Properties

Label 81.10.a.d.1.1
Level $81$
Weight $10$
Character 81.1
Self dual yes
Analytic conductor $41.718$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(1,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2930 x^{6} - 1276 x^{5} + 2487472 x^{4} + 3423248 x^{3} - 586568096 x^{2} + \cdots + 965565184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{18}\cdot 17 \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(41.7589\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-39.7589 q^{2} +1068.77 q^{4} +846.447 q^{5} -7043.99 q^{7} -22136.7 q^{8} -33653.8 q^{10} +90103.0 q^{11} +68589.0 q^{13} +280061. q^{14} +332920. q^{16} +235749. q^{17} -232999. q^{19} +904660. q^{20} -3.58240e6 q^{22} +266252. q^{23} -1.23665e6 q^{25} -2.72703e6 q^{26} -7.52842e6 q^{28} -3.06183e6 q^{29} +3.59150e6 q^{31} -1.90255e6 q^{32} -9.37312e6 q^{34} -5.96236e6 q^{35} +5.13436e6 q^{37} +9.26378e6 q^{38} -1.87375e7 q^{40} +4.50206e6 q^{41} -3.29912e7 q^{43} +9.62997e7 q^{44} -1.05859e7 q^{46} -1.24308e7 q^{47} +9.26412e6 q^{49} +4.91680e7 q^{50} +7.33061e7 q^{52} -3.42506e7 q^{53} +7.62674e7 q^{55} +1.55931e8 q^{56} +1.21735e8 q^{58} +4.55616e7 q^{59} +6.16460e7 q^{61} -1.42794e8 q^{62} -9.48116e7 q^{64} +5.80570e7 q^{65} +5.84484e6 q^{67} +2.51962e8 q^{68} +2.37057e8 q^{70} +2.53018e8 q^{71} +3.59593e8 q^{73} -2.04137e8 q^{74} -2.49023e8 q^{76} -6.34684e8 q^{77} +2.88923e8 q^{79} +2.81799e8 q^{80} -1.78997e8 q^{82} +4.53300e8 q^{83} +1.99549e8 q^{85} +1.31170e9 q^{86} -1.99458e9 q^{88} +5.93996e8 q^{89} -4.83140e8 q^{91} +2.84563e8 q^{92} +4.94236e8 q^{94} -1.97221e8 q^{95} -2.99011e8 q^{97} -3.68332e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 15 q^{2} + 1793 q^{4} + 453 q^{5} + 343 q^{7} + 7239 q^{8} + 510 q^{10} + 99150 q^{11} - 32435 q^{13} + 394824 q^{14} + 328193 q^{16} + 415539 q^{17} - 85277 q^{19} + 1855164 q^{20} - 529359 q^{22}+ \cdots - 2413650159 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −39.7589 −1.75711 −0.878557 0.477638i \(-0.841493\pi\)
−0.878557 + 0.477638i \(0.841493\pi\)
\(3\) 0 0
\(4\) 1068.77 2.08745
\(5\) 846.447 0.605668 0.302834 0.953043i \(-0.402067\pi\)
0.302834 + 0.953043i \(0.402067\pi\)
\(6\) 0 0
\(7\) −7043.99 −1.10886 −0.554431 0.832230i \(-0.687064\pi\)
−0.554431 + 0.832230i \(0.687064\pi\)
\(8\) −22136.7 −1.91077
\(9\) 0 0
\(10\) −33653.8 −1.06423
\(11\) 90103.0 1.85555 0.927774 0.373142i \(-0.121720\pi\)
0.927774 + 0.373142i \(0.121720\pi\)
\(12\) 0 0
\(13\) 68589.0 0.666054 0.333027 0.942917i \(-0.391930\pi\)
0.333027 + 0.942917i \(0.391930\pi\)
\(14\) 280061. 1.94840
\(15\) 0 0
\(16\) 332920. 1.26999
\(17\) 235749. 0.684588 0.342294 0.939593i \(-0.388796\pi\)
0.342294 + 0.939593i \(0.388796\pi\)
\(18\) 0 0
\(19\) −232999. −0.410168 −0.205084 0.978744i \(-0.565747\pi\)
−0.205084 + 0.978744i \(0.565747\pi\)
\(20\) 904660. 1.26430
\(21\) 0 0
\(22\) −3.58240e6 −3.26041
\(23\) 266252. 0.198389 0.0991944 0.995068i \(-0.468373\pi\)
0.0991944 + 0.995068i \(0.468373\pi\)
\(24\) 0 0
\(25\) −1.23665e6 −0.633166
\(26\) −2.72703e6 −1.17033
\(27\) 0 0
\(28\) −7.52842e6 −2.31469
\(29\) −3.06183e6 −0.803877 −0.401938 0.915667i \(-0.631663\pi\)
−0.401938 + 0.915667i \(0.631663\pi\)
\(30\) 0 0
\(31\) 3.59150e6 0.698470 0.349235 0.937035i \(-0.386441\pi\)
0.349235 + 0.937035i \(0.386441\pi\)
\(32\) −1.90255e6 −0.320747
\(33\) 0 0
\(34\) −9.37312e6 −1.20290
\(35\) −5.96236e6 −0.671602
\(36\) 0 0
\(37\) 5.13436e6 0.450380 0.225190 0.974315i \(-0.427700\pi\)
0.225190 + 0.974315i \(0.427700\pi\)
\(38\) 9.26378e6 0.720712
\(39\) 0 0
\(40\) −1.87375e7 −1.15729
\(41\) 4.50206e6 0.248819 0.124410 0.992231i \(-0.460296\pi\)
0.124410 + 0.992231i \(0.460296\pi\)
\(42\) 0 0
\(43\) −3.29912e7 −1.47160 −0.735801 0.677198i \(-0.763194\pi\)
−0.735801 + 0.677198i \(0.763194\pi\)
\(44\) 9.62997e7 3.87336
\(45\) 0 0
\(46\) −1.05859e7 −0.348592
\(47\) −1.24308e7 −0.371586 −0.185793 0.982589i \(-0.559485\pi\)
−0.185793 + 0.982589i \(0.559485\pi\)
\(48\) 0 0
\(49\) 9.26412e6 0.229574
\(50\) 4.91680e7 1.11254
\(51\) 0 0
\(52\) 7.33061e7 1.39035
\(53\) −3.42506e7 −0.596248 −0.298124 0.954527i \(-0.596361\pi\)
−0.298124 + 0.954527i \(0.596361\pi\)
\(54\) 0 0
\(55\) 7.62674e7 1.12385
\(56\) 1.55931e8 2.11878
\(57\) 0 0
\(58\) 1.21735e8 1.41250
\(59\) 4.55616e7 0.489514 0.244757 0.969584i \(-0.421292\pi\)
0.244757 + 0.969584i \(0.421292\pi\)
\(60\) 0 0
\(61\) 6.16460e7 0.570060 0.285030 0.958519i \(-0.407996\pi\)
0.285030 + 0.958519i \(0.407996\pi\)
\(62\) −1.42794e8 −1.22729
\(63\) 0 0
\(64\) −9.48116e7 −0.706401
\(65\) 5.80570e7 0.403408
\(66\) 0 0
\(67\) 5.84484e6 0.0354353 0.0177176 0.999843i \(-0.494360\pi\)
0.0177176 + 0.999843i \(0.494360\pi\)
\(68\) 2.51962e8 1.42904
\(69\) 0 0
