Properties

Label 81.10.a.b.1.4
Level $81$
Weight $10$
Character 81.1
Self dual yes
Analytic conductor $41.718$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,10,Mod(1,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,33] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7179027293\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1314x^{2} + 10232x + 106624 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(29.6018\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+37.6018 q^{2} +901.897 q^{4} -1776.55 q^{5} +3746.45 q^{7} +14660.8 q^{8} -66801.3 q^{10} -43634.0 q^{11} -198244. q^{13} +140873. q^{14} +89502.6 q^{16} +520288. q^{17} -129326. q^{19} -1.60226e6 q^{20} -1.64072e6 q^{22} -1.93451e6 q^{23} +1.20299e6 q^{25} -7.45433e6 q^{26} +3.37891e6 q^{28} +2.30493e6 q^{29} -8.64675e6 q^{31} -4.14088e6 q^{32} +1.95638e7 q^{34} -6.65575e6 q^{35} +2.11152e6 q^{37} -4.86290e6 q^{38} -2.60456e7 q^{40} +1.32674e7 q^{41} -2.09275e6 q^{43} -3.93534e7 q^{44} -7.27411e7 q^{46} -3.60701e7 q^{47} -2.63177e7 q^{49} +4.52346e7 q^{50} -1.78796e8 q^{52} +7.10476e7 q^{53} +7.75178e7 q^{55} +5.49261e7 q^{56} +8.66697e7 q^{58} +1.13604e8 q^{59} -1.18231e7 q^{61} -3.25134e8 q^{62} -2.01530e8 q^{64} +3.52189e8 q^{65} +1.95419e8 q^{67} +4.69246e8 q^{68} -2.50268e8 q^{70} -1.47791e7 q^{71} -3.20288e8 q^{73} +7.93968e7 q^{74} -1.16639e8 q^{76} -1.63473e8 q^{77} +2.14129e8 q^{79} -1.59005e8 q^{80} +4.98880e8 q^{82} -2.48121e8 q^{83} -9.24315e8 q^{85} -7.86914e7 q^{86} -6.39711e8 q^{88} -1.21201e8 q^{89} -7.42712e8 q^{91} -1.74473e9 q^{92} -1.35630e9 q^{94} +2.29754e8 q^{95} +8.81709e8 q^{97} -9.89593e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 33 q^{2} + 853 q^{4} + 570 q^{5} - 3238 q^{7} + 4791 q^{8} - 9723 q^{10} - 96690 q^{11} - 141118 q^{13} + 3036 q^{14} - 244463 q^{16} + 285156 q^{17} - 465166 q^{19} - 1041711 q^{20} - 2244480 q^{22}+ \cdots + 735501321 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 37.6018 1.66178 0.830891 0.556436i \(-0.187831\pi\)
0.830891 + 0.556436i \(0.187831\pi\)
\(3\) 0 0
\(4\) 901.897 1.76152
\(5\) −1776.55 −1.27119 −0.635596 0.772022i \(-0.719246\pi\)
−0.635596 + 0.772022i \(0.719246\pi\)
\(6\) 0 0
\(7\) 3746.45 0.589765 0.294883 0.955533i \(-0.404719\pi\)
0.294883 + 0.955533i \(0.404719\pi\)
\(8\) 14660.8 1.26547
\(9\) 0 0
\(10\) −66801.3 −2.11244
\(11\) −43634.0 −0.898583 −0.449291 0.893385i \(-0.648323\pi\)
−0.449291 + 0.893385i \(0.648323\pi\)
\(12\) 0 0
\(13\) −198244. −1.92511 −0.962554 0.271091i \(-0.912615\pi\)
−0.962554 + 0.271091i \(0.912615\pi\)
\(14\) 140873. 0.980061
\(15\) 0 0
\(16\) 89502.6 0.341425
\(17\) 520288. 1.51086 0.755429 0.655230i \(-0.227428\pi\)
0.755429 + 0.655230i \(0.227428\pi\)
\(18\) 0 0
\(19\) −129326. −0.227665 −0.113832 0.993500i \(-0.536313\pi\)
−0.113832 + 0.993500i \(0.536313\pi\)
\(20\) −1.60226e6 −2.23923
\(21\) 0 0
\(22\) −1.64072e6 −1.49325
\(23\) −1.93451e6 −1.44144 −0.720718 0.693228i \(-0.756188\pi\)
−0.720718 + 0.693228i \(0.756188\pi\)
\(24\) 0 0
\(25\) 1.20299e6 0.615930
\(26\) −7.45433e6 −3.19911
\(27\) 0 0
\(28\) 3.37891e6 1.03888
\(29\) 2.30493e6 0.605156 0.302578 0.953125i \(-0.402153\pi\)
0.302578 + 0.953125i \(0.402153\pi\)
\(30\) 0 0
\(31\) −8.64675e6 −1.68161 −0.840805 0.541338i \(-0.817918\pi\)
−0.840805 + 0.541338i \(0.817918\pi\)
\(32\) −4.14088e6 −0.698101
\(33\) 0 0
\(34\) 1.95638e7 2.51072
\(35\) −6.65575e6 −0.749705
\(36\) 0 0
\(37\) 2.11152e6 0.185219 0.0926097 0.995702i \(-0.470479\pi\)
0.0926097 + 0.995702i \(0.470479\pi\)
\(38\) −4.86290e6 −0.378329
\(39\) 0 0
\(40\) −2.60456e7 −1.60866
\(41\) 1.32674e7 0.733263 0.366631 0.930366i \(-0.380511\pi\)
0.366631 + 0.930366i \(0.380511\pi\)
\(42\) 0 0
\(43\) −2.09275e6 −0.0933491 −0.0466746 0.998910i \(-0.514862\pi\)
−0.0466746 + 0.998910i \(0.514862\pi\)
\(44\) −3.93534e7 −1.58287
\(45\) 0 0
\(46\) −7.27411e7 −2.39535
\(47\) −3.60701e7 −1.07822 −0.539110 0.842236i \(-0.681239\pi\)
−0.539110 + 0.842236i \(0.681239\pi\)
\(48\) 0 0
\(49\) −2.63177e7 −0.652177
\(50\) 4.52346e7 1.02354
\(51\) 0 0
\(52\) −1.78796e8 −3.39111
\(53\) 7.10476e7 1.23682 0.618412 0.785854i \(-0.287776\pi\)
0.618412 + 0.785854i \(0.287776\pi\)
\(54\) 0 0
\(55\) 7.75178e7 1.14227
\(56\) 5.49261e7 0.746333
\(57\) 0 0
\(58\) 8.66697e7 1.00564
\(59\) 1.13604e8 1.22056 0.610279 0.792186i \(-0.291057\pi\)
0.610279 + 0.792186i \(0.291057\pi\)
\(60\) 0 0
\(61\) −1.18231e7 −0.109332 −0.0546658 0.998505i \(-0.517409\pi\)
−0.0546658 + 0.998505i \(0.517409\pi\)
\(62\) −3.25134e8 −2.79447
\(63\) 0 0
\(64\) −2.01530e8 −1.50152
\(65\) 3.52189e8 2.44718
\(66\) 0 0
\(67\) 1.95419e8 1.18476 0.592379 0.805660i \(-0.298189\pi\)
0.592379 + 0.805660i \(0.298189\pi\)
\(68\) 4.69246e8 2.66140
\(69\) 0 0
