Properties

Label 81.10.a.b.1.3
Level $81$
Weight $10$
Character 81.1
Self dual yes
Analytic conductor $41.718$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,10,Mod(1,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,33] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7179027293\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1314x^{2} + 10232x + 106624 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(15.7163\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+23.7163 q^{2} +50.4644 q^{4} +2758.02 q^{5} -8237.69 q^{7} -10945.9 q^{8} +65410.1 q^{10} -77786.5 q^{11} +22294.6 q^{13} -195368. q^{14} -285435. q^{16} -279361. q^{17} -282874. q^{19} +139182. q^{20} -1.84481e6 q^{22} +573422. q^{23} +5.65355e6 q^{25} +528746. q^{26} -415710. q^{28} -2.50733e6 q^{29} -4.00346e6 q^{31} -1.16516e6 q^{32} -6.62542e6 q^{34} -2.27197e7 q^{35} +725997. q^{37} -6.70873e6 q^{38} -3.01891e7 q^{40} -1.88672e7 q^{41} -8.38638e6 q^{43} -3.92545e6 q^{44} +1.35995e7 q^{46} +3.96821e6 q^{47} +2.75060e7 q^{49} +1.34082e8 q^{50} +1.12508e6 q^{52} -5.37969e7 q^{53} -2.14537e8 q^{55} +9.01692e7 q^{56} -5.94647e7 q^{58} +9.07115e7 q^{59} -1.40355e8 q^{61} -9.49474e7 q^{62} +1.18510e8 q^{64} +6.14889e7 q^{65} +9.76857e7 q^{67} -1.40978e7 q^{68} -5.38829e8 q^{70} -1.01403e8 q^{71} -5.36025e6 q^{73} +1.72180e7 q^{74} -1.42751e7 q^{76} +6.40782e8 q^{77} +1.85361e8 q^{79} -7.87236e8 q^{80} -4.47460e8 q^{82} -2.36379e8 q^{83} -7.70483e8 q^{85} -1.98894e8 q^{86} +8.51446e8 q^{88} +5.37873e8 q^{89} -1.83656e8 q^{91} +2.89374e7 q^{92} +9.41115e7 q^{94} -7.80172e8 q^{95} +7.11359e8 q^{97} +6.52341e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 33 q^{2} + 853 q^{4} + 570 q^{5} - 3238 q^{7} + 4791 q^{8} - 9723 q^{10} - 96690 q^{11} - 141118 q^{13} + 3036 q^{14} - 244463 q^{16} + 285156 q^{17} - 465166 q^{19} - 1041711 q^{20} - 2244480 q^{22}+ \cdots + 735501321 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 23.7163 1.04812 0.524062 0.851680i \(-0.324416\pi\)
0.524062 + 0.851680i \(0.324416\pi\)
\(3\) 0 0
\(4\) 50.4644 0.0985632
\(5\) 2758.02 1.97348 0.986739 0.162312i \(-0.0518952\pi\)
0.986739 + 0.162312i \(0.0518952\pi\)
\(6\) 0 0
\(7\) −8237.69 −1.29677 −0.648387 0.761311i \(-0.724556\pi\)
−0.648387 + 0.761311i \(0.724556\pi\)
\(8\) −10945.9 −0.944817
\(9\) 0 0
\(10\) 65410.1 2.06845
\(11\) −77786.5 −1.60191 −0.800954 0.598726i \(-0.795674\pi\)
−0.800954 + 0.598726i \(0.795674\pi\)
\(12\) 0 0
\(13\) 22294.6 0.216498 0.108249 0.994124i \(-0.465476\pi\)
0.108249 + 0.994124i \(0.465476\pi\)
\(14\) −195368. −1.35918
\(15\) 0 0
\(16\) −285435. −1.08885
\(17\) −279361. −0.811233 −0.405616 0.914043i \(-0.632943\pi\)
−0.405616 + 0.914043i \(0.632943\pi\)
\(18\) 0 0
\(19\) −282874. −0.497968 −0.248984 0.968508i \(-0.580097\pi\)
