Properties

Label 81.10.a.c.1.5
Level $81$
Weight $10$
Character 81.1
Self dual yes
Analytic conductor $41.718$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,10,Mod(1,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7179027293\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2930 x^{6} - 1276 x^{5} + 2487472 x^{4} + 3423248 x^{3} - 586568096 x^{2} + \cdots + 965565184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{18}\cdot 17 \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.320476\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.67952 q^{2} -509.179 q^{4} -1538.61 q^{5} +5656.94 q^{7} +1715.10 q^{8} +2584.13 q^{10} +19816.0 q^{11} +99794.5 q^{13} -9500.96 q^{14} +257819. q^{16} +503911. q^{17} -670691. q^{19} +783426. q^{20} -33281.4 q^{22} -1.93025e6 q^{23} +414183. q^{25} -167607. q^{26} -2.88039e6 q^{28} -4.32636e6 q^{29} +1.02625e6 q^{31} -1.31114e6 q^{32} -846330. q^{34} -8.70380e6 q^{35} +1.81292e7 q^{37} +1.12644e6 q^{38} -2.63886e6 q^{40} +9.30385e6 q^{41} -1.57198e6 q^{43} -1.00899e7 q^{44} +3.24191e6 q^{46} -3.83357e7 q^{47} -8.35267e6 q^{49} -695630. q^{50} -5.08133e7 q^{52} -4.39042e7 q^{53} -3.04890e7 q^{55} +9.70218e6 q^{56} +7.26623e6 q^{58} -1.61803e8 q^{59} +1.45581e8 q^{61} -1.72361e6 q^{62} -1.29801e8 q^{64} -1.53544e8 q^{65} -8.15422e6 q^{67} -2.56581e8 q^{68} +1.46182e7 q^{70} -1.10960e8 q^{71} +1.42423e8 q^{73} -3.04484e7 q^{74} +3.41502e8 q^{76} +1.12098e8 q^{77} -2.00982e8 q^{79} -3.96682e8 q^{80} -1.56260e7 q^{82} -5.11970e8 q^{83} -7.75320e8 q^{85} +2.64018e6 q^{86} +3.39863e7 q^{88} +2.71324e8 q^{89} +5.64531e8 q^{91} +9.82845e8 q^{92} +6.43857e7 q^{94} +1.03193e9 q^{95} -5.98982e8 q^{97} +1.40285e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 15 q^{2} + 1793 q^{4} - 453 q^{5} + 343 q^{7} - 7239 q^{8} + 510 q^{10} - 99150 q^{11} - 32435 q^{13} - 394824 q^{14} + 328193 q^{16} - 415539 q^{17} - 85277 q^{19} - 1855164 q^{20} - 529359 q^{22}+ \cdots + 2413650159 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.67952 −0.0742252 −0.0371126 0.999311i \(-0.511816\pi\)
−0.0371126 + 0.999311i \(0.511816\pi\)
\(3\) 0 0
\(4\) −509.179 −0.994491
\(5\) −1538.61 −1.10094 −0.550468 0.834856i \(-0.685551\pi\)
−0.550468 + 0.834856i \(0.685551\pi\)
\(6\) 0 0
\(7\) 5656.94 0.890513 0.445256 0.895403i \(-0.353113\pi\)
0.445256 + 0.895403i \(0.353113\pi\)
\(8\) 1715.10 0.148041
\(9\) 0 0
\(10\) 2584.13 0.0817172
\(11\) 19816.0 0.408083 0.204042 0.978962i \(-0.434592\pi\)
0.204042 + 0.978962i \(0.434592\pi\)
\(12\) 0 0
\(13\) 99794.5 0.969084 0.484542 0.874768i \(-0.338986\pi\)
0.484542 + 0.874768i \(0.338986\pi\)
\(14\) −9500.96 −0.0660985
\(15\) 0 0
\(16\) 257819. 0.983502
\(17\) 503911. 1.46330 0.731650 0.681680i \(-0.238750\pi\)
0.731650 + 0.681680i \(0.238750\pi\)
\(18\) 0 0
\(19\) −670691. −1.18068 −0.590339 0.807156i \(-0.701006\pi\)
−0.590339 + 0.807156i \(0.701006\pi\)
\(20\) 783426. 1.09487
\(21\) 0 0
\(22\) −33281.4 −0.0302901
\(23\) −1.93025e6 −1.43827 −0.719133 0.694873i \(-0.755461\pi\)
−0.719133 + 0.694873i \(0.755461\pi\)
\(24\) 0 0
\(25\) 414183. 0.212061
\(26\) −167607. −0.0719305
\(27\) 0 0
\(28\) −2.88039e6 −0.885607
\(29\) −4.32636e6 −1.13588 −0.567939 0.823070i \(-0.692259\pi\)
−0.567939 + 0.823070i \(0.692259\pi\)
\(30\) 0 0
\(31\) 1.02625e6 0.199584 0.0997920 0.995008i \(-0.468182\pi\)
0.0997920 + 0.995008i \(0.468182\pi\)
\(32\) −1.31114e6 −0.221042
\(33\) 0 0
\(34\) −846330. −0.108614
\(35\) −8.70380e6 −0.980398
\(36\) 0 0
\(37\) 1.81292e7 1.59027 0.795133 0.606435i \(-0.207401\pi\)
0.795133 + 0.606435i \(0.207401\pi\)
\(38\) 1.12644e6 0.0876360
\(39\) 0 0
\(40\) −2.63886e6 −0.162984
\(41\) 9.30385e6 0.514204 0.257102 0.966384i \(-0.417232\pi\)
0.257102 + 0.966384i \(0.417232\pi\)
\(42\) 0 0
\(43\) −1.57198e6 −0.0701196 −0.0350598 0.999385i \(-0.511162\pi\)
−0.0350598 + 0.999385i \(0.511162\pi\)
\(44\) −1.00899e7 −0.405835
\(45\) 0 0
\(46\) 3.24191e6 0.106756
\(47\) −3.83357e7 −1.14594 −0.572972 0.819575i \(-0.694210\pi\)
−0.572972 + 0.819575i \(0.694210\pi\)
\(48\) 0 0
\(49\) −8.35267e6 −0.206987
\(50\) −695630. −0.0157403
\(51\) 0 0
\(52\) −5.08133e7 −0.963745
\(53\) −4.39042e7 −0.764301 −0.382151 0.924100i \(-0.624816\pi\)
−0.382151 + 0.924100i \(0.624816\pi\)
\(54\) 0 0
\(55\) −3.04890e7 −0.449274
\(56\) 9.70218e6 0.131833
\(57\) 0 0
\(58\) 7.26623e6 0.0843108
\(59\) −1.61803e8 −1.73841 −0.869204 0.494453i \(-0.835368\pi\)
−0.869204 + 0.494453i \(0.835368\pi\)
\(60\) 0 0
\(61\) 1.45581e8 1.34623 0.673117 0.739536i \(-0.264955\pi\)
0.673117 + 0.739536i \(0.264955\pi\)
\(62\) −1.72361e6 −0.0148142
\(63\) 0 0
\(64\) −1.29801e8 −0.967095
\(65\) −1.53544e8 −1.06690
\(66\) 0 0
\(67\) −8.15422e6 −0.0494363 −0.0247181 0.999694i \(-0.507869\pi\)
−0.0247181 + 0.999694i \(0.507869\pi\)