\(70\) −2.50268e8 −1.24585
\(71\) −1.47791e7 −0.0690217 −0.0345109 0.999404i \(-0.510987\pi\)
−0.0345109 + 0.999404i \(0.510987\pi\)
\(72\) 0 0
\(73\) −3.20288e8 −1.32004 −0.660020 0.751248i \(-0.729452\pi\)
−0.660020 + 0.751248i \(0.729452\pi\)
\(74\) 7.93968e7 0.307794
\(75\) 0 0
\(76\) −1.16639e8 −0.401035
\(77\) −1.63473e8 −0.529953
\(78\) 0 0
\(79\) 2.14129e8 0.618520 0.309260 0.950978i \(-0.399919\pi\)
0.309260 + 0.950978i \(0.399919\pi\)
\(80\) −1.59005e8 −0.434017
\(81\) 0 0
\(82\) 4.98880e8 1.21852
\(83\) −2.48121e8 −0.573869 −0.286934 0.957950i \(-0.592636\pi\)
−0.286934 + 0.957950i \(0.592636\pi\)
\(84\) 0 0
\(85\) −9.24315e8 −1.92059
\(86\) −7.86914e7 −0.155126
\(87\) 0 0
\(88\) −6.39711e8 −1.13713
\(89\) −1.21201e8 −0.204763 −0.102382 0.994745i \(-0.532646\pi\)
−0.102382 + 0.994745i \(0.532646\pi\)
\(90\) 0 0
\(91\) −7.42712e8 −1.13536
\(92\) −1.74473e9 −2.53912
\(93\) 0 0
\(94\) −1.35630e9 −1.79176
\(95\) 2.29754e8 0.289406
\(96\) 0 0
\(97\) 8.81709e8 1.01124 0.505618 0.862758i \(-0.331265\pi\)
0.505618 + 0.862758i \(0.331265\pi\)
\(98\) −9.89593e8 −1.08378
\(99\) 0 0
\(100\) 1.08497e9 1.08497
\(101\) −2.24065e8 −0.214253 −0.107127 0.994245i \(-0.534165\pi\)
−0.107127 + 0.994245i \(0.534165\pi\)
\(102\) 0 0
\(103\) 1.35906e9 1.18980 0.594898 0.803801i \(-0.297193\pi\)
0.594898 + 0.803801i \(0.297193\pi\)
\(104\) −2.90642e9 −2.43617
\(105\) 0 0
\(106\) 2.67152e9 2.05533
\(107\) 1.00263e9 0.739460 0.369730 0.929139i \(-0.379450\pi\)
0.369730 + 0.929139i \(0.379450\pi\)
\(108\) 0 0
\(109\) −2.26633e8 −0.153782 −0.0768909 0.997040i \(-0.524499\pi\)
−0.0768909 + 0.997040i \(0.524499\pi\)
\(110\) 2.91481e9 1.89821
\(111\) 0 0
\(112\) 3.35317e8 0.201361
\(113\) 4.74483e8 0.273758 0.136879 0.990588i \(-0.456293\pi\)
0.136879 + 0.990588i \(0.456293\pi\)
\(114\) 0 0
\(115\) 3.43674e9 1.83234
\(116\) 2.07881e9 1.06599
\(117\) 0 0
\(118\) 4.27171e9 2.02830
\(119\) 1.94924e9 0.891052
\(120\) 0 0
\(121\) −4.54021e8 −0.192549
\(122\) −4.44568e8 −0.181685
\(123\) 0 0
\(124\) −7.79848e9 −2.96219
\(125\) 1.33265e9 0.488227
\(126\) 0 0
\(127\) −5.65066e9 −1.92745 −0.963724 0.266902i \(-0.914000\pi\)
−0.963724 + 0.266902i \(0.914000\pi\)
\(128\) −5.45776e9 −1.79709
\(129\) 0 0
\(130\) 1.32430e10 4.06668
\(131\) 9.55272e8 0.283404 0.141702 0.989909i \(-0.454743\pi\)
0.141702 + 0.989909i \(0.454743\pi\)
\(132\) 0 0
\(133\) −4.84515e8 −0.134269
\(134\) 7.34810e9 1.96881
\(135\) 0 0
\(136\) 7.62785e9 1.91195
\(137\) 3.88798e9 0.942933 0.471467 0.881884i \(-0.343725\pi\)
0.471467 + 0.881884i \(0.343725\pi\)
\(138\) 0 0
\(139\) −2.94404e9 −0.668925 −0.334463 0.942409i \(-0.608555\pi\)
−0.334463 + 0.942409i \(0.608555\pi\)
\(140\) −6.00280e9 −1.32062
\(141\) 0 0
\(142\) −5.55722e8 −0.114699
\(143\) 8.65018e9 1.72987
\(144\) 0 0
\(145\) −4.09482e9 −0.769270
\(146\) −1.20434e10 −2.19362
\(147\) 0 0
\(148\) 1.90437e9 0.326267
\(149\) 4.43832e9 0.737702 0.368851 0.929489i \(-0.379751\pi\)
0.368851 + 0.929489i \(0.379751\pi\)
\(150\) 0 0
\(151\) −5.13155e9 −0.803253 −0.401626 0.915804i \(-0.631555\pi\)
−0.401626 + 0.915804i \(0.631555\pi\)
\(152\) −1.89603e9 −0.288104
\(153\) 0 0
\(154\) −6.14687e9 −0.880666
\(155\) 1.53613e10 2.13765
\(156\) 0 0
\(157\) −6.01238e9 −0.789765 −0.394883 0.918732i \(-0.629215\pi\)
−0.394883 + 0.918732i \(0.629215\pi\)
\(158\) 8.05164e9 1.02785
\(159\) 0 0
\(160\) 7.35647e9 0.887420
\(161\) −7.24755e9 −0.850109
\(162\) 0 0
\(163\) 9.87088e9 1.09525 0.547623 0.836725i \(-0.315533\pi\)
0.547623 + 0.836725i \(0.315533\pi\)
\(164\) 1.19659e10 1.29165
\(165\) 0 0
\(166\) −9.32981e9 −0.953645
\(167\) −1.10715e10 −1.10149 −0.550747 0.834672i \(-0.685657\pi\)
−0.550747 + 0.834672i \(0.685657\pi\)
\(168\) 0 0
\(169\) 2.86962e10 2.70604
\(170\) −3.47559e10 −3.19160
\(171\) 0 0
\(172\) −1.88745e9 −0.164436
\(173\) −1.13438e10 −0.962830 −0.481415 0.876493i \(-0.659877\pi\)
−0.481415 + 0.876493i \(0.659877\pi\)
\(174\) 0 0
\(175\) 4.50694e9 0.363254
\(176\) −3.90536e9 −0.306799
\(177\) 0 0
\(178\) −4.55738e9 −0.340271
\(179\) 9.63145e9 0.701218 0.350609 0.936522i \(-0.385975\pi\)
0.350609 + 0.936522i \(0.385975\pi\)
\(180\) 0 0
\(181\) −4.35916e9 −0.301891 −0.150945 0.988542i \(-0.548232\pi\)
−0.150945 + 0.988542i \(0.548232\pi\)
\(182\) −2.79273e10 −1.88672
\(183\) 0 0
\(184\) −2.83615e10 −1.82410
\(185\) −3.75120e9 −0.235450
\(186\) 0 0
\(187\) −2.27023e10 −1.35763
\(188\) −3.25315e10 −1.89930
\(189\) 0 0
\(190\) 8.63917e9 0.480929
\(191\) −1.33132e9 −0.0723821 −0.0361911 0.999345i \(-0.511522\pi\)
−0.0361911 + 0.999345i \(0.511522\pi\)
\(192\) 0 0
\(193\) −3.29347e10 −1.70862 −0.854309 0.519765i \(-0.826020\pi\)
−0.854309 + 0.519765i \(0.826020\pi\)
\(194\) 3.31538e10 1.68045
\(195\) 0 0