−0.248984 + 0.968508i \(0.580097\pi\)
\(20\) 139182. 0.194512
\(21\) 0 0
\(22\) −1.84481e6 −1.67900
\(23\) 573422. 0.427267 0.213634 0.976914i \(-0.431470\pi\)
0.213634 + 0.976914i \(0.431470\pi\)
\(24\) 0 0
\(25\) 5.65355e6 2.89462
\(26\) 528746. 0.226917
\(27\) 0 0
\(28\) −415710. −0.127814
\(29\) −2.50733e6 −0.658296 −0.329148 0.944278i \(-0.606761\pi\)
−0.329148 + 0.944278i \(0.606761\pi\)
\(30\) 0 0
\(31\) −4.00346e6 −0.778588 −0.389294 0.921114i \(-0.627281\pi\)
−0.389294 + 0.921114i \(0.627281\pi\)
\(32\) −1.16516e6 −0.196431
\(33\) 0 0
\(34\) −6.62542e6 −0.850272
\(35\) −2.27197e7 −2.55916
\(36\) 0 0
\(37\) 725997. 0.0636836 0.0318418 0.999493i \(-0.489863\pi\)
0.0318418 + 0.999493i \(0.489863\pi\)
\(38\) −6.70873e6 −0.521932
\(39\) 0 0
\(40\) −3.01891e7 −1.86458
\(41\) −1.88672e7 −1.04275 −0.521374 0.853328i \(-0.674580\pi\)
−0.521374 + 0.853328i \(0.674580\pi\)
\(42\) 0 0
\(43\) −8.38638e6 −0.374082 −0.187041 0.982352i \(-0.559890\pi\)
−0.187041 + 0.982352i \(0.559890\pi\)
\(44\) −3.92545e6 −0.157889
\(45\) 0 0
\(46\) 1.35995e7 0.447829
\(47\) 3.96821e6 0.118619 0.0593096 0.998240i \(-0.481110\pi\)
0.0593096 + 0.998240i \(0.481110\pi\)
\(48\) 0 0
\(49\) 2.75060e7 0.681624
\(50\) 1.34082e8 3.03392
\(51\) 0 0
\(52\) 1.12508e6 0.0213388
\(53\) −5.37969e7 −0.936517 −0.468259 0.883591i \(-0.655118\pi\)
−0.468259 + 0.883591i \(0.655118\pi\)
\(54\) 0 0
\(55\) −2.14537e8 −3.16133
\(56\) 9.01692e7 1.22521
\(57\) 0 0
\(58\) −5.94647e7 −0.689975
\(59\) 9.07115e7 0.974604 0.487302 0.873233i \(-0.337981\pi\)
0.487302 + 0.873233i \(0.337981\pi\)
\(60\) 0 0
\(61\) −1.40355e8 −1.29791 −0.648955 0.760826i \(-0.724794\pi\)
−0.648955 + 0.760826i \(0.724794\pi\)
\(62\) −9.49474e7 −0.816057
\(63\) 0 0
\(64\) 1.18510e8 0.882965
\(65\) 6.14889e7 0.427255
\(66\) 0 0
\(67\) 9.76857e7 0.592235 0.296118 0.955151i \(-0.404308\pi\)
0.296118 + 0.955151i \(0.404308\pi\)
\(68\) −1.40978e7 −0.0799577
\(69\) 0 0
\(70\) −5.38829e8 −2.68231
\(71\) −1.01403e8 −0.473576 −0.236788 0.971561i \(-0.576095\pi\)
−0.236788 + 0.971561i \(0.576095\pi\)
\(72\) 0 0
\(73\) −5.36025e6 −0.0220918 −0.0110459 0.999939i \(-0.503516\pi\)
−0.0110459 + 0.999939i \(0.503516\pi\)
\(74\) 1.72180e7 0.0667482
\(75\) 0 0
\(76\) −1.42751e7 −0.0490814
\(77\) 6.40782e8 2.07731
\(78\) 0 0
\(79\) 1.85361e8 0.535423 0.267712 0.963499i \(-0.413733\pi\)
0.267712 + 0.963499i \(0.413733\pi\)
\(80\) −7.87236e8 −2.14882
\(81\) 0 0
\(82\) −4.47460e8 −1.09293
\(83\) −2.36379e8 −0.546711 −0.273355 0.961913i \(-0.588133\pi\)
−0.273355 + 0.961913i \(0.588133\pi\)
\(84\) 0 0
\(85\) −7.70483e8 −1.60095
\(86\) −1.98894e8 −0.392084
\(87\) 0 0
\(88\) 8.51446e8 1.51351
\(89\) 5.37873e8 0.908709 0.454355 0.890821i \(-0.349870\pi\)
0.454355 + 0.890821i \(0.349870\pi\)
\(90\) 0 0