\(70\) 2.37057e8 1.18008
\(71\) 2.53018e8 1.18165 0.590825 0.806800i \(-0.298802\pi\)
0.590825 + 0.806800i \(0.298802\pi\)
\(72\) 0 0
\(73\) 3.59593e8 1.48203 0.741017 0.671486i \(-0.234344\pi\)
0.741017 + 0.671486i \(0.234344\pi\)
\(74\) −2.04137e8 −0.791368
\(75\) 0 0
\(76\) −2.49023e8 −0.856205
\(77\) −6.34684e8 −2.05755
\(78\) 0 0
\(79\) 2.88923e8 0.834566 0.417283 0.908777i \(-0.362982\pi\)
0.417283 + 0.908777i \(0.362982\pi\)
\(80\) 2.81799e8 0.769192
\(81\) 0 0
\(82\) −1.78997e8 −0.437204
\(83\) 4.53300e8 1.04842 0.524208 0.851590i \(-0.324361\pi\)
0.524208 + 0.851590i \(0.324361\pi\)
\(84\) 0 0
\(85\) 1.99549e8 0.414633
\(86\) 1.31170e9 2.58577
\(87\) 0 0
\(88\) −1.99458e9 −3.54552
\(89\) 5.93996e8 1.00353 0.501763 0.865005i \(-0.332685\pi\)
0.501763 + 0.865005i \(0.332685\pi\)
\(90\) 0 0
\(91\) −4.83140e8 −0.738562
\(92\) 2.84563e8 0.414126
\(93\) 0 0
\(94\) 4.94236e8 0.652919
\(95\) −1.97221e8 −0.248426
\(96\) 0 0
\(97\) −2.99011e8 −0.342937 −0.171468 0.985190i \(-0.554851\pi\)
−0.171468 + 0.985190i \(0.554851\pi\)
\(98\) −3.68332e8 −0.403387
\(99\) 0 0
\(100\) −1.32170e9 −1.32170
\(101\) 7.87432e6 0.00752951 0.00376476 0.999993i \(-0.498802\pi\)
0.00376476 + 0.999993i \(0.498802\pi\)
\(102\) 0 0
\(103\) −1.82491e9 −1.59762 −0.798809 0.601585i \(-0.794536\pi\)
−0.798809 + 0.601585i \(0.794536\pi\)
\(104\) −1.51833e9 −1.27268
\(105\) 0 0
\(106\) 1.36177e9 1.04768
\(107\) −4.67288e8 −0.344634 −0.172317 0.985042i \(-0.555125\pi\)
−0.172317 + 0.985042i \(0.555125\pi\)
\(108\) 0 0
\(109\) 1.80762e9 1.22656 0.613279 0.789866i \(-0.289850\pi\)
0.613279 + 0.789866i \(0.289850\pi\)
\(110\) −3.03231e9 −1.97473
\(111\) 0 0
\(112\) −2.34508e9 −1.40824
\(113\) −1.03767e9 −0.598695 −0.299347 0.954144i \(-0.596769\pi\)
−0.299347 + 0.954144i \(0.596769\pi\)
\(114\) 0 0
\(115\) 2.25368e8 0.120158
\(116\) −3.27240e9 −1.67805
\(117\) 0 0
\(118\) −1.81148e9 −0.860132
\(119\) −1.66061e9 −0.759113
\(120\) 0 0
\(121\) 5.76061e9 2.44306
\(122\) −2.45098e9 −1.00166
\(123\) 0 0
\(124\) 3.83850e9 1.45802
\(125\) −2.69998e9 −0.989157
\(126\) 0 0
\(127\) 5.65026e9 1.92731 0.963655 0.267150i \(-0.0860818\pi\)
0.963655 + 0.267150i \(0.0860818\pi\)
\(128\) 4.74371e9 1.56197
\(129\) 0 0
\(130\) −2.30828e9 −0.708833
\(131\) 6.48482e9 1.92388 0.961939 0.273266i \(-0.0881039\pi\)
0.961939 + 0.273266i \(0.0881039\pi\)
\(132\) 0 0
\(133\) 1.64124e9 0.454820
\(134\) −2.32385e8 −0.0622638
\(135\) 0 0
\(136\) −5.21870e9 −1.30809
\(137\) 2.59430e9 0.629184 0.314592 0.949227i \(-0.398132\pi\)
0.314592 + 0.949227i \(0.398132\pi\)
\(138\) 0 0
\(139\) 4.38155e9 0.995547 0.497773 0.867307i \(-0.334151\pi\)
0.497773 + 0.867307i \(0.334151\pi\)
\(140\) −6.37241e9 −1.40193
\(141\) 0 0
\(142\) −1.00597e10 −2.07629
\(143\) 6.18008e9 1.23590
\(144\) 0 0
\(145\) −2.59167e9 −0.486883
\(146\) −1.42970e10 −2.60410
\(147\) 0 0
\(148\) 5.48747e9 0.940144
\(149\) 3.76602e9 0.625956 0.312978 0.949760i \(-0.398673\pi\)
0.312978 + 0.949760i \(0.398673\pi\)
\(150\) 0 0
\(151\) 9.21201e9 1.44198 0.720988 0.692948i \(-0.243688\pi\)
0.720988 + 0.692948i \(0.243688\pi\)
\(152\) 5.15782e9 0.783737
\(153\) 0 0
\(154\) 2.52344e10 3.61534
\(155\) 3.04001e9 0.423041
\(156\) 0 0
\(157\) −3.48252e9 −0.457452 −0.228726 0.973491i \(-0.573456\pi\)
−0.228726 + 0.973491i \(0.573456\pi\)
\(158\) −1.14873e10 −1.46643
\(159\) 0 0
\(160\) −1.61041e9 −0.194266
\(161\) −1.87547e9 −0.219986
\(162\) 0 0
\(163\) −6.34728e9 −0.704277 −0.352139 0.935948i \(-0.614545\pi\)
−0.352139 + 0.935948i \(0.614545\pi\)
\(164\) 4.81168e9 0.519397
\(165\) 0 0
\(166\) −1.80227e10 −1.84219
\(167\) −6.81454e9 −0.677973 −0.338986 0.940791i \(-0.610084\pi\)
−0.338986 + 0.940791i \(0.610084\pi\)
\(168\) 0 0
\(169\) −5.90005e9 −0.556372
\(170\) −7.93385e9 −0.728557
\(171\) 0 0
\(172\) −3.52601e10 −3.07189
\(173\) −9.90370e9 −0.840601 −0.420300 0.907385i \(-0.638075\pi\)
−0.420300 + 0.907385i \(0.638075\pi\)
\(174\) 0 0
\(175\) 8.71096e9 0.702094
\(176\) 2.99971e10 2.35653
\(177\) 0 0
\(178\) −2.36167e10 −1.76331
\(179\) −1.34679e9 −0.0980532 −0.0490266 0.998797i \(-0.515612\pi\)
−0.0490266 + 0.998797i \(0.515612\pi\)
\(180\) 0 0
\(181\) −1.53579e10 −1.06360 −0.531800 0.846870i \(-0.678484\pi\)
−0.531800 + 0.846870i \(0.678484\pi\)
\(182\) 1.92091e10 1.29774
\(183\) 0 0
\(184\) −5.89394e9 −0.379075
\(185\) 4.34597e9 0.272781
\(186\) 0 0
\(187\) 2.12417e10 1.27029
\(188\) −1.32857e10 −0.775667
\(189\) 0 0
\(190\) 7.84130e9 0.436512
\(191\) 2.78626e10 1.51486 0.757429 0.652918i \(-0.226455\pi\)
0.757429 + 0.652918i \(0.226455\pi\)
\(192\) 0 0
\(193\) −1.47753e10 −0.766528 −0.383264 0.923639i \(-0.625200\pi\)
−0.383264 + 0.923639i \(0.625200\pi\)
\(194\) 1.18883e10 0.602578
\(195\) 0 0
\(196\) 9.90125e9 0.479223