\(196\) −2.37358e10 −1.14882
\(197\) −1.72555e10 −0.816264 −0.408132 0.912923i \(-0.633820\pi\)
−0.408132 + 0.912923i \(0.633820\pi\)
\(198\) 0 0
\(199\) −3.03431e10 −1.37158 −0.685789 0.727800i \(-0.740543\pi\)
−0.685789 + 0.727800i \(0.740543\pi\)
\(200\) 1.76368e10 0.779444
\(201\) 0 0
\(202\) −8.42525e9 −0.356042
\(203\) 8.63533e9 0.356900
\(204\) 0 0
\(205\) −2.35702e10 −0.932118
\(206\) 5.11033e10 1.97718
\(207\) 0 0
\(208\) −1.77434e10 −0.657281
\(209\) 5.64302e9 0.204575
\(210\) 0 0
\(211\) 2.95450e10 1.02616 0.513078 0.858342i \(-0.328505\pi\)
0.513078 + 0.858342i \(0.328505\pi\)
\(212\) 6.40776e10 2.17869
\(213\) 0 0
\(214\) 3.77008e10 1.22882
\(215\) 3.71787e9 0.118665
\(216\) 0 0
\(217\) −3.23947e10 −0.991755
\(218\) −8.52183e9 −0.255552
\(219\) 0 0
\(220\) 6.99131e10 2.01213
\(221\) −1.03144e11 −2.90856
\(222\) 0 0
\(223\) −4.85005e10 −1.31333 −0.656666 0.754181i \(-0.728034\pi\)
−0.656666 + 0.754181i \(0.728034\pi\)
\(224\) −1.55136e10 −0.411715
\(225\) 0 0
\(226\) 1.78414e10 0.454927
\(227\) 4.12800e10 1.03187 0.515933 0.856629i \(-0.327445\pi\)
0.515933 + 0.856629i \(0.327445\pi\)
\(228\) 0 0
\(229\) 1.21823e10 0.292730 0.146365 0.989231i \(-0.453243\pi\)
0.146365 + 0.989231i \(0.453243\pi\)
\(230\) 1.29228e11 3.04495
\(231\) 0 0
\(232\) 3.37923e10 0.765810
\(233\) 7.14702e9 0.158863 0.0794316 0.996840i \(-0.474689\pi\)
0.0794316 + 0.996840i \(0.474689\pi\)
\(234\) 0 0
\(235\) 6.40802e10 1.37062
\(236\) 1.02459e11 2.15004
\(237\) 0 0
\(238\) 7.32948e10 1.48073
\(239\) 3.86505e9 0.0766240 0.0383120 0.999266i \(-0.487802\pi\)
0.0383120 + 0.999266i \(0.487802\pi\)
\(240\) 0 0
\(241\) −8.42727e10 −1.60920 −0.804600 0.593817i \(-0.797620\pi\)
−0.804600 + 0.593817i \(0.797620\pi\)
\(242\) −1.70720e10 −0.319975
\(243\) 0 0
\(244\) −1.06632e10 −0.192589
\(245\) 4.67546e10 0.829042
\(246\) 0 0
\(247\) 2.56382e10 0.438279
\(248\) −1.26769e11 −2.12804
\(249\) 0 0
\(250\) 5.01101e10 0.811326
\(251\) −4.52000e10 −0.718798 −0.359399 0.933184i \(-0.617018\pi\)
−0.359399 + 0.933184i \(0.617018\pi\)
\(252\) 0 0
\(253\) 8.44104e10 1.29525
\(254\) −2.12475e11 −3.20300
\(255\) 0 0
\(256\) −1.02038e11 −1.48486
\(257\) −1.12948e11 −1.61503 −0.807513 0.589850i \(-0.799187\pi\)
−0.807513 + 0.589850i \(0.799187\pi\)
\(258\) 0 0
\(259\) 7.91070e9 0.109236
\(260\) 3.17639e11 4.31075
\(261\) 0 0
\(262\) 3.59199e10 0.470956
\(263\) −1.21136e11 −1.56125 −0.780623 0.625003i \(-0.785098\pi\)
−0.780623 + 0.625003i \(0.785098\pi\)
\(264\) 0 0
\(265\) −1.26219e11 −1.57224
\(266\) −1.82186e10 −0.223125
\(267\) 0 0
\(268\) 1.76247e11 2.08697
\(269\) −2.98343e10 −0.347401 −0.173700 0.984799i \(-0.555572\pi\)
−0.173700 + 0.984799i \(0.555572\pi\)
\(270\) 0 0
\(271\) −1.06831e11 −1.20319 −0.601597 0.798800i \(-0.705469\pi\)
−0.601597 + 0.798800i \(0.705469\pi\)
\(272\) 4.65671e10 0.515845
\(273\) 0 0
\(274\) 1.46195e11 1.56695
\(275\) −5.24912e10 −0.553464
\(276\) 0 0
\(277\) 7.33121e9 0.0748199 0.0374099 0.999300i \(-0.488089\pi\)
0.0374099 + 0.999300i \(0.488089\pi\)
\(278\) −1.10701e11 −1.11161
\(279\) 0 0
\(280\) −9.75787e10 −0.948733
\(281\) −7.26917e10 −0.695515 −0.347757 0.937585i \(-0.613057\pi\)
−0.347757 + 0.937585i \(0.613057\pi\)
\(282\) 0 0
\(283\) −6.70808e10 −0.621669 −0.310835 0.950464i \(-0.600609\pi\)
−0.310835 + 0.950464i \(0.600609\pi\)
\(284\) −1.33292e10 −0.121583
\(285\) 0 0
\(286\) 3.25262e11 2.87466
\(287\) 4.97058e10 0.432453
\(288\) 0 0
\(289\) 1.52112e11 1.28269
\(290\) −1.53973e11 −1.27836
\(291\) 0 0
\(292\) −2.88866e11 −2.32527
\(293\) 9.70631e10 0.769396 0.384698 0.923043i \(-0.374306\pi\)
0.384698 + 0.923043i \(0.374306\pi\)
\(294\) 0 0
\(295\) −2.01822e11 −1.55157
\(296\) 3.09566e10 0.234391
\(297\) 0 0
\(298\) 1.66889e11 1.22590
\(299\) 3.83505e11 2.77492
\(300\) 0 0
\(301\) −7.84041e9 −0.0550541
\(302\) −1.92956e11 −1.33483
\(303\) 0 0
\(304\) −1.15750e10 −0.0777305
\(305\) 2.10042e10 0.138981
\(306\) 0 0
\(307\) −3.37348e8 −0.00216748 −0.00108374 0.999999i \(-0.500345\pi\)
−0.00108374 + 0.999999i \(0.500345\pi\)
\(308\) −1.47436e11 −0.933521
\(309\) 0 0
\(310\) 5.77615e11 3.55231
\(311\) −2.24027e11 −1.35793 −0.678966 0.734170i \(-0.737572\pi\)
−0.678966 + 0.734170i \(0.737572\pi\)
\(312\) 0 0
\(313\) 6.27538e10 0.369565 0.184782 0.982779i \(-0.440842\pi\)
0.184782 + 0.982779i \(0.440842\pi\)
\(314\) −2.26076e11 −1.31242
\(315\) 0 0
\(316\) 1.93122e11 1.08953
\(317\) 1.58022e11 0.878921 0.439461 0.898262i \(-0.355170\pi\)
0.439461 + 0.898262i \(0.355170\pi\)
\(318\) 0 0
\(319\) −1.00574e11 −0.543783
\(320\) 3.58027e11 1.90872
\(321\) 0 0
\(322\) −2.72521e11 −1.41270
\(323\) −6.72869e10 −0.343969
\(324\) 0 0
\(325\) −2.38485e11 −1.18573
\(326\) 3.71163e11 1.82006
\(327\) 0 0
\(328\) 1.94512e11 0.927926