\(68\) −2.56581e8 −1.45524
\(69\) 0 0
\(70\) 1.46182e7 0.0727702
\(71\) −1.10960e8 −0.518208 −0.259104 0.965849i \(-0.583427\pi\)
−0.259104 + 0.965849i \(0.583427\pi\)
\(72\) 0 0
\(73\) 1.42423e8 0.586986 0.293493 0.955961i \(-0.405182\pi\)
0.293493 + 0.955961i \(0.405182\pi\)
\(74\) −3.04484e7 −0.118038
\(75\) 0 0
\(76\) 3.41502e8 1.17417
\(77\) 1.12098e8 0.363403
\(78\) 0 0
\(79\) −2.00982e8 −0.580545 −0.290273 0.956944i \(-0.593746\pi\)
−0.290273 + 0.956944i \(0.593746\pi\)
\(80\) −3.96682e8 −1.08277
\(81\) 0 0
\(82\) −1.56260e7 −0.0381669
\(83\) −5.11970e8 −1.18411 −0.592056 0.805897i \(-0.701684\pi\)
−0.592056 + 0.805897i \(0.701684\pi\)
\(84\) 0 0
\(85\) −7.75320e8 −1.61100
\(86\) 2.64018e6 0.00520464
\(87\) 0 0
\(88\) 3.39863e7 0.0604132
\(89\) 2.71324e8 0.458387 0.229194 0.973381i \(-0.426391\pi\)
0.229194 + 0.973381i \(0.426391\pi\)
\(90\) 0 0
\(91\) 5.64531e8 0.862982
\(92\) 9.82845e8 1.43034
\(93\) 0 0
\(94\) 6.43857e7 0.0850579
\(95\) 1.03193e9 1.29985
\(96\) 0 0
\(97\) −5.98982e8 −0.686975 −0.343488 0.939157i \(-0.611608\pi\)
−0.343488 + 0.939157i \(0.611608\pi\)
\(98\) 1.40285e7 0.0153637
\(99\) 0 0
\(100\) −2.10893e8 −0.210893
\(101\) −7.35052e8 −0.702865 −0.351433 0.936213i \(-0.614305\pi\)
−0.351433 + 0.936213i \(0.614305\pi\)
\(102\) 0 0
\(103\) 4.11768e8 0.360483 0.180242 0.983622i \(-0.442312\pi\)
0.180242 + 0.983622i \(0.442312\pi\)
\(104\) 1.71157e8 0.143465
\(105\) 0 0
\(106\) 7.37382e7 0.0567304
\(107\) −2.79607e8 −0.206215 −0.103108 0.994670i \(-0.532879\pi\)
−0.103108 + 0.994670i \(0.532879\pi\)
\(108\) 0 0
\(109\) −4.87814e8 −0.331006 −0.165503 0.986209i \(-0.552925\pi\)
−0.165503 + 0.986209i \(0.552925\pi\)
\(110\) 5.12070e7 0.0333474
\(111\) 0 0
\(112\) 1.45847e9 0.875821
\(113\) −2.28051e9 −1.31577 −0.657884 0.753119i \(-0.728548\pi\)
−0.657884 + 0.753119i \(0.728548\pi\)
\(114\) 0 0
\(115\) 2.96990e9 1.58344
\(116\) 2.20289e9 1.12962
\(117\) 0 0
\(118\) 2.71752e8 0.129034
\(119\) 2.85059e9 1.30309
\(120\) 0 0
\(121\) −1.96527e9 −0.833468
\(122\) −2.44507e8 −0.0999245
\(123\) 0 0
\(124\) −5.22545e8 −0.198484
\(125\) 2.36783e9 0.867470
\(126\) 0 0
\(127\) −3.67474e9 −1.25346 −0.626730 0.779237i \(-0.715607\pi\)
−0.626730 + 0.779237i \(0.715607\pi\)
\(128\) 8.89309e8 0.292825
\(129\) 0 0
\(130\) 2.57882e8 0.0791909
\(131\) 5.07549e9 1.50576 0.752882 0.658156i \(-0.228663\pi\)
0.752882 + 0.658156i \(0.228663\pi\)
\(132\) 0 0
\(133\) −3.79406e9 −1.05141
\(134\) 1.36952e7 0.00366942
\(135\) 0 0
\(136\) 8.64255e8 0.216629
\(137\) 2.01688e9 0.489146 0.244573 0.969631i \(-0.421352\pi\)
0.244573 + 0.969631i \(0.421352\pi\)
\(138\) 0 0
\(139\) 2.64813e9 0.601690 0.300845 0.953673i \(-0.402731\pi\)
0.300845 + 0.953673i \(0.402731\pi\)
\(140\) 4.43179e9 0.974997
\(141\) 0 0
\(142\) 1.86360e8 0.0384641
\(143\) 1.97753e9 0.395467
\(144\) 0 0
\(145\) 6.65657e9 1.25053
\(146\) −2.39203e8 −0.0435691
\(147\) 0 0
\(148\) −9.23099e9 −1.58151
\(149\) 1.00926e9 0.167752 0.0838758 0.996476i \(-0.473270\pi\)
0.0838758 + 0.996476i \(0.473270\pi\)
\(150\) 0 0
\(151\) −5.84420e8 −0.0914805 −0.0457402 0.998953i \(-0.514565\pi\)
−0.0457402 + 0.998953i \(0.514565\pi\)
\(152\) −1.15030e9 −0.174789
\(153\) 0 0
\(154\) −1.88271e8 −0.0269737
\(155\) −1.57900e9 −0.219729
\(156\) 0 0
\(157\) 7.48463e9 0.983154 0.491577 0.870834i \(-0.336421\pi\)
0.491577 + 0.870834i \(0.336421\pi\)
\(158\) 3.37555e8 0.0430911
\(159\) 0 0
\(160\) 2.01733e9 0.243353
\(161\) −1.09193e10 −1.28079
\(162\) 0 0
\(163\) 4.71277e9 0.522916 0.261458 0.965215i \(-0.415797\pi\)
0.261458 + 0.965215i \(0.415797\pi\)
\(164\) −4.73733e9 −0.511371
\(165\) 0 0
\(166\) 8.59866e8 0.0878910
\(167\) −1.21767e10 −1.21145 −0.605725 0.795674i \(-0.707117\pi\)
−0.605725 + 0.795674i \(0.707117\pi\)
\(168\) 0 0
\(169\) −6.45552e8 −0.0608753
\(170\) 1.30217e9 0.119577
\(171\) 0 0
\(172\) 8.00421e8 0.0697333
\(173\) −5.10501e9 −0.433301 −0.216650 0.976249i \(-0.569513\pi\)
−0.216650 + 0.976249i \(0.569513\pi\)
\(174\) 0 0
\(175\) 2.34300e9 0.188843
\(176\) 5.10894e9 0.401351
\(177\) 0 0
\(178\) −4.55694e8 −0.0340239
\(179\) −1.79471e9 −0.130664 −0.0653320 0.997864i \(-0.520811\pi\)
−0.0653320 + 0.997864i \(0.520811\pi\)
\(180\) 0 0
\(181\) −2.66921e10 −1.84854 −0.924271 0.381738i \(-0.875326\pi\)
−0.924271 + 0.381738i \(0.875326\pi\)
\(182\) −9.48144e8 −0.0640550
\(183\) 0 0
\(184\) −3.31057e9 −0.212923
\(185\) −2.78936e10 −1.75078
\(186\) 0 0
\(187\) 9.98549e9 0.597149
\(188\) 1.95197e10 1.13963
\(189\) 0 0
\(190\) −1.73315e9 −0.0964817
\(191\) −7.42827e8 −0.0403866 −0.0201933 0.999796i \(-0.506428\pi\)
−0.0201933 + 0.999796i \(0.506428\pi\)
\(192\) 0 0
\(193\) −2.03489e9 −0.105568 −0.0527841 0.998606i \(-0.516810\pi\)
−0.0527841 + 0.998606i \(0.516810\pi\)
\(194\) 1.00600e9 0.0509909
\(195\) 0 0