\(91\) −1.83656e8 −0.280749
\(92\) 2.89374e7 0.0421128
\(93\) 0 0
\(94\) 9.41115e7 0.124327
\(95\) −7.80172e8 −0.982730
\(96\) 0 0
\(97\) 7.11359e8 0.815861 0.407931 0.913013i \(-0.366251\pi\)
0.407931 + 0.913013i \(0.366251\pi\)
\(98\) 6.52341e8 0.714426
\(99\) 0 0
\(100\) 2.85303e8 0.285303
\(101\) 1.32077e9 1.26294 0.631470 0.775401i \(-0.282452\pi\)
0.631470 + 0.775401i \(0.282452\pi\)
\(102\) 0 0
\(103\) −1.59412e9 −1.39557 −0.697787 0.716306i \(-0.745832\pi\)
−0.697787 + 0.716306i \(0.745832\pi\)
\(104\) −2.44035e8 −0.204551
\(105\) 0 0
\(106\) −1.27586e9 −0.981586
\(107\) −1.42682e9 −1.05231 −0.526153 0.850390i \(-0.676366\pi\)
−0.526153 + 0.850390i \(0.676366\pi\)
\(108\) 0 0
\(109\) 2.12085e9 1.43910 0.719549 0.694442i \(-0.244349\pi\)
0.719549 + 0.694442i \(0.244349\pi\)
\(110\) −5.08803e9 −3.31347
\(111\) 0 0
\(112\) 2.35133e9 1.41199
\(113\) −1.42632e9 −0.822931 −0.411466 0.911425i \(-0.634983\pi\)
−0.411466 + 0.911425i \(0.634983\pi\)
\(114\) 0 0
\(115\) 1.58151e9 0.843202
\(116\) −1.26531e8 −0.0648838
\(117\) 0 0
\(118\) 2.15134e9 1.02151
\(119\) 2.30129e9 1.05199
\(120\) 0 0
\(121\) 3.69280e9 1.56611
\(122\) −3.32871e9 −1.36037
\(123\) 0 0
\(124\) −2.02032e8 −0.0767402
\(125\) 1.02059e10 3.73899
\(126\) 0 0
\(127\) −3.92014e9 −1.33716 −0.668582 0.743639i \(-0.733098\pi\)
−0.668582 + 0.743639i \(0.733098\pi\)
\(128\) 3.40717e9 1.12189
\(129\) 0 0
\(130\) 1.45829e9 0.447816
\(131\) 3.87344e9 1.14915 0.574573 0.818453i \(-0.305168\pi\)
0.574573 + 0.818453i \(0.305168\pi\)
\(132\) 0 0
\(133\) 2.33023e9 0.645753
\(134\) 2.31675e9 0.620736
\(135\) 0 0
\(136\) 3.05787e9 0.766467
\(137\) 2.02888e9 0.492054 0.246027 0.969263i \(-0.420875\pi\)
0.246027 + 0.969263i \(0.420875\pi\)
\(138\) 0 0
\(139\) 5.25556e8 0.119413 0.0597066 0.998216i \(-0.480983\pi\)
0.0597066 + 0.998216i \(0.480983\pi\)
\(140\) −1.14654e9 −0.252239
\(141\) 0 0
\(142\) −2.40491e9 −0.496366
\(143\) −1.73422e9 −0.346810
\(144\) 0 0
\(145\) −6.91528e9 −1.29913
\(146\) −1.27125e8 −0.0231550
\(147\) 0 0
\(148\) 3.66370e7 0.00627686
\(149\) −3.23707e9 −0.538040 −0.269020 0.963135i \(-0.586700\pi\)
−0.269020 + 0.963135i \(0.586700\pi\)
\(150\) 0 0
\(151\) 1.91182e9 0.299261 0.149630 0.988742i \(-0.452192\pi\)
0.149630 + 0.988742i \(0.452192\pi\)
\(152\) 3.09632e9 0.470489
\(153\) 0 0
\(154\) 1.51970e10 2.17728
\(155\) −1.10416e10 −1.53653
\(156\) 0 0
\(157\) 1.20562e10 1.58367 0.791833 0.610738i \(-0.209127\pi\)
0.791833 + 0.610738i \(0.209127\pi\)
\(158\) 4.39609e9 0.561190
\(159\) 0 0
\(160\) −3.21353e9 −0.387652
\(161\) −4.72368e9 −0.554069
\(162\) 0 0
\(163\) −2.20864e9 −0.245065 −0.122532 0.992465i \(-0.539101\pi\)
−0.122532 + 0.992465i \(0.539101\pi\)
\(164\) −9.52120e8 −0.102777
\(165\) 0 0
\(166\) −5.60604e9 −0.573020
\(167\) −1.62710e10 −1.61879 −0.809394 0.587266i \(-0.800204\pi\)