\(329\) −1.35135e11 −0.635896
\(330\) 0 0
\(331\) −9.87367e10 −0.452119 −0.226059 0.974114i \(-0.572584\pi\)
−0.226059 + 0.974114i \(0.572584\pi\)
\(332\) −2.23780e11 −1.01088
\(333\) 0 0
\(334\) −4.16308e11 −1.83044
\(335\) −3.47170e11 −1.50605
\(336\) 0 0
\(337\) 1.47765e11 0.624075 0.312037 0.950070i \(-0.398989\pi\)
0.312037 + 0.950070i \(0.398989\pi\)
\(338\) 1.07903e12 4.49684
\(339\) 0 0
\(340\) −8.33637e11 −3.38316
\(341\) 3.77292e11 1.51107
\(342\) 0 0
\(343\) −2.49781e11 −0.974397
\(344\) −3.06815e10 −0.118131
\(345\) 0 0
\(346\) −4.26546e11 −1.60001
\(347\) −3.40507e10 −0.126079 −0.0630395 0.998011i \(-0.520079\pi\)
−0.0630395 + 0.998011i \(0.520079\pi\)
\(348\) 0 0
\(349\) 6.70967e10 0.242095 0.121048 0.992647i \(-0.461375\pi\)
0.121048 + 0.992647i \(0.461375\pi\)
\(350\) 1.69469e11 0.603649
\(351\) 0 0
\(352\) 1.80683e11 0.627301
\(353\) 9.94198e10 0.340790 0.170395 0.985376i \(-0.445496\pi\)
0.170395 + 0.985376i \(0.445496\pi\)
\(354\) 0 0
\(355\) 2.62558e10 0.0877399
\(356\) −1.09311e11 −0.360694
\(357\) 0 0
\(358\) 3.62160e11 1.16527
\(359\) 8.45266e10 0.268577 0.134288 0.990942i \(-0.457125\pi\)
0.134288 + 0.990942i \(0.457125\pi\)
\(360\) 0 0
\(361\) −3.05962e11 −0.948169
\(362\) −1.63912e11 −0.501676
\(363\) 0 0
\(364\) −6.69849e11 −1.99996
\(365\) 5.69005e11 1.67803
\(366\) 0 0
\(367\) 2.78102e11 0.800215 0.400108 0.916468i \(-0.368973\pi\)
0.400108 + 0.916468i \(0.368973\pi\)
\(368\) −1.73144e11 −0.492143
\(369\) 0 0
\(370\) −1.41052e11 −0.391266
\(371\) 2.66176e11 0.729436
\(372\) 0 0
\(373\) 5.89326e11 1.57640 0.788199 0.615420i \(-0.211014\pi\)
0.788199 + 0.615420i \(0.211014\pi\)
\(374\) −8.53646e11 −2.25609
\(375\) 0 0
\(376\) −5.28818e11 −1.36446
\(377\) −4.56939e11 −1.16499
\(378\) 0 0
\(379\) 4.28557e10 0.106692 0.0533461 0.998576i \(-0.483011\pi\)
0.0533461 + 0.998576i \(0.483011\pi\)
\(380\) 2.07214e11 0.509793
\(381\) 0 0
\(382\) −5.00600e10 −0.120283
\(383\) 3.31187e11 0.786463 0.393231 0.919440i \(-0.371357\pi\)
0.393231 + 0.919440i \(0.371357\pi\)
\(384\) 0 0
\(385\) 2.90417e11 0.673672
\(386\) −1.23840e12 −2.83935
\(387\) 0 0
\(388\) 7.95210e11 1.78131
\(389\) 5.48637e10 0.121482 0.0607410 0.998154i \(-0.480654\pi\)
0.0607410 + 0.998154i \(0.480654\pi\)
\(390\) 0 0
\(391\) −1.00650e12 −2.17781
\(392\) −3.85839e11 −0.825314
\(393\) 0 0
\(394\) −6.48840e11 −1.35645
\(395\) −3.80410e11 −0.786258
\(396\) 0 0
\(397\) −3.64760e11 −0.736971 −0.368485 0.929634i \(-0.620124\pi\)
−0.368485 + 0.929634i \(0.620124\pi\)
\(398\) −1.14095e12 −2.27926
\(399\) 0 0
\(400\) 1.07671e11 0.210294
\(401\) −1.15136e11 −0.222362 −0.111181 0.993800i \(-0.535463\pi\)
−0.111181 + 0.993800i \(0.535463\pi\)
\(402\) 0 0
\(403\) 1.71417e12 3.23728
\(404\) −2.02083e11 −0.377411
\(405\) 0 0
\(406\) 3.24704e11 0.593090
\(407\) −9.21339e10 −0.166435
\(408\) 0 0
\(409\) −1.11527e11 −0.197073 −0.0985363 0.995133i \(-0.531416\pi\)
−0.0985363 + 0.995133i \(0.531416\pi\)
\(410\) −8.86282e11 −1.54898
\(411\) 0 0
\(412\) 1.22574e12 2.09584
\(413\) 4.25611e11 0.719843
\(414\) 0 0
\(415\) 4.40799e11 0.729498
\(416\) 8.20905e11 1.34392
\(417\) 0 0
\(418\) 2.12188e11 0.339960
\(419\) −3.64957e11 −0.578468 −0.289234 0.957258i \(-0.593401\pi\)
−0.289234 + 0.957258i \(0.593401\pi\)
\(420\) 0 0
\(421\) −7.90658e11 −1.22665 −0.613323 0.789832i \(-0.710168\pi\)
−0.613323 + 0.789832i \(0.710168\pi\)
\(422\) 1.11095e12 1.70525
\(423\) 0 0
\(424\) 1.04162e12 1.56517
\(425\) 6.25901e11 0.930583
\(426\) 0 0
\(427\) −4.42945e10 −0.0644800
\(428\) 9.04271e11 1.30257
\(429\) 0 0
\(430\) 1.39799e11 0.197195
\(431\) 1.34437e12 1.87660 0.938298 0.345828i \(-0.112402\pi\)
0.938298 + 0.345828i \(0.112402\pi\)
\(432\) 0 0
\(433\) 2.92568e11 0.399974 0.199987 0.979799i \(-0.435910\pi\)
0.199987 + 0.979799i \(0.435910\pi\)
\(434\) −1.21810e12 −1.64808
\(435\) 0 0
\(436\) −2.04400e11 −0.270889
\(437\) 2.50183e11 0.328164
\(438\) 0 0
\(439\) −2.79934e11 −0.359720 −0.179860 0.983692i \(-0.557564\pi\)
−0.179860 + 0.983692i \(0.557564\pi\)
\(440\) 1.13648e12 1.44552
\(441\) 0 0
\(442\) −3.87840e12 −4.83340
\(443\) −1.26158e12 −1.55632 −0.778161 0.628064i \(-0.783847\pi\)
−0.778161 + 0.628064i \(0.783847\pi\)
\(444\) 0 0
\(445\) 2.15319e11 0.260293
\(446\) −1.82371e12 −2.18247
\(447\) 0 0
\(448\) −7.55023e11 −0.885542
\(449\) 7.78344e10 0.0903780 0.0451890 0.998978i \(-0.485611\pi\)
0.0451890 + 0.998978i \(0.485611\pi\)
\(450\) 0 0
\(451\) −5.78911e11 −0.658897
\(452\) 4.27935e11 0.482230
\(453\) 0 0
\(454\) 1.55220e12 1.71474
\(455\) 1.31946e12 1.44326
\(456\) 0 0
\(457\) −7.15331e11 −0.767157 −0.383579 0.923508i \(-0.625308\pi\)
−0.383579 + 0.923508i \(0.625308\pi\)
\(458\) 4.58075e11 0.486454
\(459\) 0 0
\(460\) 3.09959e12 3.22770