\(196\) 4.25301e9 0.205847
\(197\) −3.40311e10 −1.60982 −0.804910 0.593396i \(-0.797787\pi\)
−0.804910 + 0.593396i \(0.797787\pi\)
\(198\) 0 0
\(199\) 1.03084e9 0.0465963 0.0232982 0.999729i \(-0.492583\pi\)
0.0232982 + 0.999729i \(0.492583\pi\)
\(200\) 7.10363e8 0.0313939
\(201\) 0 0
\(202\) 1.23454e9 0.0521703
\(203\) −2.44740e10 −1.01151
\(204\) 0 0
\(205\) −1.43150e10 −0.566106
\(206\) −6.91574e8 −0.0267569
\(207\) 0 0
\(208\) 2.57289e10 0.953097
\(209\) −1.32904e10 −0.481815
\(210\) 0 0
\(211\) 1.48595e9 0.0516100 0.0258050 0.999667i \(-0.491785\pi\)
0.0258050 + 0.999667i \(0.491785\pi\)
\(212\) 2.23551e10 0.760091
\(213\) 0 0
\(214\) 4.69607e8 0.0153064
\(215\) 2.41866e9 0.0771973
\(216\) 0 0
\(217\) 5.80543e9 0.177732
\(218\) 8.19296e8 0.0245689
\(219\) 0 0
\(220\) 1.55244e10 0.446799
\(221\) 5.02875e10 1.41806
\(222\) 0 0
\(223\) −1.85640e9 −0.0502690 −0.0251345 0.999684i \(-0.508001\pi\)
−0.0251345 + 0.999684i \(0.508001\pi\)
\(224\) −7.41705e9 −0.196841
\(225\) 0 0
\(226\) 3.83018e9 0.0976631
\(227\) −6.96548e10 −1.74114 −0.870571 0.492042i \(-0.836251\pi\)
−0.870571 + 0.492042i \(0.836251\pi\)
\(228\) 0 0
\(229\) −2.03648e10 −0.489352 −0.244676 0.969605i \(-0.578682\pi\)
−0.244676 + 0.969605i \(0.578682\pi\)
\(230\) −4.98802e9 −0.117531
\(231\) 0 0
\(232\) −7.42012e9 −0.168157
\(233\) −4.32644e10 −0.961676 −0.480838 0.876809i \(-0.659668\pi\)
−0.480838 + 0.876809i \(0.659668\pi\)
\(234\) 0 0
\(235\) 5.89835e10 1.26161
\(236\) 8.23866e10 1.72883
\(237\) 0 0
\(238\) −4.78764e9 −0.0967219
\(239\) −3.76752e10 −0.746905 −0.373452 0.927649i \(-0.621826\pi\)
−0.373452 + 0.927649i \(0.621826\pi\)
\(240\) 0 0
\(241\) −3.34708e10 −0.639130 −0.319565 0.947564i \(-0.603537\pi\)
−0.319565 + 0.947564i \(0.603537\pi\)
\(242\) 3.30073e9 0.0618643
\(243\) 0 0
\(244\) −7.41268e10 −1.33882
\(245\) 1.28515e10 0.227880
\(246\) 0 0
\(247\) −6.69313e10 −1.14418
\(248\) 1.76012e9 0.0295467
\(249\) 0 0
\(250\) −3.97682e9 −0.0643881
\(251\) 7.16769e10 1.13985 0.569925 0.821697i \(-0.306972\pi\)
0.569925 + 0.821697i \(0.306972\pi\)
\(252\) 0 0
\(253\) −3.82499e10 −0.586932
\(254\) 6.17182e9 0.0930382
\(255\) 0 0
\(256\) 6.49647e10 0.945360
\(257\) 4.25870e10 0.608945 0.304472 0.952521i \(-0.401520\pi\)
0.304472 + 0.952521i \(0.401520\pi\)
\(258\) 0 0
\(259\) 1.02556e11 1.41615
\(260\) 7.81816e10 1.06102
\(261\) 0 0
\(262\) −8.52440e9 −0.111766
\(263\) −1.75582e10 −0.226297 −0.113149 0.993578i \(-0.536094\pi\)
−0.113149 + 0.993578i \(0.536094\pi\)
\(264\) 0 0
\(265\) 6.75513e10 0.841447
\(266\) 6.37221e9 0.0780410
\(267\) 0 0
\(268\) 4.15196e9 0.0491639
\(269\) 6.58769e10 0.767093 0.383546 0.923522i \(-0.374703\pi\)
0.383546 + 0.923522i \(0.374703\pi\)
\(270\) 0 0
\(271\) −2.84327e10 −0.320226 −0.160113 0.987099i \(-0.551186\pi\)
−0.160113 + 0.987099i \(0.551186\pi\)
\(272\) 1.29918e11 1.43916
\(273\) 0 0
\(274\) −3.38741e9 −0.0363069
\(275\) 8.20744e9 0.0865388
\(276\) 0 0
\(277\) −6.72391e10 −0.686220 −0.343110 0.939295i \(-0.611480\pi\)
−0.343110 + 0.939295i \(0.611480\pi\)
\(278\) −4.44760e9 −0.0446605
\(279\) 0 0
\(280\) −1.49278e10 −0.145140
\(281\) 1.31148e11 1.25482 0.627412 0.778687i \(-0.284114\pi\)
0.627412 + 0.778687i \(0.284114\pi\)
\(282\) 0 0
\(283\) 1.15708e10 0.107232 0.0536159 0.998562i \(-0.482925\pi\)
0.0536159 + 0.998562i \(0.482925\pi\)
\(284\) 5.64985e10 0.515353
\(285\) 0 0
\(286\) −3.32131e9 −0.0293536
\(287\) 5.26313e10 0.457905
\(288\) 0 0
\(289\) 1.35338e11 1.14125
\(290\) −1.11799e10 −0.0928209
\(291\) 0 0
\(292\) −7.25189e10 −0.583752
\(293\) 1.58060e10 0.125291 0.0626453 0.998036i \(-0.480046\pi\)
0.0626453 + 0.998036i \(0.480046\pi\)
\(294\) 0 0
\(295\) 2.48951e11 1.91388
\(296\) 3.10932e10 0.235425
\(297\) 0 0
\(298\) −1.69508e9 −0.0124514
\(299\) −1.92629e11 −1.39380
\(300\) 0 0
\(301\) −8.89261e9 −0.0624424
\(302\) 9.81547e8 0.00679016
\(303\) 0 0
\(304\) −1.72917e11 −1.16120
\(305\) −2.23992e11 −1.48212
\(306\) 0 0
\(307\) −4.10341e10 −0.263647 −0.131823 0.991273i \(-0.542083\pi\)
−0.131823 + 0.991273i \(0.542083\pi\)
\(308\) −5.70779e10 −0.361401
\(309\) 0 0
\(310\) 2.65196e9 0.0163095
\(311\) −1.98468e10 −0.120301 −0.0601505 0.998189i \(-0.519158\pi\)
−0.0601505 + 0.998189i \(0.519158\pi\)
\(312\) 0 0
\(313\) −3.03685e11 −1.78844 −0.894219 0.447629i \(-0.852269\pi\)
−0.894219 + 0.447629i \(0.852269\pi\)
\(314\) −1.25706e10 −0.0729748
\(315\) 0 0
\(316\) 1.02336e11 0.577347
\(317\) −8.01362e10 −0.445720 −0.222860 0.974850i \(-0.571539\pi\)
−0.222860 + 0.974850i \(0.571539\pi\)
\(318\) 0 0
\(319\) −8.57312e10 −0.463533
\(320\) 1.99713e11 1.06471
\(321\) 0 0
\(322\) 1.83393e10 0.0950672
\(323\) −3.37969e11 −1.72769
\(324\) 0 0
\(325\) 4.13332e10 0.205506
\(326\) −7.91521e9 −0.0388136
\(327\) 0 0
\(328\) 1.59570e10 0.0761235