\(197\) 2.08977e10 0.988554 0.494277 0.869304i \(-0.335433\pi\)
0.494277 + 0.869304i \(0.335433\pi\)
\(198\) 0 0
\(199\) 2.77242e10 1.25320 0.626600 0.779341i \(-0.284446\pi\)
0.626600 + 0.779341i \(0.284446\pi\)
\(200\) 2.73754e10 1.20983
\(201\) 0 0
\(202\) −3.13075e8 −0.0132302
\(203\) 2.15675e10 0.891388
\(204\) 0 0
\(205\) 3.81075e9 0.150702
\(206\) 7.25563e10 2.80720
\(207\) 0 0
\(208\) 2.28347e10 0.845881
\(209\) −2.09939e10 −0.761087
\(210\) 0 0
\(211\) −1.09165e10 −0.379152 −0.189576 0.981866i \(-0.560711\pi\)
−0.189576 + 0.981866i \(0.560711\pi\)
\(212\) −3.66061e10 −1.24464
\(213\) 0 0
\(214\) 1.85789e10 0.605561
\(215\) −2.79253e10 −0.891302
\(216\) 0 0
\(217\) −2.52985e10 −0.774507
\(218\) −7.18691e10 −2.15520
\(219\) 0 0
\(220\) 8.15126e10 2.34597
\(221\) 1.61698e10 0.455972
\(222\) 0 0
\(223\) −5.60254e10 −1.51709 −0.758547 0.651618i \(-0.774091\pi\)
−0.758547 + 0.651618i \(0.774091\pi\)
\(224\) 1.34016e10 0.355663
\(225\) 0 0
\(226\) 4.12566e10 1.05197
\(227\) 2.56209e10 0.640439 0.320219 0.947343i \(-0.396243\pi\)
0.320219 + 0.947343i \(0.396243\pi\)
\(228\) 0 0
\(229\) 8.09411e9 0.194495 0.0972477 0.995260i \(-0.468996\pi\)
0.0972477 + 0.995260i \(0.468996\pi\)
\(230\) −8.96039e9 −0.211131
\(231\) 0 0
\(232\) 6.77787e10 1.53602
\(233\) 2.40857e10 0.535374 0.267687 0.963506i \(-0.413741\pi\)
0.267687 + 0.963506i \(0.413741\pi\)
\(234\) 0 0
\(235\) −1.05220e10 −0.225058
\(236\) 4.86950e10 1.02183
\(237\) 0 0
\(238\) 6.60241e10 1.33385
\(239\) −3.66341e10 −0.726264 −0.363132 0.931738i \(-0.618293\pi\)
−0.363132 + 0.931738i \(0.618293\pi\)
\(240\) 0 0
\(241\) −8.26453e10 −1.57813 −0.789063 0.614312i \(-0.789434\pi\)
−0.789063 + 0.614312i \(0.789434\pi\)
\(242\) −2.29036e11 −4.29273
\(243\) 0 0
\(244\) 6.58855e10 1.18997
\(245\) 7.84159e9 0.139045
\(246\) 0 0
\(247\) −1.59811e10 −0.273194
\(248\) −7.95039e10 −1.33461
\(249\) 0 0
\(250\) 1.07348e11 1.73806
\(251\) 8.40180e10 1.33611 0.668053 0.744114i \(-0.267128\pi\)
0.668053 + 0.744114i \(0.267128\pi\)
\(252\) 0 0
\(253\) 2.39901e10 0.368120
\(254\) −2.24648e11 −3.38650
\(255\) 0 0
\(256\) −1.40061e11 −2.03816
\(257\) 1.23973e11 1.77267 0.886337 0.463041i \(-0.153242\pi\)
0.886337 + 0.463041i \(0.153242\pi\)
\(258\) 0 0
\(259\) −3.61664e10 −0.499409
\(260\) 6.20497e10 0.842092
\(261\) 0 0
\(262\) −2.57830e11 −3.38047
\(263\) 1.07755e11 1.38879 0.694393 0.719596i \(-0.255673\pi\)
0.694393 + 0.719596i \(0.255673\pi\)
\(264\) 0 0
\(265\) −2.89913e10 −0.361128
\(266\) −6.52539e10 −0.799170
\(267\) 0 0
\(268\) 6.24681e9 0.0739693
\(269\) 5.47369e10 0.637375 0.318688 0.947860i \(-0.396758\pi\)
0.318688 + 0.947860i \(0.396758\pi\)
\(270\) 0 0
\(271\) 7.34345e9 0.0827063 0.0413531 0.999145i \(-0.486833\pi\)
0.0413531 + 0.999145i \(0.486833\pi\)
\(272\) 7.84855e10 0.869419
\(273\) 0 0
\(274\) −1.03147e11 −1.10555
\(275\) −1.11426e11 −1.17487
\(276\) 0 0
\(277\) 7.60255e10 0.775890 0.387945 0.921682i \(-0.373185\pi\)
0.387945 + 0.921682i \(0.373185\pi\)
\(278\) −1.74206e11 −1.74929
\(279\) 0 0
\(280\) 1.31987e11 1.28328
\(281\) −2.28385e10 −0.218519 −0.109259 0.994013i \(-0.534848\pi\)
−0.109259 + 0.994013i \(0.534848\pi\)
\(282\) 0 0
\(283\) −1.98438e11 −1.83902 −0.919511 0.393064i \(-0.871415\pi\)
−0.919511 + 0.393064i \(0.871415\pi\)
\(284\) 2.70419e11 2.46663
\(285\) 0 0
\(286\) −2.45713e11 −2.17161
\(287\) −3.17124e10 −0.275906
\(288\) 0 0
\(289\) −6.30104e10 −0.531340
\(290\) 1.03042e11 0.855508
\(291\) 0 0
\(292\) 3.84323e11 3.09367
\(293\) −4.15371e10 −0.329254 −0.164627 0.986356i \(-0.552642\pi\)
−0.164627 + 0.986356i \(0.552642\pi\)
\(294\) 0 0
\(295\) 3.85655e10 0.296483
\(296\) −1.13658e11 −0.860571
\(297\) 0 0
\(298\) −1.49733e11 −1.09988
\(299\) 1.82619e10 0.132138
\(300\) 0 0
\(301\) 2.32390e11 1.63180
\(302\) −3.66260e11 −2.53371
\(303\) 0 0
\(304\) −7.75699e10 −0.520909
\(305\) 5.21800e10 0.345267
\(306\) 0 0
\(307\) 1.45036e10 0.0931864 0.0465932 0.998914i \(-0.485164\pi\)
0.0465932 + 0.998914i \(0.485164\pi\)
\(308\) −6.78334e11 −4.29502
\(309\) 0 0
\(310\) −1.20868e11 −0.743331
\(311\) 2.96131e10 0.179499 0.0897494 0.995964i \(-0.471393\pi\)
0.0897494 + 0.995964i \(0.471393\pi\)
\(312\) 0 0
\(313\) −9.26854e10 −0.545836 −0.272918 0.962037i \(-0.587989\pi\)
−0.272918 + 0.962037i \(0.587989\pi\)
\(314\) 1.38461e11 0.803795
\(315\) 0 0
\(316\) 3.08793e11 1.74211
\(317\) 1.36748e11 0.760594 0.380297 0.924864i \(-0.375822\pi\)
0.380297 + 0.924864i \(0.375822\pi\)
\(318\) 0 0
\(319\) −2.75880e11 −1.49163
\(320\) −8.02529e10 −0.427845
\(321\) 0 0
\(322\) 7.45668e10 0.386540
\(323\) −5.49291e10 −0.280796
\(324\) 0 0
\(325\) −8.48208e10 −0.421723
\(326\) 2.52361e11 1.23749
\(327\) 0 0
\(328\) −9.96608e10 −0.475436
\(329\) 8.75626e10 0.412038