−0.809394 + 0.587266i \(0.800204\pi\)
\(168\) 0 0
\(169\) −1.01075e10 −0.953129
\(170\) −1.82730e10 −1.67799
\(171\) 0 0
\(172\) −4.23213e8 −0.0368707
\(173\) 8.94996e9 0.759650 0.379825 0.925058i \(-0.375984\pi\)
0.379825 + 0.925058i \(0.375984\pi\)
\(174\) 0 0
\(175\) −4.65722e10 −3.75367
\(176\) 2.22030e10 1.74423
\(177\) 0 0
\(178\) 1.27564e10 0.952440
\(179\) −1.31320e10 −0.956077 −0.478038 0.878339i \(-0.658652\pi\)
−0.478038 + 0.878339i \(0.658652\pi\)
\(180\) 0 0
\(181\) −2.18286e10 −1.51172 −0.755862 0.654731i \(-0.772782\pi\)
−0.755862 + 0.654731i \(0.772782\pi\)
\(182\) −4.35565e9 −0.294260
\(183\) 0 0
\(184\) −6.27664e9 −0.403689
\(185\) 2.00232e9 0.125678
\(186\) 0 0
\(187\) 2.17305e10 1.29952
\(188\) 2.00253e8 0.0116915
\(189\) 0 0
\(190\) −1.85028e10 −1.03002
\(191\) 3.25745e10 1.77104 0.885519 0.464602i \(-0.153803\pi\)
0.885519 + 0.464602i \(0.153803\pi\)
\(192\) 0 0
\(193\) 1.20441e10 0.624835 0.312417 0.949945i \(-0.398861\pi\)
0.312417 + 0.949945i \(0.398861\pi\)
\(194\) 1.68708e10 0.855123
\(195\) 0 0
\(196\) 1.38807e9 0.0671830
\(197\) 4.12313e9 0.195042 0.0975212 0.995233i \(-0.468909\pi\)
0.0975212 + 0.995233i \(0.468909\pi\)
\(198\) 0 0
\(199\) 1.12675e10 0.509317 0.254658 0.967031i \(-0.418037\pi\)
0.254658 + 0.967031i \(0.418037\pi\)
\(200\) −6.18834e10 −2.73489
\(201\) 0 0
\(202\) 3.13239e10 1.32372
\(203\) 2.06546e10 0.853661
\(204\) 0 0
\(205\) −5.20360e10 −2.05784
\(206\) −3.78066e10 −1.46273
\(207\) 0 0
\(208\) −6.36366e9 −0.235734
\(209\) 2.20038e10 0.797699
\(210\) 0 0
\(211\) −4.04426e10 −1.40465 −0.702325 0.711856i \(-0.747855\pi\)
−0.702325 + 0.711856i \(0.747855\pi\)
\(212\) −2.71483e9 −0.0923062
\(213\) 0 0
\(214\) −3.38390e10 −1.10295
\(215\) −2.31298e10 −0.738242
\(216\) 0 0
\(217\) 3.29793e10 1.00965
\(218\) 5.02987e10 1.50835
\(219\) 0 0
\(220\) −1.08265e10 −0.311591
\(221\) −6.22824e9 −0.175630
\(222\) 0 0
\(223\) −3.52598e10 −0.954790 −0.477395 0.878689i \(-0.658419\pi\)
−0.477395 + 0.878689i \(0.658419\pi\)
\(224\) 9.59820e9 0.254726
\(225\) 0 0
\(226\) −3.38270e10 −0.862534
\(227\) −2.13641e10 −0.534033 −0.267016 0.963692i \(-0.586038\pi\)
−0.267016 + 0.963692i \(0.586038\pi\)
\(228\) 0 0
\(229\) 7.06004e10 1.69648 0.848238 0.529616i \(-0.177664\pi\)
0.848238 + 0.529616i \(0.177664\pi\)
\(230\) 3.75076e10 0.883780
\(231\) 0 0
\(232\) 2.74451e10 0.621969
\(233\) 6.71540e10 1.49269 0.746346 0.665558i \(-0.231806\pi\)
0.746346 + 0.665558i \(0.231806\pi\)
\(234\) 0 0
\(235\) 1.09444e10 0.234092
\(236\) 4.57770e9 0.0960601
\(237\) 0 0
\(238\) 5.45782e10 1.10261
\(239\) −8.31576e10 −1.64858 −0.824292 0.566164i \(-0.808427\pi\)
−0.824292 + 0.566164i \(0.808427\pi\)
\(240\) 0 0
\(241\) −4.69651e10 −0.896806 −0.448403 0.893831i \(-0.648007\pi\)