\(329\) −2.16863e11 −1.02048
\(330\) 0 0
\(331\) −1.41037e11 −0.645813 −0.322907 0.946431i \(-0.604660\pi\)
−0.322907 + 0.946431i \(0.604660\pi\)
\(332\) 2.60684e11 1.17759
\(333\) 0 0
\(334\) 2.04511e10 0.0899201
\(335\) 1.25461e10 0.0544262
\(336\) 0 0
\(337\) 2.71754e10 0.114773 0.0573866 0.998352i \(-0.481723\pi\)
0.0573866 + 0.998352i \(0.481723\pi\)
\(338\) 1.08422e9 0.00451848
\(339\) 0 0
\(340\) 3.94777e11 1.60213
\(341\) 2.03362e10 0.0814469
\(342\) 0 0
\(343\) −2.75528e11 −1.07484
\(344\) −2.69610e9 −0.0103806
\(345\) 0 0
\(346\) 8.57400e9 0.0321618
\(347\) −2.72424e11 −1.00870 −0.504351 0.863498i \(-0.668268\pi\)
−0.504351 + 0.863498i \(0.668268\pi\)
\(348\) 0 0
\(349\) 2.82971e11 1.02100 0.510502 0.859877i \(-0.329460\pi\)
0.510502 + 0.859877i \(0.329460\pi\)
\(350\) −3.93513e9 −0.0140169
\(351\) 0 0
\(352\) −2.59816e10 −0.0902036
\(353\) 7.23120e10 0.247870 0.123935 0.992290i \(-0.460449\pi\)
0.123935 + 0.992290i \(0.460449\pi\)
\(354\) 0 0
\(355\) 1.70724e11 0.570514
\(356\) −1.38152e11 −0.455862
\(357\) 0 0
\(358\) 3.01426e9 0.00969856
\(359\) 3.88231e11 1.23358 0.616788 0.787130i \(-0.288434\pi\)
0.616788 + 0.787130i \(0.288434\pi\)
\(360\) 0 0
\(361\) 1.27139e11 0.394000
\(362\) 4.48300e10 0.137208
\(363\) 0 0
\(364\) −2.87448e11 −0.858228
\(365\) −2.19133e11 −0.646235
\(366\) 0 0
\(367\) −1.57415e11 −0.452949 −0.226475 0.974017i \(-0.572720\pi\)
−0.226475 + 0.974017i \(0.572720\pi\)
\(368\) −4.97657e11 −1.41454
\(369\) 0 0
\(370\) 4.68480e10 0.129952
\(371\) −2.48363e11 −0.680620
\(372\) 0 0
\(373\) 7.20169e11 1.92639 0.963196 0.268801i \(-0.0866273\pi\)
0.963196 + 0.268801i \(0.0866273\pi\)
\(374\) −1.67709e10 −0.0443235
\(375\) 0 0
\(376\) −6.57494e10 −0.169647
\(377\) −4.31747e11 −1.10076
\(378\) 0 0
\(379\) −7.20072e11 −1.79267 −0.896333 0.443381i \(-0.853779\pi\)
−0.896333 + 0.443381i \(0.853779\pi\)
\(380\) −5.25437e11 −1.29269
\(381\) 0 0
\(382\) 1.24760e9 0.00299770
\(383\) −1.80684e11 −0.429067 −0.214533 0.976717i \(-0.568823\pi\)
−0.214533 + 0.976717i \(0.568823\pi\)
\(384\) 0 0
\(385\) −1.72474e11 −0.400084
\(386\) 3.41765e9 0.00783582
\(387\) 0 0
\(388\) 3.04989e11 0.683190
\(389\) 2.04711e11 0.453281 0.226640 0.973978i \(-0.427226\pi\)
0.226640 + 0.973978i \(0.427226\pi\)
\(390\) 0 0
\(391\) −9.72676e11 −2.10462
\(392\) −1.43256e10 −0.0306427
\(393\) 0 0
\(394\) 5.71560e10 0.119489
\(395\) 3.09233e11 0.639143
\(396\) 0 0
\(397\) 3.34553e11 0.675939 0.337970 0.941157i \(-0.390260\pi\)
0.337970 + 0.941157i \(0.390260\pi\)
\(398\) −1.73132e9 −0.00345862
\(399\) 0 0
\(400\) 1.06784e11 0.208563
\(401\) 4.41279e11 0.852244 0.426122 0.904666i \(-0.359879\pi\)
0.426122 + 0.904666i \(0.359879\pi\)
\(402\) 0 0
\(403\) 1.02414e11 0.193414
\(404\) 3.74273e11 0.698993
\(405\) 0 0
\(406\) 4.11046e10 0.0750798
\(407\) 3.59247e11 0.648961
\(408\) 0 0
\(409\) −1.92897e11 −0.340856 −0.170428 0.985370i \(-0.554515\pi\)
−0.170428 + 0.985370i \(0.554515\pi\)
\(410\) 2.40423e10 0.0420193
\(411\) 0 0
\(412\) −2.09664e11 −0.358497
\(413\) −9.15308e11 −1.54807
\(414\) 0 0
\(415\) 7.87720e11 1.30363
\(416\) −1.30845e11 −0.214208
\(417\) 0 0
\(418\) 2.23216e10 0.0357628
\(419\) 5.92813e11 0.939625 0.469812 0.882766i \(-0.344322\pi\)
0.469812 + 0.882766i \(0.344322\pi\)
\(420\) 0 0
\(421\) −5.20544e11 −0.807585 −0.403792 0.914851i \(-0.632308\pi\)
−0.403792 + 0.914851i \(0.632308\pi\)
\(422\) −2.49569e9 −0.00383076
\(423\) 0 0
\(424\) −7.52999e10 −0.113148
\(425\) 2.08711e11 0.310310
\(426\) 0 0
\(427\) 8.23543e11 1.19884
\(428\) 1.42370e11 0.205079
\(429\) 0 0
\(430\) −4.06220e9 −0.00572998
\(431\) 6.97508e11 0.973647 0.486824 0.873500i \(-0.338155\pi\)
0.486824 + 0.873500i \(0.338155\pi\)
\(432\) 0 0
\(433\) −1.30466e11 −0.178361 −0.0891806 0.996015i \(-0.528425\pi\)
−0.0891806 + 0.996015i \(0.528425\pi\)
\(434\) −9.75037e9 −0.0131922
\(435\) 0 0
\(436\) 2.48385e11 0.329182
\(437\) 1.29460e12 1.69813
\(438\) 0 0
\(439\) 1.03545e12 1.33057 0.665286 0.746589i \(-0.268310\pi\)
0.665286 + 0.746589i \(0.268310\pi\)
\(440\) −5.22915e10 −0.0665111
\(441\) 0 0
\(442\) −8.44591e10 −0.105256
\(443\) −4.06754e10 −0.0501781 −0.0250891 0.999685i \(-0.507987\pi\)
−0.0250891 + 0.999685i \(0.507987\pi\)
\(444\) 0 0
\(445\) −4.17460e11 −0.504655
\(446\) 3.11787e9 0.00373122
\(447\) 0 0
\(448\) −7.34278e11 −0.861211
\(449\) 1.58095e12 1.83574 0.917869 0.396884i \(-0.129909\pi\)
0.917869 + 0.396884i \(0.129909\pi\)
\(450\) 0 0
\(451\) 1.84365e11 0.209838
\(452\) 1.16119e12 1.30852
\(453\) 0 0
\(454\) 1.16987e11 0.129237
\(455\) −8.68591e11 −0.950089
\(456\) 0 0
\(457\) 9.01224e11 0.966518 0.483259 0.875478i \(-0.339453\pi\)
0.483259 + 0.875478i \(0.339453\pi\)
\(458\) 3.42033e10 0.0363223
\(459\) 0 0
\(460\) −1.51221e12 −1.57472
\(461\) 1.11552e12 1.15033 0.575164 0.818038i \(-0.304938\pi\)