\(330\) 0 0
\(331\) 3.13607e11 1.43602 0.718009 0.696034i \(-0.245054\pi\)
0.718009 + 0.696034i \(0.245054\pi\)
\(332\) 4.84475e11 2.18852
\(333\) 0 0
\(334\) 2.70939e11 1.19128
\(335\) 4.94735e9 0.0214620
\(336\) 0 0
\(337\) 2.89098e11 1.22099 0.610493 0.792022i \(-0.290971\pi\)
0.610493 + 0.792022i \(0.290971\pi\)
\(338\) 2.34580e11 0.977609
\(339\) 0 0
\(340\) 2.13272e11 0.865524
\(341\) 3.23605e11 1.29605
\(342\) 0 0
\(343\) 2.18994e11 0.854296
\(344\) 7.30317e11 2.81189
\(345\) 0 0
\(346\) 3.93760e11 1.47703
\(347\) 2.24860e11 0.832585 0.416293 0.909231i \(-0.363329\pi\)
0.416293 + 0.909231i \(0.363329\pi\)
\(348\) 0 0
\(349\) −8.79918e10 −0.317488 −0.158744 0.987320i \(-0.550744\pi\)
−0.158744 + 0.987320i \(0.550744\pi\)
\(350\) −3.46339e11 −1.23366
\(351\) 0 0
\(352\) −1.71426e11 −0.595161
\(353\) −3.82103e11 −1.30977 −0.654884 0.755730i \(-0.727282\pi\)
−0.654884 + 0.755730i \(0.727282\pi\)
\(354\) 0 0
\(355\) 2.14166e11 0.715688
\(356\) 6.34847e11 2.09481
\(357\) 0 0
\(358\) 5.35470e10 0.172291
\(359\) −4.78348e11 −1.51991 −0.759957 0.649973i \(-0.774780\pi\)
−0.759957 + 0.649973i \(0.774780\pi\)
\(360\) 0 0
\(361\) −2.68399e11 −0.831762
\(362\) 6.10614e11 1.86887
\(363\) 0 0
\(364\) −5.16367e11 −1.54171
\(365\) 3.04376e11 0.897621
\(366\) 0 0
\(367\) 2.26517e11 0.651783 0.325892 0.945407i \(-0.394336\pi\)
0.325892 + 0.945407i \(0.394336\pi\)
\(368\) 8.86405e10 0.251952
\(369\) 0 0
\(370\) −1.72791e11 −0.479307
\(371\) 2.41261e11 0.661156
\(372\) 0 0
\(373\) 4.77159e11 1.27636 0.638180 0.769888i \(-0.279688\pi\)
0.638180 + 0.769888i \(0.279688\pi\)
\(374\) −8.44546e11 −2.23204
\(375\) 0 0
\(376\) 2.75178e11 0.710015
\(377\) −2.10008e11 −0.535426
\(378\) 0 0
\(379\) −5.69565e10 −0.141797 −0.0708985 0.997484i \(-0.522587\pi\)
−0.0708985 + 0.997484i \(0.522587\pi\)
\(380\) −2.10784e11 −0.518576
\(381\) 0 0
\(382\) −1.10779e12 −2.66178
\(383\) 2.23806e10 0.0531469 0.0265734 0.999647i \(-0.491540\pi\)
0.0265734 + 0.999647i \(0.491540\pi\)
\(384\) 0 0
\(385\) −5.37227e11 −1.24619
\(386\) 5.87449e11 1.34688
\(387\) 0 0
\(388\) −3.19575e11 −0.715862
\(389\) −4.22707e11 −0.935980 −0.467990 0.883734i \(-0.655022\pi\)
−0.467990 + 0.883734i \(0.655022\pi\)
\(390\) 0 0
\(391\) 6.27685e10 0.135815
\(392\) −2.05077e11 −0.438662
\(393\) 0 0
\(394\) −8.30870e11 −1.73700
\(395\) 2.44558e11 0.505470
\(396\) 0 0
\(397\) 5.15461e11 1.04145 0.520725 0.853724i \(-0.325662\pi\)
0.520725 + 0.853724i \(0.325662\pi\)
\(398\) −1.10229e12 −2.20202
\(399\) 0 0
\(400\) −4.11706e11 −0.804114
\(401\) −6.41659e9 −0.0123924 −0.00619619 0.999981i \(-0.501972\pi\)
−0.00619619 + 0.999981i \(0.501972\pi\)
\(402\) 0 0
\(403\) 2.46337e11 0.465219
\(404\) 8.41586e9 0.0157175
\(405\) 0 0
\(406\) −8.57499e11 −1.56627
\(407\) 4.62622e11 0.835702
\(408\) 0 0
\(409\) −3.48484e11 −0.615783 −0.307891 0.951421i \(-0.599623\pi\)
−0.307891 + 0.951421i \(0.599623\pi\)
\(410\) −1.51512e11 −0.264800
\(411\) 0 0
\(412\) −1.95041e12 −3.33494
\(413\) −3.20935e11 −0.542803
\(414\) 0 0
\(415\) 3.83694e11 0.634993
\(416\) −1.30494e11 −0.213635
\(417\) 0 0
\(418\) 8.34694e11 1.33732
\(419\) −3.79268e11 −0.601150 −0.300575 0.953758i \(-0.597179\pi\)
−0.300575 + 0.953758i \(0.597179\pi\)
\(420\) 0 0
\(421\) 1.14436e12 1.77538 0.887690 0.460441i \(-0.152309\pi\)
0.887690 + 0.460441i \(0.152309\pi\)
\(422\) 4.34030e11 0.666213
\(423\) 0 0
\(424\) 7.58196e11 1.13929
\(425\) −2.91539e11 −0.433458
\(426\) 0 0
\(427\) −4.34233e11 −0.632117
\(428\) −4.99425e11 −0.719405
\(429\) 0 0
\(430\) 1.11028e12 1.56612
\(431\) 3.08594e11 0.430764 0.215382 0.976530i \(-0.430900\pi\)
0.215382 + 0.976530i \(0.430900\pi\)
\(432\) 0 0
\(433\) −3.53112e11 −0.482744 −0.241372 0.970433i \(-0.577597\pi\)
−0.241372 + 0.970433i \(0.577597\pi\)
\(434\) 1.00584e12 1.36090
\(435\) 0 0
\(436\) 1.93194e12 2.56038
\(437\) −6.20363e10 −0.0813728
\(438\) 0 0
\(439\) −5.94705e11 −0.764207 −0.382104 0.924119i \(-0.624800\pi\)
−0.382104 + 0.924119i \(0.624800\pi\)
\(440\) −1.68831e12 −2.14741
\(441\) 0 0
\(442\) −6.42893e11 −0.801195
\(443\) 1.90700e11 0.235252 0.117626 0.993058i \(-0.462472\pi\)
0.117626 + 0.993058i \(0.462472\pi\)
\(444\) 0 0
\(445\) 5.02786e11 0.607804
\(446\) 2.22751e12 2.66571
\(447\) 0 0
\(448\) 6.67851e11 0.783301
\(449\) −2.55836e11 −0.297066 −0.148533 0.988907i \(-0.547455\pi\)
−0.148533 + 0.988907i \(0.547455\pi\)
\(450\) 0 0
\(451\) 4.05649e11 0.461696
\(452\) −1.10903e12 −1.24974
\(453\) 0 0
\(454\) −1.01866e12 −1.12532
\(455\) −4.08952e11 −0.447323
\(456\) 0 0
\(457\) 4.04694e11 0.434014 0.217007 0.976170i \(-0.430371\pi\)
0.217007 + 0.976170i \(0.430371\pi\)
\(458\) −3.21813e11 −0.341750
\(459\) 0 0
\(460\) 2.40867e11 0.250823
\(461\) −5.66036e11 −0.583700 −0.291850 0.956464i \(-0.594271\pi\)