−0.448403 + 0.893831i \(0.648007\pi\)
\(242\) 8.75797e10 1.64147
\(243\) 0 0
\(244\) −7.08295e9 −0.127926
\(245\) 7.58620e10 1.34517
\(246\) 0 0
\(247\) −6.30656e9 −0.107809
\(248\) 4.38216e10 0.735623
\(249\) 0 0
\(250\) 2.42045e11 3.91892
\(251\) −2.17422e10 −0.345758 −0.172879 0.984943i \(-0.555307\pi\)
−0.172879 + 0.984943i \(0.555307\pi\)
\(252\) 0 0
\(253\) −4.46045e10 −0.684442
\(254\) −9.29713e10 −1.40151
\(255\) 0 0
\(256\) 2.01287e10 0.292912
\(257\) −2.76626e9 −0.0395544 −0.0197772 0.999804i \(-0.506296\pi\)
−0.0197772 + 0.999804i \(0.506296\pi\)
\(258\) 0 0
\(259\) −5.98054e9 −0.0825832
\(260\) 3.10300e9 0.0421116
\(261\) 0 0
\(262\) 9.18637e10 1.20445
\(263\) −9.82433e10 −1.26620 −0.633100 0.774070i \(-0.718218\pi\)
−0.633100 + 0.774070i \(0.718218\pi\)
\(264\) 0 0
\(265\) −1.48373e11 −1.84820
\(266\) 5.52645e10 0.676829
\(267\) 0 0
\(268\) 4.92965e9 0.0583726
\(269\) 1.75996e10 0.204935 0.102468 0.994736i \(-0.467326\pi\)
0.102468 + 0.994736i \(0.467326\pi\)
\(270\) 0 0
\(271\) 2.22369e10 0.250445 0.125223 0.992129i \(-0.460036\pi\)
0.125223 + 0.992129i \(0.460036\pi\)
\(272\) 7.97394e10 0.883310
\(273\) 0 0
\(274\) 4.81175e10 0.515734
\(275\) −4.39770e11 −4.63691
\(276\) 0 0
\(277\) −1.00658e11 −1.02728 −0.513640 0.858006i \(-0.671703\pi\)
−0.513640 + 0.858006i \(0.671703\pi\)
\(278\) 1.24643e10 0.125160
\(279\) 0 0
\(280\) 2.48689e11 2.41794
\(281\) −2.84220e10 −0.271942 −0.135971 0.990713i \(-0.543415\pi\)
−0.135971 + 0.990713i \(0.543415\pi\)
\(282\) 0 0
\(283\) 4.30371e10 0.398845 0.199422 0.979914i \(-0.436093\pi\)
0.199422 + 0.979914i \(0.436093\pi\)
\(284\) −5.11725e9 −0.0466772
\(285\) 0 0
\(286\) −4.11293e10 −0.363500
\(287\) 1.55422e11 1.35221
\(288\) 0 0
\(289\) −4.05453e10 −0.341901
\(290\) −1.64005e11 −1.36165
\(291\) 0 0
\(292\) −2.70502e8 −0.00217744
\(293\) −1.73312e10 −0.137380 −0.0686902 0.997638i \(-0.521882\pi\)
−0.0686902 + 0.997638i \(0.521882\pi\)
\(294\) 0 0
\(295\) 2.50184e11 1.92336
\(296\) −7.94672e9 −0.0601693
\(297\) 0 0
\(298\) −7.67715e10 −0.563932
\(299\) 1.27842e10 0.0925025
\(300\) 0 0
\(301\) 6.90844e10 0.485099
\(302\) 4.53413e10 0.313662
\(303\) 0 0
\(304\) 8.07422e10 0.542212
\(305\) −3.87103e11 −2.56140
\(306\) 0 0
\(307\) −2.03269e11 −1.30602 −0.653008 0.757351i \(-0.726493\pi\)
−0.653008 + 0.757351i \(0.726493\pi\)
\(308\) 3.23366e10 0.204747
\(309\) 0 0
\(310\) −2.61867e11 −1.61047
\(311\) 2.62568e11 1.59155 0.795774 0.605594i \(-0.207064\pi\)
0.795774 + 0.605594i \(0.207064\pi\)
\(312\) 0 0
\(313\) 1.86044e10 0.109564 0.0547818 0.998498i \(-0.482554\pi\)
0.0547818 + 0.998498i \(0.482554\pi\)
\(314\) 2.85930e11 1.65988
\(315\) 0 0
\(316\) 9.35414e9 0.0527730
\(317\) 2.58624e11 1.43847 0.719237 0.694764i \(-0.244491\pi\)
0.719237 + 0.694764i \(0.244491\pi\)
\(318\) 0 0