\(461\) 1.73891e11 0.179318 0.0896588 0.995973i \(-0.471422\pi\)
0.0896588 + 0.995973i \(0.471422\pi\)
\(462\) 0 0
\(463\) 1.33058e12 1.34564 0.672819 0.739807i \(-0.265083\pi\)
0.672819 + 0.739807i \(0.265083\pi\)
\(464\) 2.06298e11 0.206616
\(465\) 0 0
\(466\) 2.68741e11 0.263996
\(467\) 1.12875e11 0.109818 0.0549088 0.998491i \(-0.482513\pi\)
0.0549088 + 0.998491i \(0.482513\pi\)
\(468\) 0 0
\(469\) 7.32127e11 0.698729
\(470\) 2.40953e12 2.27768
\(471\) 0 0
\(472\) 1.66553e12 1.54459
\(473\) 9.13153e10 0.0838819
\(474\) 0 0
\(475\) −1.55578e11 −0.140226
\(476\) 1.75801e12 1.56960
\(477\) 0 0
\(478\) 1.45333e11 0.127332
\(479\) −4.09679e11 −0.355577 −0.177789 0.984069i \(-0.556894\pi\)
−0.177789 + 0.984069i \(0.556894\pi\)
\(480\) 0 0
\(481\) −4.18595e11 −0.356567
\(482\) −3.16881e12 −2.67414
\(483\) 0 0
\(484\) −4.09480e11 −0.339179
\(485\) −1.56640e12 −1.28547
\(486\) 0 0
\(487\) 2.35261e12 1.89526 0.947632 0.319366i \(-0.103470\pi\)
0.947632 + 0.319366i \(0.103470\pi\)
\(488\) −1.73336e11 −0.138356
\(489\) 0 0
\(490\) 1.75806e12 1.37769
\(491\) 1.59827e12 1.24103 0.620517 0.784193i \(-0.286923\pi\)
0.620517 + 0.784193i \(0.286923\pi\)
\(492\) 0 0
\(493\) 1.19923e12 0.914306
\(494\) 9.64041e11 0.728323
\(495\) 0 0
\(496\) −7.73907e11 −0.574145
\(497\) −5.53693e10 −0.0407066
\(498\) 0 0
\(499\) 1.07185e12 0.773892 0.386946 0.922102i \(-0.373530\pi\)
0.386946 + 0.922102i \(0.373530\pi\)
\(500\) 1.20191e12 0.860019
\(501\) 0 0
\(502\) −1.69960e12 −1.19449
\(503\) −2.53052e12 −1.76260 −0.881300 0.472556i \(-0.843331\pi\)
−0.881300 + 0.472556i \(0.843331\pi\)
\(504\) 0 0
\(505\) 3.98061e11 0.272357
\(506\) 3.17398e12 2.15242
\(507\) 0 0
\(508\) −5.09631e12 −3.39523
\(509\) 1.45460e12 0.960536 0.480268 0.877122i \(-0.340539\pi\)
0.480268 + 0.877122i \(0.340539\pi\)
\(510\) 0 0
\(511\) −1.19994e12 −0.778514
\(512\) −1.04246e12 −0.670415
\(513\) 0 0
\(514\) −4.24705e12 −2.68382
\(515\) −2.41444e12 −1.51246
\(516\) 0 0
\(517\) 1.57388e12 0.968869
\(518\) 2.97457e11 0.181526
\(519\) 0 0
\(520\) 5.16339e12 3.09685
\(521\) 1.11421e12 0.662514 0.331257 0.943540i \(-0.392527\pi\)
0.331257 + 0.943540i \(0.392527\pi\)
\(522\) 0 0
\(523\) −1.53080e12 −0.894665 −0.447332 0.894368i \(-0.647626\pi\)
−0.447332 + 0.894368i \(0.647626\pi\)
\(524\) 8.61556e11 0.499221
\(525\) 0 0
\(526\) −4.55492e12 −2.59445
\(527\) −4.49880e12 −2.54068
\(528\) 0 0
\(529\) 1.94117e12 1.07774
\(530\) −4.74607e12 −2.61272
\(531\) 0 0
\(532\) −4.36982e11 −0.236517
\(533\) −2.63019e12 −1.41161
\(534\) 0 0
\(535\) −1.78122e12 −0.939996
\(536\) 2.86500e12 1.49928
\(537\) 0 0
\(538\) −1.12182e12 −0.577304
\(539\) 1.14835e12 0.586035
\(540\) 0 0
\(541\) 2.80574e12 1.40819 0.704094 0.710107i \(-0.251354\pi\)
0.704094 + 0.710107i \(0.251354\pi\)
\(542\) −4.01704e12 −1.99945
\(543\) 0 0
\(544\) −2.15445e12 −1.05473
\(545\) 4.02625e11 0.195486
\(546\) 0 0
\(547\) −1.95570e12 −0.934027 −0.467014 0.884250i \(-0.654670\pi\)
−0.467014 + 0.884250i \(0.654670\pi\)
\(548\) 3.50655e12 1.66099
\(549\) 0 0
\(550\) −1.97377e12 −0.919737
\(551\) −2.98089e11 −0.137773
\(552\) 0 0
\(553\) 8.02225e11 0.364782
\(554\) 2.75667e11 0.124334
\(555\) 0 0
\(556\) −2.65522e12 −1.17832
\(557\) −3.04443e12 −1.34016 −0.670082 0.742287i \(-0.733741\pi\)
−0.670082 + 0.742287i \(0.733741\pi\)
\(558\) 0 0
\(559\) 4.14876e11 0.179707
\(560\) −5.95707e11 −0.255968
\(561\) 0 0
\(562\) −2.73334e12 −1.15579
\(563\) −8.23592e11 −0.345481 −0.172741 0.984967i \(-0.555262\pi\)
−0.172741 + 0.984967i \(0.555262\pi\)
\(564\) 0 0
\(565\) −8.42941e11 −0.348000
\(566\) −2.52236e12 −1.03308
\(567\) 0 0
\(568\) −2.16674e11 −0.0873453
\(569\) −1.29328e12 −0.517234 −0.258617 0.965980i \(-0.583267\pi\)
−0.258617 + 0.965980i \(0.583267\pi\)
\(570\) 0 0
\(571\) −9.40641e10 −0.0370307 −0.0185153 0.999829i \(-0.505894\pi\)
−0.0185153 + 0.999829i \(0.505894\pi\)
\(572\) 7.80157e12 3.04719
\(573\) 0 0
\(574\) 1.86903e12 0.718642
\(575\) −2.32719e12 −0.887825
\(576\) 0 0
\(577\) 3.56834e11 0.134022 0.0670108 0.997752i \(-0.478654\pi\)
0.0670108 + 0.997752i \(0.478654\pi\)
\(578\) 5.71968e12 2.13155
\(579\) 0 0
\(580\) −3.69311e12 −1.35508
\(581\) −9.29575e11 −0.338448
\(582\) 0 0
\(583\) −3.10009e12 −1.11139
\(584\) −4.69568e12 −1.67048
\(585\) 0 0
\(586\) 3.64975e12 1.27857
\(587\) 2.13672e12 0.742806 0.371403 0.928472i \(-0.378877\pi\)
0.371403 + 0.928472i \(0.378877\pi\)
\(588\) 0 0
\(589\) 1.11825e12 0.382843
\(590\) −7.58889e12 −2.57836
\(591\) 0 0
\(592\) 1.88986e11 0.0632386
\(593\) −2.76976e12 −0.919804 −0.459902 0.887970i \(-0.652116\pi\)
−0.459902 + 0.887970i \(0.652116\pi\)
\(594\) 0 0
\(595\) −3.46291e12 −1.13270
\(596\) 4.00291e12 1.29947
\(597\) 0 0
\(598\) 1.44205e13 4.61131