−0.291850 + 0.956464i \(0.594271\pi\)
\(462\) 0 0
\(463\) −4.61864e11 −0.467089 −0.233544 0.972346i \(-0.575032\pi\)
−0.233544 + 0.972346i \(0.575032\pi\)
\(464\) −1.01934e12 −1.02091
\(465\) 0 0
\(466\) −9.57621e11 −0.940713
\(467\) 1.14378e12 1.11280 0.556398 0.830916i \(-0.312183\pi\)
0.556398 + 0.830916i \(0.312183\pi\)
\(468\) 0 0
\(469\) −4.11710e10 −0.0392928
\(470\) 4.18345e11 0.395452
\(471\) 0 0
\(472\) −1.00858e12 −0.935348
\(473\) −2.97261e12 −2.73063
\(474\) 0 0
\(475\) 2.88138e11 0.259705
\(476\) −1.77482e12 −1.58461
\(477\) 0 0
\(478\) 1.45653e12 1.27613
\(479\) 1.43929e12 1.24922 0.624610 0.780936i \(-0.285258\pi\)
0.624610 + 0.780936i \(0.285258\pi\)
\(480\) 0 0
\(481\) 3.52161e11 0.299977
\(482\) 3.28589e12 2.77295
\(483\) 0 0
\(484\) 6.15678e12 5.09976
\(485\) −2.53097e11 −0.207706
\(486\) 0 0
\(487\) 3.07201e11 0.247481 0.123740 0.992315i \(-0.460511\pi\)
0.123740 + 0.992315i \(0.460511\pi\)
\(488\) −1.36464e12 −1.08925
\(489\) 0 0
\(490\) −3.11773e11 −0.244319
\(491\) −1.32999e12 −1.03272 −0.516358 0.856373i \(-0.672713\pi\)
−0.516358 + 0.856373i \(0.672713\pi\)
\(492\) 0 0
\(493\) −7.21822e11 −0.550324
\(494\) 6.35393e11 0.480033
\(495\) 0 0
\(496\) 1.19568e12 0.887050
\(497\) −1.78226e12 −1.31029
\(498\) 0 0
\(499\) −2.71582e11 −0.196087 −0.0980433 0.995182i \(-0.531258\pi\)
−0.0980433 + 0.995182i \(0.531258\pi\)
\(500\) −2.88566e12 −2.06481
\(501\) 0 0
\(502\) −3.34047e12 −2.34769
\(503\) −2.43504e12 −1.69610 −0.848049 0.529917i \(-0.822223\pi\)
−0.848049 + 0.529917i \(0.822223\pi\)
\(504\) 0 0
\(505\) 6.66519e9 0.00456039
\(506\) −9.53820e11 −0.646829
\(507\) 0 0
\(508\) 6.03884e12 4.02316
\(509\) 2.49952e12 1.65054 0.825272 0.564736i \(-0.191022\pi\)
0.825272 + 0.564736i \(0.191022\pi\)
\(510\) 0 0
\(511\) −2.53297e12 −1.64337
\(512\) 3.13991e12 2.01931
\(513\) 0 0
\(514\) −4.92904e12 −3.11479
\(515\) −1.54469e12 −0.967626
\(516\) 0 0
\(517\) −1.12006e12 −0.689496
\(518\) 1.43794e12 0.877518
\(519\) 0 0
\(520\) −1.28519e12 −0.770819
\(521\) −1.97181e11 −0.117245 −0.0586225 0.998280i \(-0.518671\pi\)
−0.0586225 + 0.998280i \(0.518671\pi\)
\(522\) 0 0
\(523\) −1.84314e12 −1.07721 −0.538606 0.842558i \(-0.681049\pi\)
−0.538606 + 0.842558i \(0.681049\pi\)
\(524\) 6.93080e12 4.01599
\(525\) 0 0
\(526\) −4.28421e12 −2.44025
\(527\) 8.46691e11 0.478164
\(528\) 0 0
\(529\) −1.73026e12 −0.960642
\(530\) 1.15266e12 0.634543
\(531\) 0 0
\(532\) 1.75411e12 0.949412
\(533\) 3.08792e11 0.165727
\(534\) 0 0
\(535\) −3.95535e11 −0.208734
\(536\) −1.29385e11 −0.0677086
\(537\) 0 0
\(538\) −2.17628e12 −1.11994
\(539\) 8.34726e11 0.425985
\(540\) 0 0
\(541\) 1.54291e12 0.774378 0.387189 0.922000i \(-0.373446\pi\)
0.387189 + 0.922000i \(0.373446\pi\)
\(542\) −2.91968e11 −0.145324
\(543\) 0 0
\(544\) −4.48524e11 −0.219579
\(545\) 1.53006e12 0.742887
\(546\) 0 0
\(547\) 1.05810e12 0.505342 0.252671 0.967552i \(-0.418691\pi\)
0.252671 + 0.967552i \(0.418691\pi\)
\(548\) 2.77272e12 1.31339
\(549\) 0 0
\(550\) 4.43019e12 2.06438
\(551\) 7.13401e11 0.329725
\(552\) 0 0
\(553\) −2.03517e12 −0.925418
\(554\) −3.02269e12 −1.36333
\(555\) 0 0
\(556\) 4.68289e12 2.07815
\(557\) −3.41690e11 −0.150413 −0.0752063 0.997168i \(-0.523962\pi\)
−0.0752063 + 0.997168i \(0.523962\pi\)
\(558\) 0 0
\(559\) −2.26283e12 −0.980166
\(560\) −1.98499e12 −0.852927
\(561\) 0 0
\(562\) 9.08034e11 0.383962
\(563\) 2.39315e12 1.00388 0.501941 0.864902i \(-0.332619\pi\)
0.501941 + 0.864902i \(0.332619\pi\)
\(564\) 0 0
\(565\) −8.78331e11 −0.362610
\(566\) 7.88970e12 3.23137
\(567\) 0 0
\(568\) −5.60099e12 −2.25786
\(569\) 1.33349e12 0.533317 0.266659 0.963791i \(-0.414080\pi\)
0.266659 + 0.963791i \(0.414080\pi\)
\(570\) 0 0
\(571\) 1.56871e12 0.617561 0.308781 0.951133i \(-0.400079\pi\)
0.308781 + 0.951133i \(0.400079\pi\)
\(572\) 6.60510e12 2.57987
\(573\) 0 0
\(574\) 1.26085e12 0.484798
\(575\) −3.29261e11 −0.125613
\(576\) 0 0
\(577\) −1.18747e12 −0.445996 −0.222998 0.974819i \(-0.571584\pi\)
−0.222998 + 0.974819i \(0.571584\pi\)
\(578\) 2.50523e12 0.933624
\(579\) 0 0
\(580\) −2.76991e12 −1.01634
\(581\) −3.19304e12 −1.16255
\(582\) 0 0
\(583\) −3.08608e12 −1.10637
\(584\) −7.96020e12 −2.83182
\(585\) 0 0
\(586\) 1.65147e12 0.578537
\(587\) −5.57957e12 −1.93968 −0.969839 0.243746i \(-0.921624\pi\)
−0.969839 + 0.243746i \(0.921624\pi\)
\(588\) 0 0
\(589\) −8.36814e11 −0.286490
\(590\) −1.53332e12 −0.520954
\(591\) 0 0
\(592\) 1.70933e12 0.571977
\(593\) −3.44549e12 −1.14421 −0.572105 0.820181i \(-0.693873\pi\)
−0.572105 + 0.820181i \(0.693873\pi\)
\(594\) 0 0
\(595\) −1.40562e12 −0.459771
\(596\) 4.02502e12 1.30665
\(597\) 0 0
\(598\) −7.26075e11 −0.232181
\(599\) −1.84366e12 −0.585142 −0.292571 0.956244i \(-0.594511\pi\)