\(319\) 1.95037e11 1.05453
\(320\) 3.26852e11 1.74251
\(321\) 0 0
\(322\) −1.12028e11 −0.580733
\(323\) 7.90239e10 0.403968
\(324\) 0 0
\(325\) 1.26044e11 0.626680
\(326\) −5.23808e10 −0.256858
\(327\) 0 0
\(328\) 2.06519e11 0.985206
\(329\) −3.26889e10 −0.153822
\(330\) 0 0
\(331\) −3.93033e11 −1.79971 −0.899857 0.436185i \(-0.856329\pi\)
−0.899857 + 0.436185i \(0.856329\pi\)
\(332\) −1.19287e10 −0.0538856
\(333\) 0 0
\(334\) −3.85888e11 −1.69669
\(335\) 2.69419e11 1.16876
\(336\) 0 0
\(337\) −1.67090e11 −0.705695 −0.352847 0.935681i \(-0.614787\pi\)
−0.352847 + 0.935681i \(0.614787\pi\)
\(338\) −2.39712e11 −0.998997
\(339\) 0 0
\(340\) −3.88820e10 −0.157795
\(341\) 3.11415e11 1.24723
\(342\) 0 0
\(343\) 1.05835e11 0.412862
\(344\) 9.17967e10 0.353439
\(345\) 0 0
\(346\) 2.12260e11 0.796207
\(347\) 3.23689e11 1.19852 0.599261 0.800554i \(-0.295461\pi\)
0.599261 + 0.800554i \(0.295461\pi\)
\(348\) 0 0
\(349\) −3.11506e11 −1.12396 −0.561981 0.827150i \(-0.689961\pi\)
−0.561981 + 0.827150i \(0.689961\pi\)
\(350\) −1.10452e12 −3.93431
\(351\) 0 0
\(352\) 9.06335e10 0.314664
\(353\) −2.07753e11 −0.712134 −0.356067 0.934461i \(-0.615882\pi\)
−0.356067 + 0.934461i \(0.615882\pi\)
\(354\) 0 0
\(355\) −2.79672e11 −0.934592
\(356\) 2.71434e10 0.0895653
\(357\) 0 0
\(358\) −3.11443e11 −1.00209
\(359\) −1.67386e11 −0.531855 −0.265928 0.963993i \(-0.585678\pi\)
−0.265928 + 0.963993i \(0.585678\pi\)
\(360\) 0 0
\(361\) −2.42670e11 −0.752027
\(362\) −5.17694e11 −1.58447
\(363\) 0 0
\(364\) −9.26808e9 −0.0276716
\(365\) −1.47837e10 −0.0435978
\(366\) 0 0
\(367\) −3.29735e11 −0.948785 −0.474393 0.880313i \(-0.657332\pi\)
−0.474393 + 0.880313i \(0.657332\pi\)
\(368\) −1.63675e11 −0.465229
\(369\) 0 0
\(370\) 4.74876e10 0.131726
\(371\) 4.43162e11 1.21445
\(372\) 0 0
\(373\) −6.21116e11 −1.66143 −0.830717 0.556695i \(-0.812069\pi\)
−0.830717 + 0.556695i \(0.812069\pi\)
\(374\) 5.15368e11 1.36206
\(375\) 0 0
\(376\) −4.34358e10 −0.112073
\(377\) −5.59000e10 −0.142520
\(378\) 0 0
\(379\) −3.01833e10 −0.0751433 −0.0375717 0.999294i \(-0.511962\pi\)
−0.0375717 + 0.999294i \(0.511962\pi\)
\(380\) −3.93709e10 −0.0968611
\(381\) 0 0
\(382\) 7.72548e11 1.85627
\(383\) 4.46863e11 1.06116 0.530579 0.847636i \(-0.321975\pi\)
0.530579 + 0.847636i \(0.321975\pi\)
\(384\) 0 0
\(385\) 1.76729e12 4.09953
\(386\) 2.85641e11 0.654904
\(387\) 0 0
\(388\) 3.58983e10 0.0804139
\(389\) 2.16823e10 0.0480100 0.0240050 0.999712i \(-0.492358\pi\)
0.0240050 + 0.999712i \(0.492358\pi\)
\(390\) 0 0
\(391\) −1.60192e11 −0.346613
\(392\) −3.01079e11 −0.644010
\(393\) 0 0
\(394\) 9.77855e10 0.204428
\(395\) 5.11230e11 1.05665
\(396\) 0 0
\(397\) −4.74648e11 −0.958990 −0.479495 0.877545i \(-0.659180\pi\)
−0.479495 + 0.877545i \(0.659180\pi\)
\(398\) 2.67223e11 0.533827