\(599\) 4.23621e12 1.34449 0.672244 0.740330i \(-0.265331\pi\)
0.672244 + 0.740330i \(0.265331\pi\)
\(600\) 0 0
\(601\) 2.63193e11 0.0822885 0.0411443 0.999153i \(-0.486900\pi\)
0.0411443 + 0.999153i \(0.486900\pi\)
\(602\) −2.94814e11 −0.0914878
\(603\) 0 0
\(604\) −4.62813e12 −1.41494
\(605\) 8.06589e11 0.244767
\(606\) 0 0
\(607\) 4.78384e12 1.43030 0.715150 0.698971i \(-0.246358\pi\)
0.715150 + 0.698971i \(0.246358\pi\)
\(608\) 5.35525e11 0.158933
\(609\) 0 0
\(610\) 7.89796e11 0.230957
\(611\) 7.15068e12 2.07569
\(612\) 0 0
\(613\) 5.91300e12 1.69136 0.845679 0.533692i \(-0.179196\pi\)
0.845679 + 0.533692i \(0.179196\pi\)
\(614\) −1.26849e10 −0.00360188
\(615\) 0 0
\(616\) −2.39665e12 −0.670642
\(617\) −8.52460e11 −0.236805 −0.118402 0.992966i \(-0.537777\pi\)
−0.118402 + 0.992966i \(0.537777\pi\)
\(618\) 0 0
\(619\) 3.92018e10 0.0107324 0.00536621 0.999986i \(-0.498292\pi\)
0.00536621 + 0.999986i \(0.498292\pi\)
\(620\) 1.38544e13 3.76551
\(621\) 0 0
\(622\) −8.42381e12 −2.25659
\(623\) −4.54074e11 −0.120762
\(624\) 0 0
\(625\) −4.71710e12 −1.23656
\(626\) 2.35966e12 0.614136
\(627\) 0 0
\(628\) −5.42255e12 −1.39118
\(629\) 1.09860e12 0.279840
\(630\) 0 0
\(631\) 3.34191e12 0.839195 0.419598 0.907710i \(-0.362171\pi\)
0.419598 + 0.907710i \(0.362171\pi\)
\(632\) 3.13931e12 0.782722
\(633\) 0 0
\(634\) 5.94190e12 1.46057
\(635\) 1.00387e13 2.45016
\(636\) 0 0
\(637\) 5.21732e12 1.25551
\(638\) −3.78175e12 −0.903649
\(639\) 0 0
\(640\) 9.69597e12 2.28445
\(641\) 2.50519e12 0.586111 0.293055 0.956095i \(-0.405328\pi\)
0.293055 + 0.956095i \(0.405328\pi\)
\(642\) 0 0
\(643\) −3.97832e12 −0.917804 −0.458902 0.888487i \(-0.651757\pi\)
−0.458902 + 0.888487i \(0.651757\pi\)
\(644\) −6.53654e12 −1.49748
\(645\) 0 0
\(646\) −2.53011e12 −0.571601
\(647\) 2.26899e12 0.509053 0.254527 0.967066i \(-0.418080\pi\)
0.254527 + 0.967066i \(0.418080\pi\)
\(648\) 0 0
\(649\) −4.95699e12 −1.09677
\(650\) −8.96748e12 −1.97043
\(651\) 0 0
\(652\) 8.90252e12 1.92930
\(653\) −4.06675e12 −0.875262 −0.437631 0.899155i \(-0.644182\pi\)
−0.437631 + 0.899155i \(0.644182\pi\)
\(654\) 0 0
\(655\) −1.69708e12 −0.360261
\(656\) 1.18747e12 0.250355
\(657\) 0 0
\(658\) −5.08132e12 −1.05672
\(659\) −3.23943e12 −0.669090 −0.334545 0.942380i \(-0.608583\pi\)
−0.334545 + 0.942380i \(0.608583\pi\)
\(660\) 0 0
\(661\) −2.00532e12 −0.408579 −0.204290 0.978910i \(-0.565488\pi\)
−0.204290 + 0.978910i \(0.565488\pi\)
\(662\) −3.71268e12 −0.751323
\(663\) 0 0
\(664\) −3.63766e12 −0.726217
\(665\) 8.60763e11 0.170681
\(666\) 0 0
\(667\) −4.45892e12 −0.872295
\(668\) −9.98535e12 −1.94030
\(669\) 0 0
\(670\) −1.30542e13 −2.50273
\(671\) 5.15887e11 0.0982434
\(672\) 0 0
\(673\) 2.46033e11 0.0462302 0.0231151 0.999733i \(-0.492642\pi\)
0.0231151 + 0.999733i \(0.492642\pi\)
\(674\) 5.55623e12 1.03708
\(675\) 0 0
\(676\) 2.58810e13 4.76673
\(677\) 1.99607e12 0.365196 0.182598 0.983188i \(-0.441549\pi\)
0.182598 + 0.983188i \(0.441549\pi\)
\(678\) 0 0
\(679\) 3.30328e12 0.596391
\(680\) −1.35512e13 −2.43046
\(681\) 0 0
\(682\) 1.41869e13 2.51106
\(683\) 8.20056e12 1.44195 0.720975 0.692961i \(-0.243694\pi\)
0.720975 + 0.692961i \(0.243694\pi\)
\(684\) 0 0
\(685\) −6.90717e12 −1.19865
\(686\) −9.39222e12 −1.61923
\(687\) 0 0
\(688\) −1.87307e11 −0.0318718
\(689\) −1.40848e13 −2.38102
\(690\) 0 0
\(691\) 2.86091e12 0.477367 0.238684 0.971097i \(-0.423284\pi\)
0.238684 + 0.971097i \(0.423284\pi\)
\(692\) −1.02309e13 −1.69604
\(693\) 0 0
\(694\) −1.28037e12 −0.209516
\(695\) 5.23023e12 0.850333
\(696\) 0 0
\(697\) 6.90289e12 1.10786
\(698\) 2.52296e12 0.402310
\(699\) 0 0
\(700\) 4.06480e12 0.639879
\(701\) −4.34132e12 −0.679032 −0.339516 0.940600i \(-0.610263\pi\)
−0.339516 + 0.940600i \(0.610263\pi\)
\(702\) 0 0
\(703\) −2.73074e11 −0.0421679
\(704\) 8.79356e12 1.34924
\(705\) 0 0
\(706\) 3.73837e12 0.566319
\(707\) −8.39449e11 −0.126359
\(708\) 0 0
\(709\) 1.24606e13 1.85196 0.925979 0.377574i \(-0.123242\pi\)
0.925979 + 0.377574i \(0.123242\pi\)
\(710\) 9.87265e11 0.145805
\(711\) 0 0
\(712\) −1.77691e12 −0.259122
\(713\) 1.67272e13 2.42394
\(714\) 0 0
\(715\) −1.53674e13 −2.19900
\(716\) 8.68657e12 1.23521
\(717\) 0 0
\(718\) 3.17835e12 0.446316
\(719\) −7.62397e12 −1.06390 −0.531951 0.846775i \(-0.678541\pi\)
−0.531951 + 0.846775i \(0.678541\pi\)
\(720\) 0 0
\(721\) 5.09167e12 0.701700
\(722\) −1.15047e13 −1.57565
\(723\) 0 0
\(724\) −3.93151e12 −0.531785
\(725\) 2.77281e12 0.372734
\(726\) 0 0
\(727\) 8.45265e11 0.112225 0.0561123 0.998424i \(-0.482130\pi\)
0.0561123 + 0.998424i \(0.482130\pi\)
\(728\) −1.08888e13 −1.43677
\(729\) 0 0
\(730\) 2.13956e13 2.78851
\(731\) −1.08884e12 −0.141037
\(732\) 0 0
\(733\) −1.25819e13 −1.60982 −0.804909 0.593398i \(-0.797786\pi\)