−0.292571 + 0.956244i \(0.594511\pi\)
\(600\) 0 0
\(601\) 5.04168e12 1.57630 0.788152 0.615481i \(-0.211038\pi\)
0.788152 + 0.615481i \(0.211038\pi\)
\(602\) −9.23956e12 −2.86726
\(603\) 0 0
\(604\) 9.84554e12 3.01005
\(605\) 4.87605e12 1.47968
\(606\) 0 0
\(607\) 9.82998e11 0.293903 0.146951 0.989144i \(-0.453054\pi\)
0.146951 + 0.989144i \(0.453054\pi\)
\(608\) 4.43292e11 0.131560
\(609\) 0 0
\(610\) −2.07462e12 −0.606673
\(611\) −8.52618e11 −0.247497
\(612\) 0 0
\(613\) −5.27728e12 −1.50952 −0.754758 0.656003i \(-0.772246\pi\)
−0.754758 + 0.656003i \(0.772246\pi\)
\(614\) −5.76647e11 −0.163739
\(615\) 0 0
\(616\) 1.40498e13 3.93149
\(617\) −5.00458e12 −1.39022 −0.695111 0.718902i \(-0.744645\pi\)
−0.695111 + 0.718902i \(0.744645\pi\)
\(618\) 0 0
\(619\) 5.24307e12 1.43542 0.717708 0.696344i \(-0.245191\pi\)
0.717708 + 0.696344i \(0.245191\pi\)
\(620\) 3.24908e12 0.883076
\(621\) 0 0
\(622\) −1.17738e12 −0.315400
\(623\) −4.18410e12 −1.11277
\(624\) 0 0
\(625\) 1.29950e11 0.0340655
\(626\) 3.68507e12 0.959095
\(627\) 0 0
\(628\) −3.72203e12 −0.954907
\(629\) 1.21042e12 0.308324
\(630\) 0 0
\(631\) 4.84088e12 1.21560 0.607802 0.794089i \(-0.292052\pi\)
0.607802 + 0.794089i \(0.292052\pi\)
\(632\) −6.39581e12 −1.59466
\(633\) 0 0
\(634\) −5.43694e12 −1.33645
\(635\) 4.78264e12 1.16731
\(636\) 0 0
\(637\) 6.35417e11 0.152908
\(638\) 1.09687e13 2.62097
\(639\) 0 0
\(640\) 4.01530e12 0.946037
\(641\) −2.44216e12 −0.571364 −0.285682 0.958325i \(-0.592220\pi\)
−0.285682 + 0.958325i \(0.592220\pi\)
\(642\) 0 0
\(643\) 5.59949e12 1.29181 0.645906 0.763417i \(-0.276480\pi\)
0.645906 + 0.763417i \(0.276480\pi\)
\(644\) −2.00446e12 −0.459209
\(645\) 0 0
\(646\) 2.18392e12 0.493391
\(647\) 7.09599e12 1.59200 0.796002 0.605295i \(-0.206945\pi\)
0.796002 + 0.605295i \(0.206945\pi\)
\(648\) 0 0
\(649\) 4.10524e12 0.908317
\(650\) 3.37238e12 0.741015
\(651\) 0 0
\(652\) −6.78380e12 −1.47014
\(653\) 1.97712e11 0.0425523 0.0212762 0.999774i \(-0.493227\pi\)
0.0212762 + 0.999774i \(0.493227\pi\)
\(654\) 0 0
\(655\) 5.48906e12 1.16523
\(656\) 1.49883e12 0.315998
\(657\) 0 0
\(658\) −3.48139e12 −0.723997
\(659\) 4.95568e12 1.02357 0.511786 0.859113i \(-0.328984\pi\)
0.511786 + 0.859113i \(0.328984\pi\)
\(660\) 0 0
\(661\) −3.62405e12 −0.738393 −0.369196 0.929351i \(-0.620367\pi\)
−0.369196 + 0.929351i \(0.620367\pi\)
\(662\) −1.24687e13 −2.52325
\(663\) 0 0
\(664\) −1.00346e13 −2.00328
\(665\) 1.38922e12 0.275470
\(666\) 0 0
\(667\) −8.15216e11 −0.159480
\(668\) −7.28319e12 −1.41523
\(669\) 0 0
\(670\) −1.96701e11 −0.0377112
\(671\) 5.55449e12 1.05777
\(672\) 0 0
\(673\) −3.33531e12 −0.626713 −0.313356 0.949636i \(-0.601453\pi\)
−0.313356 + 0.949636i \(0.601453\pi\)
\(674\) −1.14942e13 −2.14541
\(675\) 0 0
\(676\) −6.30581e12 −1.16140
\(677\) 4.18668e12 0.765986 0.382993 0.923751i \(-0.374893\pi\)
0.382993 + 0.923751i \(0.374893\pi\)
\(678\) 0 0
\(679\) 2.10623e12 0.380269
\(680\) −4.41735e12 −0.792268
\(681\) 0 0
\(682\) −1.28662e13 −2.27730
\(683\) −3.28484e12 −0.577591 −0.288796 0.957391i \(-0.593255\pi\)
−0.288796 + 0.957391i \(0.593255\pi\)
\(684\) 0 0
\(685\) 2.19594e12 0.381077
\(686\) −8.70696e12 −1.50110
\(687\) 0 0
\(688\) −1.09834e13 −1.86892
\(689\) −2.34922e12 −0.397133
\(690\) 0 0
\(691\) −2.69533e12 −0.449738 −0.224869 0.974389i \(-0.572195\pi\)
−0.224869 + 0.974389i \(0.572195\pi\)
\(692\) −1.05848e13 −1.75471
\(693\) 0 0
\(694\) −8.94018e12 −1.46295
\(695\) 3.70875e12 0.602971
\(696\) 0 0
\(697\) 1.06135e12 0.170339
\(698\) 3.49846e12 0.557863
\(699\) 0 0
\(700\) 9.31004e12 1.46558
\(701\) −8.26238e12 −1.29233 −0.646166 0.763197i \(-0.723628\pi\)
−0.646166 + 0.763197i \(0.723628\pi\)
\(702\) 0 0
\(703\) −1.19630e12 −0.184732
\(704\) −8.54281e12 −1.31076
\(705\) 0 0
\(706\) 1.51920e13 2.30141
\(707\) −5.54666e10 −0.00834919
\(708\) 0 0
\(709\) −7.89394e12 −1.17324 −0.586619 0.809863i \(-0.699541\pi\)
−0.586619 + 0.809863i \(0.699541\pi\)
\(710\) −8.51503e12 −1.25754
\(711\) 0 0
\(712\) −1.31491e13 −1.91751
\(713\) 9.56242e11 0.138569
\(714\) 0 0
\(715\) 5.23111e12 0.748543
\(716\) −1.43942e12 −0.204681
\(717\) 0 0
\(718\) 1.90186e13 2.67066
\(719\) 9.37950e12 1.30888 0.654440 0.756114i \(-0.272904\pi\)
0.654440 + 0.756114i \(0.272904\pi\)
\(720\) 0 0
\(721\) 1.28546e13 1.77154
\(722\) 1.06713e13 1.46150
\(723\) 0 0
\(724\) −1.64141e13 −2.22021
\(725\) 3.78642e12 0.508988
\(726\) 0 0
\(727\) 3.79110e11 0.0503339 0.0251670 0.999683i \(-0.491988\pi\)
0.0251670 + 0.999683i \(0.491988\pi\)
\(728\) 1.06951e13 1.41122
\(729\) 0 0
\(730\) −1.21017e13 −1.57722
\(731\) −7.77763e12 −1.00744
\(732\) 0 0
\(733\) −8.09870e12 −1.03621 −0.518104 0.855317i \(-0.673362\pi\)
−0.518104 + 0.855317i \(0.673362\pi\)