0.575164 + 0.818038i \(0.304938\pi\)
\(462\) 0 0
\(463\) −8.68995e11 −0.878826 −0.439413 0.898285i \(-0.644813\pi\)
−0.439413 + 0.898285i \(0.644813\pi\)
\(464\) −1.11542e12 −1.11714
\(465\) 0 0
\(466\) 7.26636e10 0.0713806
\(467\) 1.02354e12 0.995820 0.497910 0.867229i \(-0.334101\pi\)
0.497910 + 0.867229i \(0.334101\pi\)
\(468\) 0 0
\(469\) −4.61279e10 −0.0440236
\(470\) −9.90643e10 −0.0936433
\(471\) 0 0
\(472\) −2.77507e11 −0.257356
\(473\) −3.11504e10 −0.0286147
\(474\) 0 0
\(475\) −2.77789e11 −0.250376
\(476\) −1.45146e12 −1.29591
\(477\) 0 0
\(478\) 6.32765e10 0.0554392
\(479\) −7.16070e11 −0.621507 −0.310753 0.950491i \(-0.600581\pi\)
−0.310753 + 0.950491i \(0.600581\pi\)
\(480\) 0 0
\(481\) 1.80919e12 1.54110
\(482\) 5.62150e10 0.0474395
\(483\) 0 0
\(484\) 1.00068e12 0.828876
\(485\) 9.21597e11 0.756316
\(486\) 0 0
\(487\) −1.04858e12 −0.844739 −0.422369 0.906424i \(-0.638802\pi\)
−0.422369 + 0.906424i \(0.638802\pi\)
\(488\) 2.49685e11 0.199298
\(489\) 0 0
\(490\) −2.15844e10 −0.0169144
\(491\) 1.82538e12 1.41738 0.708691 0.705519i \(-0.249286\pi\)
0.708691 + 0.705519i \(0.249286\pi\)
\(492\) 0 0
\(493\) −2.18010e12 −1.66213
\(494\) 1.12413e11 0.0849267
\(495\) 0 0
\(496\) 2.64587e11 0.196291
\(497\) −6.27694e11 −0.461471
\(498\) 0 0
\(499\) −2.15436e12 −1.55548 −0.777742 0.628584i \(-0.783635\pi\)
−0.777742 + 0.628584i \(0.783635\pi\)
\(500\) −1.20565e12 −0.862691
\(501\) 0 0
\(502\) −1.20383e11 −0.0846055
\(503\) −9.53366e11 −0.664055 −0.332027 0.943270i \(-0.607733\pi\)
−0.332027 + 0.943270i \(0.607733\pi\)
\(504\) 0 0
\(505\) 1.13096e12 0.773810
\(506\) 6.42416e10 0.0435652
\(507\) 0 0
\(508\) 1.87110e12 1.24655
\(509\) −1.69887e10 −0.0112184 −0.00560918 0.999984i \(-0.501785\pi\)
−0.00560918 + 0.999984i \(0.501785\pi\)
\(510\) 0 0
\(511\) 8.05679e11 0.522719
\(512\) −5.64436e11 −0.362994
\(513\) 0 0
\(514\) −7.15259e10 −0.0451990
\(515\) −6.33549e11 −0.396869
\(516\) 0 0
\(517\) −7.59660e11 −0.467640
\(518\) −1.72244e11 −0.105114
\(519\) 0 0
\(520\) −2.63343e11 −0.157945
\(521\) −1.80540e12 −1.07350 −0.536751 0.843741i \(-0.680349\pi\)
−0.536751 + 0.843741i \(0.680349\pi\)
\(522\) 0 0
\(523\) 2.69922e12 1.57754 0.788770 0.614688i \(-0.210718\pi\)
0.788770 + 0.614688i \(0.210718\pi\)
\(524\) −2.58433e12 −1.49747
\(525\) 0 0
\(526\) 2.94895e10 0.0167970
\(527\) 5.17139e11 0.292051
\(528\) 0 0
\(529\) 1.92473e12 1.06861
\(530\) −1.13454e11 −0.0624566
\(531\) 0 0
\(532\) 1.93186e12 1.04562
\(533\) 9.28473e11 0.498307
\(534\) 0 0
\(535\) 4.30205e11 0.227030
\(536\) −1.39853e10 −0.00731862
\(537\) 0 0
\(538\) −1.10642e11 −0.0569376
\(539\) −1.65517e11 −0.0844680
\(540\) 0 0
\(541\) −2.63643e12 −1.32321 −0.661604 0.749854i \(-0.730124\pi\)
−0.661604 + 0.749854i \(0.730124\pi\)
\(542\) 4.77534e10 0.0237688
\(543\) 0 0
\(544\) −6.60699e11 −0.323451
\(545\) 7.50554e11 0.364416
\(546\) 0 0
\(547\) −3.53652e12 −1.68901 −0.844507 0.535544i \(-0.820107\pi\)
−0.844507 + 0.535544i \(0.820107\pi\)
\(548\) −1.02696e12 −0.486451
\(549\) 0 0
\(550\) −1.37846e10 −0.00642335
\(551\) 2.90165e12 1.34111
\(552\) 0 0
\(553\) −1.13694e12 −0.516983
\(554\) 1.12930e11 0.0509348
\(555\) 0 0
\(556\) −1.34837e12 −0.598375
\(557\) 1.41497e12 0.622870 0.311435 0.950267i \(-0.399190\pi\)
0.311435 + 0.950267i \(0.399190\pi\)
\(558\) 0 0
\(559\) −1.56875e11 −0.0679519
\(560\) −2.24401e12 −0.964224
\(561\) 0 0
\(562\) −2.20266e11 −0.0931396
\(563\) −1.79761e12 −0.754063 −0.377032 0.926200i \(-0.623055\pi\)
−0.377032 + 0.926200i \(0.623055\pi\)
\(564\) 0 0
\(565\) 3.50881e12 1.44858
\(566\) −1.94334e10 −0.00795930
\(567\) 0 0
\(568\) −1.90307e11 −0.0767162
\(569\) −2.52812e12 −1.01110 −0.505549 0.862798i \(-0.668710\pi\)
−0.505549 + 0.862798i \(0.668710\pi\)
\(570\) 0 0
\(571\) 4.70093e12 1.85064 0.925318 0.379191i \(-0.123798\pi\)
0.925318 + 0.379191i \(0.123798\pi\)
\(572\) −1.00692e12 −0.393288
\(573\) 0 0
\(574\) −8.83955e10 −0.0339881
\(575\) −7.99478e11 −0.305001
\(576\) 0 0
\(577\) −2.61526e12 −0.982253 −0.491126 0.871088i \(-0.663415\pi\)
−0.491126 + 0.871088i \(0.663415\pi\)
\(578\) −2.27304e11 −0.0847094
\(579\) 0 0
\(580\) −3.38939e12 −1.24364
\(581\) −2.89618e12 −1.05447
\(582\) 0 0
\(583\) −8.70005e11 −0.311899
\(584\) 2.44269e11 0.0868983
\(585\) 0 0
\(586\) −2.65466e10 −0.00929972
\(587\) −1.18649e12 −0.412471 −0.206236 0.978502i \(-0.566121\pi\)
−0.206236 + 0.978502i \(0.566121\pi\)
\(588\) 0 0
\(589\) −6.88297e11 −0.235644
\(590\) −4.18119e11 −0.142058
\(591\) 0 0
\(592\) 4.67405e12 1.56403
\(593\) −6.62653e11 −0.220060 −0.110030 0.993928i \(-0.535095\pi\)
−0.110030 + 0.993928i \(0.535095\pi\)
\(594\) 0 0
\(595\) −4.38594e12 −1.43462
\(596\) −5.13897e11 −0.166827
\(597\) 0 0
\(598\) 3.23525e11 0.103455