−0.804909 + 0.593398i \(0.797786\pi\)
\(734\) 1.04571e13 1.32978
\(735\) 0 0
\(736\) 8.01058e12 1.00627
\(737\) −8.52690e12 −1.06460
\(738\) 0 0
\(739\) −1.20238e13 −1.48301 −0.741503 0.670949i \(-0.765887\pi\)
−0.741503 + 0.670949i \(0.765887\pi\)
\(740\) −3.38320e12 −0.414748
\(741\) 0 0
\(742\) 1.00087e13 1.21216
\(743\) −1.24304e13 −1.49635 −0.748177 0.663499i \(-0.769071\pi\)
−0.748177 + 0.663499i \(0.769071\pi\)
\(744\) 0 0
\(745\) −7.88489e12 −0.937761
\(746\) 2.21597e13 2.61963
\(747\) 0 0
\(748\) −2.04751e13 −2.39149
\(749\) 3.75631e12 0.436108
\(750\) 0 0
\(751\) 3.63549e12 0.417046 0.208523 0.978017i \(-0.433134\pi\)
0.208523 + 0.978017i \(0.433134\pi\)
\(752\) −3.22837e12 −0.368131
\(753\) 0 0
\(754\) −1.71818e13 −1.93596
\(755\) 9.11643e12 1.02109
\(756\) 0 0
\(757\) −1.25427e13 −1.38822 −0.694111 0.719868i \(-0.744202\pi\)
−0.694111 + 0.719868i \(0.744202\pi\)
\(758\) 1.61145e12 0.177299
\(759\) 0 0
\(760\) 3.36838e12 0.366235
\(761\) 1.69116e13 1.82791 0.913953 0.405821i \(-0.133014\pi\)
0.913953 + 0.405821i \(0.133014\pi\)
\(762\) 0 0
\(763\) −8.49072e11 −0.0906951
\(764\) −1.20071e12 −0.127502
\(765\) 0 0
\(766\) 1.24532e13 1.30693
\(767\) −2.25213e13 −2.34971
\(768\) 0 0
\(769\) 1.48482e13 1.53111 0.765555 0.643371i \(-0.222465\pi\)
0.765555 + 0.643371i \(0.222465\pi\)
\(770\) 1.09202e13 1.11950
\(771\) 0 0
\(772\) −2.97037e13 −3.00976
\(773\) 1.70164e13 1.71419 0.857096 0.515157i \(-0.172266\pi\)
0.857096 + 0.515157i \(0.172266\pi\)
\(774\) 0 0
\(775\) −1.04019e13 −1.03575
\(776\) 1.29266e13 1.27969
\(777\) 0 0
\(778\) 2.06298e12 0.201877
\(779\) −1.71583e12 −0.166938
\(780\) 0 0
\(781\) 6.44872e11 0.0620217
\(782\) −3.78463e13 −3.61904
\(783\) 0 0
\(784\) −2.35550e12 −0.222670
\(785\) 1.06813e13 1.00394
\(786\) 0 0
\(787\) 4.72894e12 0.439418 0.219709 0.975565i \(-0.429489\pi\)
0.219709 + 0.975565i \(0.429489\pi\)
\(788\) −1.55627e13 −1.43786
\(789\) 0 0
\(790\) −1.43041e13 −1.30659
\(791\) 1.77763e12 0.161453
\(792\) 0 0
\(793\) 2.34385e12 0.210475
\(794\) −1.37156e13 −1.22468
\(795\) 0 0
\(796\) −2.73663e13 −2.41606
\(797\) 6.55471e12 0.575428 0.287714 0.957716i \(-0.407105\pi\)
0.287714 + 0.957716i \(0.407105\pi\)
\(798\) 0 0
\(799\) −1.87668e13 −1.62904
\(800\) −4.98143e12 −0.429981
\(801\) 0 0
\(802\) −4.32931e12 −0.369517
\(803\) 1.39754e13 1.18617
\(804\) 0 0
\(805\) 1.28756e13 1.08065
\(806\) 6.44558e13 5.37965
\(807\) 0 0
\(808\) −3.28498e12 −0.271132
\(809\) 2.70428e11 0.0221964 0.0110982 0.999938i \(-0.496467\pi\)
0.0110982 + 0.999938i \(0.496467\pi\)
\(810\) 0 0
\(811\) 7.91887e12 0.642790 0.321395 0.946945i \(-0.395848\pi\)
0.321395 + 0.946945i \(0.395848\pi\)
\(812\) 7.78818e12 0.628686
\(813\) 0 0
\(814\) −3.46440e12 −0.276579
\(815\) −1.75361e13 −1.39227
\(816\) 0 0
\(817\) 2.70648e11 0.0212523
\(818\) −4.19363e12 −0.327492
\(819\) 0 0
\(820\) −2.12579e13 −1.64194
\(821\) 1.06544e13 0.818438 0.409219 0.912436i \(-0.365801\pi\)
0.409219 + 0.912436i \(0.365801\pi\)
\(822\) 0 0
\(823\) −1.91289e13 −1.45342 −0.726711 0.686944i \(-0.758952\pi\)
−0.726711 + 0.686944i \(0.758952\pi\)
\(824\) 1.99250e13 1.50566
\(825\) 0 0
\(826\) 1.60038e13 1.19622
\(827\) 1.54130e13 1.14581 0.572905 0.819622i \(-0.305816\pi\)
0.572905 + 0.819622i \(0.305816\pi\)
\(828\) 0 0
\(829\) 1.56528e13 1.15105 0.575527 0.817783i \(-0.304797\pi\)
0.575527 + 0.817783i \(0.304797\pi\)
\(830\) 1.65748e13 1.21227
\(831\) 0 0
\(832\) 3.99521e13 2.89058
\(833\) −1.36928e13 −0.985347
\(834\) 0 0
\(835\) 1.96690e13 1.40021
\(836\) 5.08942e12 0.360363
\(837\) 0 0
\(838\) −1.37231e13 −0.961287
\(839\) −1.84616e13 −1.28630 −0.643148 0.765742i \(-0.722372\pi\)
−0.643148 + 0.765742i \(0.722372\pi\)
\(840\) 0 0
\(841\) −9.19442e12 −0.633786
\(842\) −2.97302e13 −2.03842
\(843\) 0 0
\(844\) 2.66466e13 1.80759
\(845\) −5.09801e13 −3.43989
\(846\) 0 0
\(847\) −1.70097e12 −0.113559
\(848\) 6.35894e12 0.422283
\(849\) 0 0
\(850\) 2.35350e13 1.54643
\(851\) −4.08475e12 −0.266982
\(852\) 0 0
\(853\) −1.29767e13 −0.839254 −0.419627 0.907697i \(-0.637839\pi\)
−0.419627 + 0.907697i \(0.637839\pi\)
\(854\) −1.66556e12 −0.107152
\(855\) 0 0
\(856\) 1.46994e13 0.935768
\(857\) 8.52387e12 0.539788 0.269894 0.962890i \(-0.413011\pi\)
0.269894 + 0.962890i \(0.413011\pi\)
\(858\) 0 0
\(859\) −2.33722e13 −1.46464 −0.732318 0.680962i \(-0.761562\pi\)
−0.732318 + 0.680962i \(0.761562\pi\)
\(860\) 3.35314e12 0.209030
\(861\) 0 0
\(862\) 5.05507e13 3.11849
\(863\) 3.99924e12 0.245430 0.122715 0.992442i \(-0.460840\pi\)
0.122715 + 0.992442i \(0.460840\pi\)
\(864\) 0 0
\(865\) 2.01527e13 1.22394
\(866\) 1.10011e13 0.664669
\(867\) 0 0
\(868\) −2.92166e13 −1.74699
\(869\) −9.34331e12 −0.555791
\(870\) 0 0
\(871\) −3.87406e13 −2.28078