\(734\) −9.00607e12 −1.14526
\(735\) 0 0
\(736\) −5.06558e11 −0.0636325
\(737\) 5.26638e11 0.0657519
\(738\) 0 0
\(739\) 5.44252e12 0.671274 0.335637 0.941991i \(-0.391048\pi\)
0.335637 + 0.941991i \(0.391048\pi\)
\(740\) 4.64485e12 0.569415
\(741\) 0 0
\(742\) −9.59227e12 −1.16173
\(743\) 1.03123e13 1.24138 0.620691 0.784056i \(-0.286852\pi\)
0.620691 + 0.784056i \(0.286852\pi\)
\(744\) 0 0
\(745\) 3.18773e12 0.379122
\(746\) −1.89713e13 −2.24271
\(747\) 0 0
\(748\) 2.27025e13 2.65165
\(749\) 3.29157e12 0.382151
\(750\) 0 0
\(751\) −2.63156e12 −0.301880 −0.150940 0.988543i \(-0.548230\pi\)
−0.150940 + 0.988543i \(0.548230\pi\)
\(752\) −4.13847e12 −0.471910
\(753\) 0 0
\(754\) 8.34968e12 0.940803
\(755\) 7.79747e12 0.873359
\(756\) 0 0
\(757\) −4.56786e12 −0.505570 −0.252785 0.967523i \(-0.581346\pi\)
−0.252785 + 0.967523i \(0.581346\pi\)
\(758\) 2.26453e12 0.249153
\(759\) 0 0
\(760\) 4.36582e12 0.474684
\(761\) −5.48565e12 −0.592921 −0.296461 0.955045i \(-0.595806\pi\)
−0.296461 + 0.955045i \(0.595806\pi\)
\(762\) 0 0
\(763\) −1.27329e13 −1.36008
\(764\) 2.97788e13 3.16219
\(765\) 0 0
\(766\) −8.89830e11 −0.0933851
\(767\) 3.12503e12 0.326043
\(768\) 0 0
\(769\) 9.09600e12 0.937955 0.468977 0.883210i \(-0.344623\pi\)
0.468977 + 0.883210i \(0.344623\pi\)
\(770\) 2.13596e13 2.18970
\(771\) 0 0
\(772\) −1.57914e13 −1.60009
\(773\) 4.56540e12 0.459908 0.229954 0.973202i \(-0.426142\pi\)
0.229954 + 0.973202i \(0.426142\pi\)
\(774\) 0 0
\(775\) −4.44143e12 −0.442248
\(776\) 6.61911e12 0.655272
\(777\) 0 0
\(778\) 1.68064e13 1.64462
\(779\) −1.04897e12 −0.102058
\(780\) 0 0
\(781\) 2.27977e13 2.19261
\(782\) −2.49561e12 −0.238642
\(783\) 0 0
\(784\) 3.08421e12 0.291556
\(785\) −2.94777e12 −0.277064
\(786\) 0 0
\(787\) 2.93316e12 0.272552 0.136276 0.990671i \(-0.456487\pi\)
0.136276 + 0.990671i \(0.456487\pi\)
\(788\) 2.23349e13 2.06356
\(789\) 0 0
\(790\) −9.72337e12 −0.888168
\(791\) 7.30932e12 0.663870
\(792\) 0 0
\(793\) 4.22824e12 0.379691
\(794\) −2.04942e13 −1.82995
\(795\) 0 0
\(796\) 2.96309e13 2.61599
\(797\) −1.70674e13 −1.49832 −0.749162 0.662387i \(-0.769543\pi\)
−0.749162 + 0.662387i \(0.769543\pi\)
\(798\) 0 0
\(799\) −2.93055e12 −0.254383
\(800\) 2.35280e12 0.203086
\(801\) 0 0
\(802\) 2.55117e11 0.0217748
\(803\) 3.24004e13 2.74999
\(804\) 0 0
\(805\) −1.58749e12 −0.133238
\(806\) −9.79411e12 −0.817443
\(807\) 0 0
\(808\) −1.74311e11 −0.0143872
\(809\) −1.70485e13 −1.39932 −0.699662 0.714474i \(-0.746666\pi\)
−0.699662 + 0.714474i \(0.746666\pi\)
\(810\) 0 0
\(811\) 1.00699e13 0.817390 0.408695 0.912671i \(-0.365984\pi\)
0.408695 + 0.912671i \(0.365984\pi\)
\(812\) 2.30507e13 1.86073
\(813\) 0 0
\(814\) −1.83933e13 −1.46842
\(815\) −5.37264e12 −0.426558
\(816\) 0 0
\(817\) 7.68691e12 0.603604
\(818\) 1.38553e13 1.08200
\(819\) 0 0
\(820\) 4.07283e12 0.314582
\(821\) −1.27721e13 −0.981110 −0.490555 0.871410i \(-0.663206\pi\)
−0.490555 + 0.871410i \(0.663206\pi\)
\(822\) 0 0
\(823\) 8.68293e12 0.659731 0.329865 0.944028i \(-0.392997\pi\)
0.329865 + 0.944028i \(0.392997\pi\)
\(824\) 4.03974e13 3.05268
\(825\) 0 0
\(826\) 1.27601e13 0.953767
\(827\) 1.72868e13 1.28511 0.642554 0.766240i \(-0.277875\pi\)
0.642554 + 0.766240i \(0.277875\pi\)
\(828\) 0 0
\(829\) 1.88685e12 0.138753 0.0693763 0.997591i \(-0.477899\pi\)
0.0693763 + 0.997591i \(0.477899\pi\)
\(830\) −1.52553e13 −1.11575
\(831\) 0 0
\(832\) −6.50303e12 −0.470501
\(833\) 2.18401e12 0.157163
\(834\) 0 0
\(835\) −5.76814e12 −0.410626
\(836\) −2.24377e13 −1.58873
\(837\) 0 0
\(838\) 1.50793e13 1.05629
\(839\) −9.65939e12 −0.673009 −0.336504 0.941682i \(-0.609245\pi\)
−0.336504 + 0.941682i \(0.609245\pi\)
\(840\) 0 0
\(841\) −5.13237e12 −0.353782
\(842\) −4.54984e13 −3.11955
\(843\) 0 0
\(844\) −1.16673e13 −0.791460
\(845\) −4.99408e12 −0.336977
\(846\) 0 0
\(847\) −4.05776e13 −2.70902
\(848\) −1.14027e13 −0.757228
\(849\) 0 0
\(850\) 1.15913e13 0.761634
\(851\) 1.36703e12 0.0893503
\(852\) 0 0
\(853\) 1.26577e13 0.818621 0.409311 0.912395i \(-0.365769\pi\)
0.409311 + 0.912395i \(0.365769\pi\)
\(854\) 1.72647e13 1.11070
\(855\) 0 0
\(856\) 1.03442e13 0.658515
\(857\) −1.63024e13 −1.03238 −0.516189 0.856475i \(-0.672650\pi\)
−0.516189 + 0.856475i \(0.672650\pi\)
\(858\) 0 0
\(859\) −2.65609e13 −1.66446 −0.832231 0.554429i \(-0.812937\pi\)
−0.832231 + 0.554429i \(0.812937\pi\)
\(860\) −2.98458e13 −1.86055
\(861\) 0 0
\(862\) −1.22694e13 −0.756901
\(863\) −1.50602e13 −0.924234 −0.462117 0.886819i \(-0.652910\pi\)
−0.462117 + 0.886819i \(0.652910\pi\)
\(864\) 0 0
\(865\) −8.38295e12 −0.509125
\(866\) 1.40394e13 0.848236
\(867\) 0 0
\(868\) −2.70383e13 −1.61674
\(869\) 2.60329e13 1.54858
\(870\) 0 0
\(871\) 4.00892e11 0.0236018
\(872\) −4.00148e13 −2.34367