\(599\) −5.71521e12 −1.81389 −0.906946 0.421248i \(-0.861592\pi\)
−0.906946 + 0.421248i \(0.861592\pi\)
\(600\) 0 0
\(601\) −3.95677e12 −1.23710 −0.618551 0.785745i \(-0.712280\pi\)
−0.618551 + 0.785745i \(0.712280\pi\)
\(602\) 1.49353e10 0.00463480
\(603\) 0 0
\(604\) 2.97574e11 0.0909765
\(605\) 3.02378e12 0.917595
\(606\) 0 0
\(607\) 3.13313e12 0.936762 0.468381 0.883527i \(-0.344837\pi\)
0.468381 + 0.883527i \(0.344837\pi\)
\(608\) 8.79371e11 0.260979
\(609\) 0 0
\(610\) 3.76200e11 0.110010
\(611\) −3.82569e12 −1.11052
\(612\) 0 0
\(613\) 5.12506e12 1.46598 0.732988 0.680242i \(-0.238125\pi\)
0.732988 + 0.680242i \(0.238125\pi\)
\(614\) 6.89177e10 0.0195692
\(615\) 0 0
\(616\) 1.92258e11 0.0537988
\(617\) 2.32957e12 0.647131 0.323565 0.946206i \(-0.395118\pi\)
0.323565 + 0.946206i \(0.395118\pi\)
\(618\) 0 0
\(619\) 5.78623e12 1.58412 0.792059 0.610444i \(-0.209009\pi\)
0.792059 + 0.610444i \(0.209009\pi\)
\(620\) 8.03991e11 0.218519
\(621\) 0 0
\(622\) 3.33332e10 0.00892936
\(623\) 1.53486e12 0.408200
\(624\) 0 0
\(625\) −4.45210e12 −1.16709
\(626\) 5.10047e11 0.132747
\(627\) 0 0
\(628\) −3.81102e12 −0.977738
\(629\) 9.13548e12 2.32704
\(630\) 0 0
\(631\) 3.68878e12 0.926297 0.463148 0.886281i \(-0.346720\pi\)
0.463148 + 0.886281i \(0.346720\pi\)
\(632\) −3.44704e11 −0.0859447
\(633\) 0 0
\(634\) 1.34591e11 0.0330837
\(635\) 5.65398e12 1.37998
\(636\) 0 0
\(637\) −8.33551e11 −0.200588
\(638\) 1.43988e11 0.0344058
\(639\) 0 0
\(640\) −1.36830e12 −0.322382
\(641\) −8.08197e11 −0.189085 −0.0945423 0.995521i \(-0.530139\pi\)
−0.0945423 + 0.995521i \(0.530139\pi\)
\(642\) 0 0
\(643\) 6.87954e12 1.58712 0.793561 0.608491i \(-0.208225\pi\)
0.793561 + 0.608491i \(0.208225\pi\)
\(644\) 5.55989e12 1.27374
\(645\) 0 0
\(646\) 5.67626e11 0.128238
\(647\) −6.68555e12 −1.49992 −0.749959 0.661484i \(-0.769927\pi\)
−0.749959 + 0.661484i \(0.769927\pi\)
\(648\) 0 0
\(649\) −3.20628e12 −0.709415
\(650\) −6.94200e10 −0.0152537
\(651\) 0 0
\(652\) −2.39965e12 −0.520035
\(653\) 5.10086e12 1.09783 0.548913 0.835879i \(-0.315042\pi\)
0.548913 + 0.835879i \(0.315042\pi\)
\(654\) 0 0
\(655\) −7.80917e12 −1.65775
\(656\) 2.39871e12 0.505721
\(657\) 0 0
\(658\) 3.64226e11 0.0757451
\(659\) 1.25632e12 0.259488 0.129744 0.991548i \(-0.458584\pi\)
0.129744 + 0.991548i \(0.458584\pi\)
\(660\) 0 0
\(661\) −5.23779e12 −1.06719 −0.533595 0.845740i \(-0.679159\pi\)
−0.533595 + 0.845740i \(0.679159\pi\)
\(662\) 2.36875e11 0.0479356
\(663\) 0 0
\(664\) −8.78077e11 −0.175298
\(665\) 5.83756e12 1.15753
\(666\) 0 0
\(667\) 8.35098e12 1.63370
\(668\) 6.20012e12 1.20478
\(669\) 0 0
\(670\) −2.10715e10 −0.00403980
\(671\) 2.88483e12 0.549376
\(672\) 0 0
\(673\) 2.41160e12 0.453146 0.226573 0.973994i \(-0.427248\pi\)
0.226573 + 0.973994i \(0.427248\pi\)
\(674\) −4.56417e10 −0.00851907
\(675\) 0 0
\(676\) 3.28702e11 0.0605400
\(677\) 4.27462e12 0.782076 0.391038 0.920375i \(-0.372116\pi\)
0.391038 + 0.920375i \(0.372116\pi\)
\(678\) 0 0
\(679\) −3.38840e12 −0.611760
\(680\) −1.32975e12 −0.238495
\(681\) 0 0
\(682\) −3.41551e10 −0.00604541
\(683\) −6.17544e12 −1.08586 −0.542931 0.839777i \(-0.682685\pi\)
−0.542931 + 0.839777i \(0.682685\pi\)
\(684\) 0 0
\(685\) −3.10319e12 −0.538519
\(686\) 4.62757e11 0.0797800
\(687\) 0 0
\(688\) −4.05287e11 −0.0689628
\(689\) −4.38140e12 −0.740673
\(690\) 0 0
\(691\) 1.41466e12 0.236049 0.118024 0.993011i \(-0.462344\pi\)
0.118024 + 0.993011i \(0.462344\pi\)
\(692\) 2.59937e12 0.430914
\(693\) 0 0
\(694\) 4.57543e11 0.0748712
\(695\) −4.07443e12 −0.662423
\(696\) 0 0
\(697\) 4.68831e12 0.752435
\(698\) −4.75256e11 −0.0757842
\(699\) 0 0
\(700\) −1.19301e12 −0.187803
\(701\) 7.79387e12 1.21905 0.609526 0.792766i \(-0.291360\pi\)
0.609526 + 0.792766i \(0.291360\pi\)
\(702\) 0 0
\(703\) −1.21591e13 −1.87759
\(704\) −2.57214e12 −0.394655
\(705\) 0 0
\(706\) −1.21450e11 −0.0183982
\(707\) −4.15814e12 −0.625910
\(708\) 0 0
\(709\) 1.07942e13 1.60428 0.802142 0.597134i \(-0.203694\pi\)
0.802142 + 0.597134i \(0.203694\pi\)
\(710\) −2.86735e11 −0.0423465
\(711\) 0 0
\(712\) 4.65346e11 0.0678603
\(713\) −1.98092e12 −0.287055
\(714\) 0 0
\(715\) −3.04264e12 −0.435384
\(716\) 9.13830e11 0.129944
\(717\) 0 0
\(718\) −6.52044e11 −0.0915623
\(719\) −1.54014e12 −0.214921 −0.107461 0.994209i \(-0.534272\pi\)
−0.107461 + 0.994209i \(0.534272\pi\)
\(720\) 0 0
\(721\) 2.32935e12 0.321015
\(722\) −2.13533e11 −0.0292447
\(723\) 0 0
\(724\) 1.35911e13 1.83836
\(725\) −1.79190e12 −0.240876
\(726\) 0 0
\(727\) −1.83997e12 −0.244291 −0.122145 0.992512i \(-0.538977\pi\)
−0.122145 + 0.992512i \(0.538977\pi\)
\(728\) 9.68225e11 0.127757
\(729\) 0 0
\(730\) 3.68039e11 0.0479669
\(731\) −7.92139e11 −0.102606
\(732\) 0 0
\(733\) 4.00426e12 0.512335 0.256168 0.966632i \(-0.417540\pi\)
0.256168 + 0.966632i \(0.417540\pi\)