\(872\) −3.32263e12 −0.194607
\(873\) 0 0
\(874\) 9.40733e12 0.545337
\(875\) 4.99272e12 0.287939
\(876\) 0 0
\(877\) 5.99001e12 0.341924 0.170962 0.985278i \(-0.445313\pi\)
0.170962 + 0.985278i \(0.445313\pi\)
\(878\) −1.05260e13 −0.597776
\(879\) 0 0
\(880\) 6.93805e12 0.390001
\(881\) 1.24937e13 0.698712 0.349356 0.936990i \(-0.386400\pi\)
0.349356 + 0.936990i \(0.386400\pi\)
\(882\) 0 0
\(883\) −2.61286e13 −1.44642 −0.723208 0.690630i \(-0.757333\pi\)
−0.723208 + 0.690630i \(0.757333\pi\)
\(884\) −9.30252e13 −5.12349
\(885\) 0 0
\(886\) −4.74379e13 −2.58627
\(887\) −7.12923e12 −0.386711 −0.193355 0.981129i \(-0.561937\pi\)
−0.193355 + 0.981129i \(0.561937\pi\)
\(888\) 0 0
\(889\) −2.11699e13 −1.13674
\(890\) 8.09640e12 0.432550
\(891\) 0 0
\(892\) −4.37425e13 −2.31346
\(893\) 4.66481e12 0.245472
\(894\) 0 0
\(895\) −1.71107e13 −0.891383
\(896\) −2.04473e13 −1.05986
\(897\) 0 0
\(898\) 2.92671e12 0.150189
\(899\) −1.99302e13 −1.01764
\(900\) 0 0
\(901\) 3.69652e13 1.86867
\(902\) −2.17681e13 −1.09494
\(903\) 0 0
\(904\) 6.95631e12 0.346435
\(905\) 7.74425e12 0.383761
\(906\) 0 0
\(907\) 2.43209e13 1.19329 0.596645 0.802505i \(-0.296500\pi\)
0.596645 + 0.802505i \(0.296500\pi\)
\(908\) 3.72303e13 1.81765
\(909\) 0 0
\(910\) 4.96142e13 2.39839
\(911\) −2.47192e13 −1.18906 −0.594528 0.804075i \(-0.702661\pi\)
−0.594528 + 0.804075i \(0.702661\pi\)
\(912\) 0 0
\(913\) 1.08265e13 0.515669
\(914\) −2.68978e13 −1.27485
\(915\) 0 0
\(916\) 1.09871e13 0.515650
\(917\) 3.57888e12 0.167142
\(918\) 0 0
\(919\) 2.68306e13 1.24082 0.620411 0.784276i \(-0.286966\pi\)
0.620411 + 0.784276i \(0.286966\pi\)
\(920\) 5.03855e13 2.31878
\(921\) 0 0
\(922\) 6.53862e12 0.297987
\(923\) 2.92987e12 0.132874
\(924\) 0 0
\(925\) 2.54013e12 0.114082
\(926\) 5.00324e13 2.23616
\(927\) 0 0
\(928\) −9.54446e12 −0.422460
\(929\) −1.69995e13 −0.748801 −0.374401 0.927267i \(-0.622151\pi\)
−0.374401 + 0.927267i \(0.622151\pi\)
\(930\) 0 0
\(931\) 3.40357e12 0.148478
\(932\) 6.44587e12 0.279840
\(933\) 0 0
\(934\) 4.24430e12 0.182493
\(935\) 4.03316e13 1.72581
\(936\) 0 0
\(937\) −1.71842e13 −0.728285 −0.364143 0.931343i \(-0.618638\pi\)
−0.364143 + 0.931343i \(0.618638\pi\)
\(938\) 2.75293e13 1.16113
\(939\) 0 0
\(940\) 5.77937e13 2.41438
\(941\) −1.71372e13 −0.712504 −0.356252 0.934390i \(-0.615945\pi\)
−0.356252 + 0.934390i \(0.615945\pi\)
\(942\) 0 0
\(943\) −2.56660e13 −1.05695
\(944\) 1.01678e13 0.416730
\(945\) 0 0
\(946\) 3.43362e12 0.139393
\(947\) −3.70024e13 −1.49505 −0.747523 0.664236i \(-0.768757\pi\)
−0.747523 + 0.664236i \(0.768757\pi\)
\(948\) 0 0
\(949\) 6.34951e13 2.54122
\(950\) −5.85002e12 −0.233024
\(951\) 0 0
\(952\) 2.85774e13 1.12760
\(953\) −4.41880e13 −1.73535 −0.867673 0.497136i \(-0.834385\pi\)
−0.867673 + 0.497136i \(0.834385\pi\)
\(954\) 0 0
\(955\) 2.36515e12 0.0920116
\(956\) 3.48588e12 0.134975
\(957\) 0 0
\(958\) −1.54047e13 −0.590891
\(959\) 1.45661e13 0.556109
\(960\) 0 0
\(961\) 4.83267e13 1.82781
\(962\) −1.57399e13 −0.592537
\(963\) 0 0
\(964\) −7.60052e13 −2.83463
\(965\) 5.85099e13 2.17198
\(966\) 0 0
\(967\) −1.34914e13 −0.496179 −0.248090 0.968737i \(-0.579803\pi\)
−0.248090 + 0.968737i \(0.579803\pi\)
\(968\) −6.65632e12 −0.243666
\(969\) 0 0
\(970\) −5.88993e13 −2.13618
\(971\) −8.24021e12 −0.297476 −0.148738 0.988877i \(-0.547521\pi\)
−0.148738 + 0.988877i \(0.547521\pi\)
\(972\) 0 0
\(973\) −1.10297e13 −0.394509
\(974\) 8.84624e13 3.14951
\(975\) 0 0
\(976\) −1.05819e12 −0.0373286
\(977\) −2.85028e12 −0.100083 −0.0500416 0.998747i \(-0.515935\pi\)
−0.0500416 + 0.998747i \(0.515935\pi\)
\(978\) 0 0
\(979\) 5.28849e12 0.183996
\(980\) 4.21678e13 1.46037
\(981\) 0 0
\(982\) 6.00979e13 2.06233
\(983\) −5.75121e13 −1.96457 −0.982287 0.187384i \(-0.939999\pi\)
−0.982287 + 0.187384i \(0.939999\pi\)
\(984\) 0 0
\(985\) 3.06552e13 1.03763
\(986\) 4.50932e13 1.51938
\(987\) 0 0
\(988\) 2.31230e13 0.772035
\(989\) 4.04845e12 0.134557
\(990\) 0 0
\(991\) 2.76543e13 0.910818 0.455409 0.890282i \(-0.349493\pi\)
0.455409 + 0.890282i \(0.349493\pi\)
\(992\) 3.58052e13 1.17393
\(993\) 0 0
\(994\) −2.08199e12 −0.0676455
\(995\) 5.39059e13 1.74354
\(996\) 0 0
\(997\) −2.64166e13 −0.846736 −0.423368 0.905958i \(-0.639152\pi\)
−0.423368 + 0.905958i \(0.639152\pi\)
\(998\) 4.03034e13 1.28604
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.a.b.1.4 yes 4
3.2 odd 2 81.10.a.a.1.1 4
9.2 odd 6 81.10.c.k.28.4 8
9.4 even 3 81.10.c.i.55.1 8
9.5 odd 6 81.10.c.k.55.4 8
9.7 even 3 81.10.c.i.28.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.10.a.a.1.1 4 3.2 odd 2
81.10.a.b.1.4 yes 4 1.1 even 1 trivial
81.10.c.i.28.1 8 9.7 even 3
81.10.c.i.55.1 8 9.4 even 3
81.10.c.k.28.4 8 9.2 odd 6
81.10.c.k.55.4 8 9.5 odd 6