\(873\) 0 0
\(874\) 2.46650e12 0.142981
\(875\) 1.90186e13 1.09684
\(876\) 0 0
\(877\) −2.66464e13 −1.52104 −0.760520 0.649315i \(-0.775056\pi\)
−0.760520 + 0.649315i \(0.775056\pi\)
\(878\) 2.36448e13 1.34280
\(879\) 0 0
\(880\) 2.53910e13 1.42727
\(881\) 3.46233e13 1.93632 0.968159 0.250336i \(-0.0805412\pi\)
0.968159 + 0.250336i \(0.0805412\pi\)
\(882\) 0 0
\(883\) 5.22763e12 0.289389 0.144694 0.989476i \(-0.453780\pi\)
0.144694 + 0.989476i \(0.453780\pi\)
\(884\) 1.72818e13 0.951819
\(885\) 0 0
\(886\) −7.58203e12 −0.413365
\(887\) 3.41986e13 1.85504 0.927518 0.373779i \(-0.121938\pi\)
0.927518 + 0.373779i \(0.121938\pi\)
\(888\) 0 0
\(889\) −3.98003e13 −2.13712
\(890\) −1.99902e13 −1.06798
\(891\) 0 0
\(892\) −5.98784e13 −3.16686
\(893\) 2.89636e12 0.152413
\(894\) 0 0
\(895\) −1.13999e12 −0.0593877
\(896\) −3.34147e13 −1.73201
\(897\) 0 0
\(898\) 1.01718e13 0.521979
\(899\) −1.09965e13 −0.561484
\(900\) 0 0
\(901\) −8.07454e12 −0.408184
\(902\) −1.61282e13 −0.811253
\(903\) 0 0
\(904\) 2.29706e13 1.14397
\(905\) −1.29996e13 −0.644189
\(906\) 0 0
\(907\) −7.35881e12 −0.361056 −0.180528 0.983570i \(-0.557781\pi\)
−0.180528 + 0.983570i \(0.557781\pi\)
\(908\) 2.73829e13 1.33688
\(909\) 0 0
\(910\) 1.62595e13 0.785998
\(911\) 1.30433e13 0.627415 0.313708 0.949520i \(-0.398429\pi\)
0.313708 + 0.949520i \(0.398429\pi\)
\(912\) 0 0
\(913\) 4.08437e13 1.94539
\(914\) −1.60902e13 −0.762611
\(915\) 0 0
\(916\) 8.65076e12 0.405999
\(917\) −4.56790e13 −2.13331
\(918\) 0 0
\(919\) −6.75575e12 −0.312431 −0.156215 0.987723i \(-0.549929\pi\)
−0.156215 + 0.987723i \(0.549929\pi\)
\(920\) −4.98890e12 −0.229594
\(921\) 0 0
\(922\) 2.25050e13 1.02563
\(923\) 1.73543e13 0.787043
\(924\) 0 0
\(925\) −6.34942e12 −0.285165
\(926\) 1.83632e13 0.820727
\(927\) 0 0
\(928\) 5.82529e12 0.257841
\(929\) −1.73927e13 −0.766120 −0.383060 0.923723i \(-0.625130\pi\)
−0.383060 + 0.923723i \(0.625130\pi\)
\(930\) 0 0
\(931\) −2.15853e12 −0.0941638
\(932\) 2.57421e13 1.11757
\(933\) 0 0
\(934\) −4.54754e13 −1.95531
\(935\) 1.79799e13 0.769372
\(936\) 0 0
\(937\) −6.24202e12 −0.264544 −0.132272 0.991213i \(-0.542227\pi\)
−0.132272 + 0.991213i \(0.542227\pi\)
\(938\) 1.63691e12 0.0690419
\(939\) 0 0
\(940\) −1.12457e13 −0.469797
\(941\) −7.12554e12 −0.296254 −0.148127 0.988968i \(-0.547324\pi\)
−0.148127 + 0.988968i \(0.547324\pi\)
\(942\) 0 0
\(943\) 1.19868e12 0.0493629
\(944\) 1.51684e13 0.621678
\(945\) 0 0
\(946\) 1.18188e14 4.79802
\(947\) −1.84126e13 −0.743946 −0.371973 0.928244i \(-0.621319\pi\)
−0.371973 + 0.928244i \(0.621319\pi\)
\(948\) 0 0
\(949\) 2.46641e13 0.987115
\(950\) −1.14561e13 −0.456331
\(951\) 0 0
\(952\) 3.67604e13 1.45049
\(953\) −8.34892e12 −0.327878 −0.163939 0.986470i \(-0.552420\pi\)
−0.163939 + 0.986470i \(0.552420\pi\)
\(954\) 0 0
\(955\) 2.35842e13 0.917501
\(956\) −3.91535e13 −1.51604
\(957\) 0 0
\(958\) −5.72247e13 −2.19502
\(959\) −1.82742e13 −0.697678
\(960\) 0 0
\(961\) −1.35408e13 −0.512139
\(962\) −1.40015e13 −0.527094
\(963\) 0 0
\(964\) −8.83291e13 −3.29426
\(965\) −1.25065e13 −0.464261
\(966\) 0 0
\(967\) −3.00761e13 −1.10612 −0.553059 0.833142i \(-0.686540\pi\)
−0.553059 + 0.833142i \(0.686540\pi\)
\(968\) −1.27521e14 −4.66812
\(969\) 0 0
\(970\) 1.00629e13 0.364963
\(971\) 4.68313e12 0.169064 0.0845318 0.996421i \(-0.473061\pi\)
0.0845318 + 0.996421i \(0.473061\pi\)
\(972\) 0 0
\(973\) −3.08636e13 −1.10392
\(974\) −1.22140e13 −0.434852
\(975\) 0 0
\(976\) 2.05232e13 0.723970
\(977\) −1.56361e13 −0.549037 −0.274519 0.961582i \(-0.588518\pi\)
−0.274519 + 0.961582i \(0.588518\pi\)
\(978\) 0 0
\(979\) 5.35209e13 1.86209
\(980\) 8.38088e12 0.290250
\(981\) 0 0
\(982\) 5.28789e13 1.81460
\(983\) 4.63668e12 0.158386 0.0791929 0.996859i \(-0.474766\pi\)
0.0791929 + 0.996859i \(0.474766\pi\)
\(984\) 0 0
\(985\) 1.76888e13 0.598736
\(986\) 2.86989e13 0.966982
\(987\) 0 0
\(988\) −1.70802e13 −0.570279
\(989\) −8.78397e12 −0.291949
\(990\) 0 0
\(991\) 2.04024e13 0.671970 0.335985 0.941867i \(-0.390931\pi\)
0.335985 + 0.941867i \(0.390931\pi\)
\(992\) −6.83302e12 −0.224032
\(993\) 0 0
\(994\) 7.08606e13 2.30232
\(995\) 2.34671e13 0.759024
\(996\) 0 0
\(997\) −2.11715e13 −0.678616 −0.339308 0.940675i \(-0.610193\pi\)
−0.339308 + 0.940675i \(0.610193\pi\)
\(998\) 1.07978e13 0.344547
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.a.d.1.1 8
3.2 odd 2 81.10.a.c.1.8 8
9.2 odd 6 9.10.c.a.4.1 16
9.4 even 3 27.10.c.a.19.8 16
9.5 odd 6 9.10.c.a.7.1 yes 16
9.7 even 3 27.10.c.a.10.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.10.c.a.4.1 16 9.2 odd 6
9.10.c.a.7.1 yes 16 9.5 odd 6
27.10.c.a.10.8 16 9.7 even 3
27.10.c.a.19.8 16 9.4 even 3
81.10.a.c.1.8 8 3.2 odd 2
81.10.a.d.1.1 8 1.1 even 1 trivial