\(734\) 2.64383e11 0.0336202
\(735\) 0 0
\(736\) 2.53084e12 0.317917
\(737\) −1.61584e11 −0.0201741
\(738\) 0 0
\(739\) 7.68031e12 0.947281 0.473641 0.880718i \(-0.342940\pi\)
0.473641 + 0.880718i \(0.342940\pi\)
\(740\) 1.42029e13 1.74114
\(741\) 0 0
\(742\) 4.17132e11 0.0505192
\(743\) 4.02322e11 0.0484310 0.0242155 0.999707i \(-0.492291\pi\)
0.0242155 + 0.999707i \(0.492291\pi\)
\(744\) 0 0
\(745\) −1.55286e12 −0.184684
\(746\) −1.20954e12 −0.142987
\(747\) 0 0
\(748\) −5.08441e12 −0.593859
\(749\) −1.58172e12 −0.183637
\(750\) 0 0
\(751\) −8.58822e12 −0.985198 −0.492599 0.870256i \(-0.663953\pi\)
−0.492599 + 0.870256i \(0.663953\pi\)
\(752\) −9.88368e12 −1.12704
\(753\) 0 0
\(754\) 7.25130e11 0.0817043
\(755\) 8.99191e11 0.100714
\(756\) 0 0
\(757\) −5.70537e12 −0.631470 −0.315735 0.948847i \(-0.602251\pi\)
−0.315735 + 0.948847i \(0.602251\pi\)
\(758\) 1.20938e12 0.133061
\(759\) 0 0
\(760\) 1.76986e12 0.192432
\(761\) 7.46605e11 0.0806974 0.0403487 0.999186i \(-0.487153\pi\)
0.0403487 + 0.999186i \(0.487153\pi\)
\(762\) 0 0
\(763\) −2.75953e12 −0.294765
\(764\) 3.78232e11 0.0401641
\(765\) 0 0
\(766\) 3.03463e11 0.0318476
\(767\) −1.61470e13 −1.68466
\(768\) 0 0
\(769\) −1.74218e13 −1.79649 −0.898243 0.439499i \(-0.855156\pi\)
−0.898243 + 0.439499i \(0.855156\pi\)
\(770\) 2.89675e11 0.0296963
\(771\) 0 0
\(772\) 1.03612e12 0.104987
\(773\) −8.20681e12 −0.826736 −0.413368 0.910564i \(-0.635648\pi\)
−0.413368 + 0.910564i \(0.635648\pi\)
\(774\) 0 0
\(775\) 4.25055e11 0.0423241
\(776\) −1.02731e12 −0.101701
\(777\) 0 0
\(778\) −3.43817e11 −0.0336449
\(779\) −6.24001e12 −0.607109
\(780\) 0 0
\(781\) −2.19878e12 −0.211472
\(782\) 1.63363e12 0.156215
\(783\) 0 0
\(784\) −2.15348e12 −0.203572
\(785\) −1.15159e13 −1.08239
\(786\) 0 0
\(787\) 6.41360e11 0.0595958 0.0297979 0.999556i \(-0.490514\pi\)
0.0297979 + 0.999556i \(0.490514\pi\)
\(788\) 1.73279e13 1.60095
\(789\) 0 0
\(790\) −5.19363e11 −0.0474405
\(791\) −1.29007e13 −1.17171
\(792\) 0 0
\(793\) 1.45282e13 1.30461
\(794\) −5.61890e11 −0.0501717
\(795\) 0 0
\(796\) −5.24881e11 −0.0463396
\(797\) 3.41418e12 0.299725 0.149863 0.988707i \(-0.452117\pi\)
0.149863 + 0.988707i \(0.452117\pi\)
\(798\) 0 0
\(799\) −1.93178e13 −1.67686
\(800\) −5.43052e11 −0.0468745
\(801\) 0 0
\(802\) −7.41139e11 −0.0632579
\(803\) 2.82226e12 0.239539
\(804\) 0 0
\(805\) 1.68005e13 1.41007
\(806\) −1.72007e11 −0.0143562
\(807\) 0 0
\(808\) −1.26068e12 −0.104053
\(809\) −1.64198e13 −1.34772 −0.673859 0.738860i \(-0.735364\pi\)
−0.673859 + 0.738860i \(0.735364\pi\)
\(810\) 0 0
\(811\) 1.11691e13 0.906616 0.453308 0.891354i \(-0.350244\pi\)
0.453308 + 0.891354i \(0.350244\pi\)
\(812\) 1.24616e13 1.00594
\(813\) 0 0
\(814\) −6.03365e11 −0.0481693
\(815\) −7.25110e12 −0.575698
\(816\) 0 0
\(817\) 1.05431e12 0.0827887
\(818\) 3.23975e11 0.0253001
\(819\) 0 0
\(820\) 7.28888e12 0.562987
\(821\) −2.25396e13 −1.73142 −0.865710 0.500545i \(-0.833133\pi\)
−0.865710 + 0.500545i \(0.833133\pi\)
\(822\) 0 0
\(823\) −1.13893e12 −0.0865364 −0.0432682 0.999063i \(-0.513777\pi\)
−0.0432682 + 0.999063i \(0.513777\pi\)
\(824\) 7.06221e11 0.0533665
\(825\) 0 0
\(826\) 1.53728e12 0.114906
\(827\) 3.06302e11 0.0227706 0.0113853 0.999935i \(-0.496376\pi\)
0.0113853 + 0.999935i \(0.496376\pi\)
\(828\) 0 0
\(829\) −1.50391e13 −1.10593 −0.552964 0.833205i \(-0.686503\pi\)
−0.552964 + 0.833205i \(0.686503\pi\)
\(830\) −1.32299e12 −0.0967624
\(831\) 0 0
\(832\) −1.29535e13 −0.937197
\(833\) −4.20900e12 −0.302884
\(834\) 0 0
\(835\) 1.87351e13 1.33373
\(836\) 6.76720e12 0.479160
\(837\) 0 0
\(838\) −9.95643e11 −0.0697438
\(839\) −4.04209e12 −0.281629 −0.140814 0.990036i \(-0.544972\pi\)
−0.140814 + 0.990036i \(0.544972\pi\)
\(840\) 0 0
\(841\) 4.21027e12 0.290221
\(842\) 8.74266e11 0.0599431
\(843\) 0 0
\(844\) −7.56616e11 −0.0513257
\(845\) 9.93251e11 0.0670199
\(846\) 0 0
\(847\) −1.11174e13 −0.742214
\(848\) −1.13193e13 −0.751692
\(849\) 0 0
\(850\) −3.50535e11 −0.0230328
\(851\) −3.49939e13 −2.28723
\(852\) 0 0
\(853\) 1.99594e13 1.29085 0.645426 0.763823i \(-0.276680\pi\)
0.645426 + 0.763823i \(0.276680\pi\)
\(854\) −1.38316e12 −0.0889840
\(855\) 0 0
\(856\) −4.79553e11 −0.0305284
\(857\) 2.85272e13 1.80653 0.903266 0.429082i \(-0.141163\pi\)
0.903266 + 0.429082i \(0.141163\pi\)
\(858\) 0 0
\(859\) 1.04738e13 0.656351 0.328176 0.944617i \(-0.393566\pi\)
0.328176 + 0.944617i \(0.393566\pi\)
\(860\) −1.23153e12 −0.0767720
\(861\) 0 0
\(862\) −1.17148e12 −0.0722692
\(863\) 1.55631e13 0.955096 0.477548 0.878606i \(-0.341526\pi\)
0.477548 + 0.878606i \(0.341526\pi\)
\(864\) 0 0
\(865\) 7.85461e12 0.477037
\(866\) 2.19120e11 0.0132389
\(867\) 0 0
\(868\) −2.95601e12 −0.176753
\(869\) −3.98266e12 −0.236911
\(870\) 0 0