\(399\) 0 0
\(400\) −1.61372e12 −3.15180
\(401\) −6.33960e11 −1.22437 −0.612185 0.790715i \(-0.709709\pi\)
−0.612185 + 0.790715i \(0.709709\pi\)
\(402\) 0 0
\(403\) −8.92555e10 −0.168563
\(404\) 6.66521e10 0.124479
\(405\) 0 0
\(406\) 4.89852e11 0.894742
\(407\) −5.64728e10 −0.102015
\(408\) 0 0
\(409\) −1.41003e11 −0.249158 −0.124579 0.992210i \(-0.539758\pi\)
−0.124579 + 0.992210i \(0.539758\pi\)
\(410\) −1.23410e12 −2.15687
\(411\) 0 0
\(412\) −8.04461e10 −0.137552
\(413\) −7.47253e11 −1.26384
\(414\) 0 0
\(415\) −6.51938e11 −1.07892
\(416\) −2.59767e10 −0.0425269
\(417\) 0 0
\(418\) 5.21849e11 0.836088
\(419\) 6.27484e11 0.994580 0.497290 0.867584i \(-0.334329\pi\)
0.497290 + 0.867584i \(0.334329\pi\)
\(420\) 0 0
\(421\) −1.06714e10 −0.0165559 −0.00827795 0.999966i \(-0.502635\pi\)
−0.00827795 + 0.999966i \(0.502635\pi\)
\(422\) −9.59151e11 −1.47225
\(423\) 0 0
\(424\) 5.88857e11 0.884838
\(425\) −1.57938e12 −2.34821
\(426\) 0 0
\(427\) 1.15620e12 1.68310
\(428\) −7.20036e10 −0.103719
\(429\) 0 0
\(430\) −5.48554e11 −0.773769
\(431\) 8.33459e11 1.16342 0.581710 0.813396i \(-0.302384\pi\)
0.581710 + 0.813396i \(0.302384\pi\)
\(432\) 0 0
\(433\) 1.25996e12 1.72251 0.861253 0.508177i \(-0.169680\pi\)
0.861253 + 0.508177i \(0.169680\pi\)
\(434\) 7.82147e11 1.05824
\(435\) 0 0
\(436\) 1.07027e11 0.141842
\(437\) −1.62206e11 −0.212765
\(438\) 0 0
\(439\) 3.79345e11 0.487466 0.243733 0.969842i \(-0.421628\pi\)
0.243733 + 0.969842i \(0.421628\pi\)
\(440\) 2.34831e12 2.98688
\(441\) 0 0
\(442\) −1.47711e11 −0.184082
\(443\) −3.72934e11 −0.460061 −0.230030 0.973183i \(-0.573883\pi\)
−0.230030 + 0.973183i \(0.573883\pi\)
\(444\) 0 0
\(445\) 1.48347e12 1.79332
\(446\) −8.36233e11 −1.00074
\(447\) 0 0
\(448\) −9.76245e11 −1.14501
\(449\) −9.47204e10 −0.109985 −0.0549927 0.998487i \(-0.517514\pi\)
−0.0549927 + 0.998487i \(0.517514\pi\)
\(450\) 0 0
\(451\) 1.46761e12 1.67039
\(452\) −7.19783e10 −0.0811108
\(453\) 0 0
\(454\) −5.06678e11 −0.559732
\(455\) −5.06527e11 −0.554053
\(456\) 0 0
\(457\) 9.25235e11 0.992269 0.496134 0.868246i \(-0.334752\pi\)
0.496134 + 0.868246i \(0.334752\pi\)
\(458\) 1.67438e12 1.77812
\(459\) 0 0
\(460\) 7.98100e10 0.0831088
\(461\) 8.29299e11 0.855179 0.427589 0.903973i \(-0.359363\pi\)
0.427589 + 0.903973i \(0.359363\pi\)
\(462\) 0 0
\(463\) 1.28894e12 1.30352 0.651761 0.758424i \(-0.274030\pi\)
0.651761 + 0.758424i \(0.274030\pi\)
\(464\) 7.15681e11 0.716784
\(465\) 0 0
\(466\) 1.59265e12 1.56453
\(467\) −8.24491e11 −0.802158 −0.401079 0.916044i \(-0.631365\pi\)
−0.401079 + 0.916044i \(0.631365\pi\)
\(468\) 0 0
\(469\) −8.04704e11 −0.767995
\(470\) 2.59561e11 0.245358
\(471\) 0 0
\(472\) −9.92922e11 −0.920823
\(473\) 6.52347e11 0.599244
\(474\) 0 0
\(475\) −1.59924e12 −1.44143
\(476\) 1.16133e11 0.103687
