
\(978\) 0 0
\(979\) 1.49108e13 0.518776
\(980\) −1.06335e11 −0.00368265
\(981\) 0 0
\(982\) −1.66179e13 −0.570263
\(983\) 5.33290e13 1.82168 0.910840 0.412759i \(-0.135435\pi\)
0.910840 + 0.412759i \(0.135435\pi\)
\(984\) 0 0
\(985\) 1.44976e12 0.0490718
\(986\) 9.74648e11 0.0328399
\(987\) 0 0
\(988\) 2.59644e12 0.0866905
\(989\) 2.43007e12 0.0807674
\(990\) 0 0
\(991\) 3.10566e13 1.02288 0.511438 0.859320i \(-0.329113\pi\)
0.511438 + 0.859320i \(0.329113\pi\)
\(992\) 3.89498e12 0.127703
\(993\) 0 0
\(994\) −3.13198e13 −1.01761
\(995\) 3.34532e11 0.0108202
\(996\) 0 0
\(997\) −2.49263e13 −0.798969 −0.399484 0.916740i \(-0.630811\pi\)
−0.399484 + 0.916740i \(0.630811\pi\)
\(998\) 1.11688e13 0.356384
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.a.d.1.3 8
3.2 odd 2 81.10.a.c.1.6 8
9.2 odd 6 9.10.c.a.4.3 16
9.4 even 3 27.10.c.a.19.6 16
9.5 odd 6 9.10.c.a.7.3 yes 16
9.7 even 3 27.10.c.a.10.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.10.c.a.4.3 16 9.2 odd 6
9.10.c.a.7.3 yes 16 9.5 odd 6
27.10.c.a.10.6 16 9.7 even 3
27.10.c.a.19.6 16 9.4 even 3
81.10.a.c.1.6 8 3.2 odd 2
81.10.a.d.1.3 8 1.1 even 1 trivial