\(871\) −8.13746e11 −0.0479079
\(872\) −8.36648e11 −0.0490025
\(873\) 0 0
\(874\) −2.17432e12 −0.126044
\(875\) 1.33946e13 0.772493
\(876\) 0 0
\(877\) 8.28334e12 0.472832 0.236416 0.971652i \(-0.424027\pi\)
0.236416 + 0.971652i \(0.424027\pi\)
\(878\) −1.73906e12 −0.0987619
\(879\) 0 0
\(880\) −7.86065e12 −0.441862
\(881\) −3.05766e12 −0.171001 −0.0855004 0.996338i \(-0.527249\pi\)
−0.0855004 + 0.996338i \(0.527249\pi\)
\(882\) 0 0
\(883\) −1.81997e13 −1.00749 −0.503745 0.863852i \(-0.668045\pi\)
−0.503745 + 0.863852i \(0.668045\pi\)
\(884\) −2.56054e13 −1.41025
\(885\) 0 0
\(886\) 6.83152e10 0.00372448
\(887\) 1.79103e13 0.971506 0.485753 0.874096i \(-0.338545\pi\)
0.485753 + 0.874096i \(0.338545\pi\)
\(888\) 0 0
\(889\) −2.07878e13 −1.11622
\(890\) 7.01134e11 0.0374581
\(891\) 0 0
\(892\) 9.45241e11 0.0499920
\(893\) 2.57114e13 1.35299
\(894\) 0 0
\(895\) 2.76135e12 0.143853
\(896\) 5.03077e12 0.260764
\(897\) 0 0
\(898\) −2.65525e12 −0.136258
\(899\) −4.43993e12 −0.226703
\(900\) 0 0
\(901\) −2.21238e13 −1.11840
\(902\) −3.09645e11 −0.0155753
\(903\) 0 0
\(904\) −3.91130e12 −0.194788
\(905\) 4.10686e13 2.03513
\(906\) 0 0
\(907\) 9.17815e12 0.450321 0.225161 0.974322i \(-0.427709\pi\)
0.225161 + 0.974322i \(0.427709\pi\)
\(908\) 3.54668e13 1.73155
\(909\) 0 0
\(910\) 1.45882e12 0.0705205
\(911\) 2.14634e12 0.103244 0.0516222 0.998667i \(-0.483561\pi\)
0.0516222 + 0.998667i \(0.483561\pi\)
\(912\) 0 0
\(913\) −1.01452e13 −0.483217
\(914\) −1.51363e12 −0.0717400
\(915\) 0 0
\(916\) 1.03694e13 0.486656
\(917\) 2.87117e13 1.34090
\(918\) 0 0
\(919\) 1.70600e13 0.788967 0.394483 0.918903i \(-0.370924\pi\)
0.394483 + 0.918903i \(0.370924\pi\)
\(920\) 5.09366e12 0.234415
\(921\) 0 0
\(922\) −1.87354e12 −0.0853833
\(923\) −1.10732e13 −0.502187
\(924\) 0 0
\(925\) 7.50878e12 0.337234
\(926\) 1.45950e12 0.0652310
\(927\) 0 0
\(928\) 5.67248e12 0.251077
\(929\) 4.17325e13 1.83825 0.919123 0.393971i \(-0.128899\pi\)
0.919123 + 0.393971i \(0.128899\pi\)
\(930\) 0 0
\(931\) 5.60206e12 0.244385
\(932\) 2.20293e13 0.956378
\(933\) 0 0
\(934\) −1.71907e12 −0.0739149
\(935\) −1.53637e13 −0.657423
\(936\) 0 0
\(937\) 3.48481e13 1.47690 0.738451 0.674308i \(-0.235558\pi\)
0.738451 + 0.674308i \(0.235558\pi\)
\(938\) 7.74729e10 0.00326766
\(939\) 0 0
\(940\) −3.00332e13 −1.25466
\(941\) 7.74164e12 0.321869 0.160935 0.986965i \(-0.448549\pi\)
0.160935 + 0.986965i \(0.448549\pi\)
\(942\) 0 0
\(943\) −1.79588e13 −0.739562
\(944\) −4.17158e13 −1.70973
\(945\) 0 0
\(946\) 5.23179e10 0.00212393
\(947\) −4.06195e13 −1.64119 −0.820596 0.571508i \(-0.806358\pi\)
−0.820596 + 0.571508i \(0.806358\pi\)
\(948\) 0 0
\(949\) 1.42131e13 0.568839
\(950\) 4.66553e11 0.0185842
\(951\) 0 0
\(952\) 4.88904e12 0.192911
\(953\) 3.21151e13 1.26122 0.630611 0.776099i \(-0.282804\pi\)
0.630611 + 0.776099i \(0.282804\pi\)
\(954\) 0 0
\(955\) 1.14292e12 0.0444631
\(956\) 1.91834e13 0.742790
\(957\) 0 0
\(958\) 1.20266e12 0.0461314
\(959\) 1.14094e13 0.435591
\(960\) 0 0
\(961\) −2.53864e13 −0.960166
\(962\) −3.03858e12 −0.114389
\(963\) 0 0
\(964\) 1.70426e13 0.635608
\(965\) 3.13090e12 0.116224
\(966\) 0 0
\(967\) −2.18017e13 −0.801811 −0.400905 0.916120i \(-0.631304\pi\)
−0.400905 + 0.916120i \(0.631304\pi\)
\(968\) −3.37063e12 −0.123388
\(969\) 0 0
\(970\) −1.54784e12 −0.0561377
\(971\) −2.45155e13 −0.885024 −0.442512 0.896763i \(-0.645913\pi\)
−0.442512 + 0.896763i \(0.645913\pi\)
\(972\) 0 0
\(973\) 1.49803e13 0.535813
\(974\) 1.76112e12 0.0627009
\(975\) 0 0
\(976\) 3.75336e13 1.32402
\(977\) 2.38100e13 0.836054 0.418027 0.908435i \(-0.362722\pi\)
0.418027 + 0.908435i \(0.362722\pi\)
\(978\) 0 0
\(979\) 5.37655e12 0.187060
\(980\) −6.54370e12 −0.226624
\(981\) 0 0
\(982\) −3.06577e12 −0.105205
\(983\) −4.26737e13 −1.45770 −0.728852 0.684671i \(-0.759946\pi\)
−0.728852 + 0.684671i \(0.759946\pi\)
\(984\) 0 0
\(985\) 5.23604e13 1.77231
\(986\) 3.66153e12 0.123372
\(987\) 0 0
\(988\) 3.40800e13 1.13787
\(989\) 3.03433e12 0.100851
\(990\) 0 0
\(991\) −5.04883e13 −1.66287 −0.831437 0.555620i \(-0.812481\pi\)
−0.831437 + 0.555620i \(0.812481\pi\)
\(992\) −1.34556e12 −0.0441165
\(993\) 0 0
\(994\) 1.05423e12 0.0342527
\(995\) −1.58605e12 −0.0512996
\(996\) 0 0
\(997\) −3.53339e13 −1.13257 −0.566283 0.824211i \(-0.691619\pi\)
−0.566283 + 0.824211i \(0.691619\pi\)
\(998\) 3.61830e12 0.115456
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.a.c.1.5 8
3.2 odd 2 81.10.a.d.1.4 8
9.2 odd 6 27.10.c.a.10.5 16
9.4 even 3 9.10.c.a.7.4 yes 16
9.5 odd 6 27.10.c.a.19.5 16
9.7 even 3 9.10.c.a.4.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.10.c.a.4.4 16 9.7 even 3
9.10.c.a.7.4 yes 16 9.4 even 3
27.10.c.a.10.5 16 9.2 odd 6
27.10.c.a.19.5 16 9.5 odd 6
81.10.a.c.1.5 8 1.1 even 1 trivial
81.10.a.d.1.4 8 3.2 odd 2