\(477\) 0 0
\(478\) −1.97219e12 −1.72792
\(479\) 3.04858e11 0.264599 0.132300 0.991210i \(-0.457764\pi\)
0.132300 + 0.991210i \(0.457764\pi\)
\(480\) 0 0
\(481\) 1.61858e10 0.0137874
\(482\) −1.11384e12 −0.939964
\(483\) 0 0
\(484\) 1.86355e11 0.154361
\(485\) 1.96194e12 1.61008
\(486\) 0 0
\(487\) −2.42855e12 −1.95644 −0.978222 0.207563i \(-0.933447\pi\)
−0.978222 + 0.207563i \(0.933447\pi\)
\(488\) 1.53632e12 1.22629
\(489\) 0 0
\(490\) 1.79917e12 1.40990
\(491\) 1.40710e12 1.09260 0.546298 0.837591i \(-0.316037\pi\)
0.546298 + 0.837591i \(0.316037\pi\)
\(492\) 0 0
\(493\) 7.00451e11 0.534031
\(494\) −1.49568e11 −0.112997
\(495\) 0 0
\(496\) 1.14273e12 0.847764
\(497\) 8.35329e11 0.614121
\(498\) 0 0
\(499\) −1.72797e11 −0.124762 −0.0623810 0.998052i \(-0.519869\pi\)
−0.0623810 + 0.998052i \(0.519869\pi\)
\(500\) 5.15032e11 0.368527
\(501\) 0 0
\(502\) −5.15646e11 −0.362397
\(503\) −9.49276e11 −0.661206 −0.330603 0.943770i \(-0.607252\pi\)
−0.330603 + 0.943770i \(0.607252\pi\)
\(504\) 0 0
\(505\) 3.64272e12 2.49238
\(506\) −1.05786e12 −0.717380
\(507\) 0 0
\(508\) −1.97827e11 −0.131795
\(509\) −2.16570e12 −1.43011 −0.715054 0.699069i \(-0.753598\pi\)
−0.715054 + 0.699069i \(0.753598\pi\)
\(510\) 0 0
\(511\) 4.41561e10 0.0286481
\(512\) −1.26709e12 −0.814880
\(513\) 0 0
\(514\) −6.56056e10 −0.0414579
\(515\) −4.39661e12 −2.75413
\(516\) 0 0
\(517\) −3.08674e11 −0.190017
\(518\) −1.41837e11 −0.0865574
\(519\) 0 0
\(520\) −6.73054e11 −0.403678
\(521\) −5.46646e11 −0.325040 −0.162520 0.986705i \(-0.551962\pi\)
−0.162520 + 0.986705i \(0.551962\pi\)
\(522\) 0 0
\(523\) 8.52704e11 0.498357 0.249178 0.968458i \(-0.419839\pi\)
0.249178 + 0.968458i \(0.419839\pi\)
\(524\) 1.95471e11 0.113264
\(525\) 0 0
\(526\) −2.32997e12 −1.32713
\(527\) 1.11841e12 0.631616
\(528\) 0 0
\(529\) −1.47234e12 −0.817443
\(530\) −3.51886e12 −1.93714
\(531\) 0 0
\(532\) 1.17594e11 0.0636475
\(533\) −4.20636e11 −0.225753
\(534\) 0 0
\(535\) −3.93520e12 −2.07671
\(536\) −1.06926e12 −0.559554
\(537\) 0 0
\(538\) 4.17398e11 0.214798
\(539\) −2.13959e12 −1.09190
\(540\) 0 0
\(541\) 2.62781e12 1.31888 0.659442 0.751755i \(-0.270793\pi\)
0.659442 + 0.751755i \(0.270793\pi\)
\(542\) 5.27378e11 0.262497
\(543\) 0 0
\(544\) 3.25499e11 0.159351
\(545\) 5.84934e12 2.84003
\(546\) 0 0
\(547\) 1.44897e12 0.692017 0.346008 0.938231i \(-0.387537\pi\)
0.346008 + 0.938231i \(0.387537\pi\)
\(548\) 1.02386e11 0.0484985
\(549\) 0 0
\(550\) −1.04297e13 −4.86006
\(551\) 7.09259e11 0.327811
\(552\) 0 0
\(553\) −1.52695e12 −0.694323
\(554\) −2.38723e12 −1.07672
\(555\) 0 0
\(556\) 2.65218e10 0.0117697
\(557\) −2.91860e12 −1.28477 −0.642387 0.766381i \(-0.722056\pi\)
−0.642387 + 0.766381i \(0.722056\pi\)
\(558\) 0 0
\(559\) −1.86971e11 −0.0809880
\(560\) 6.48501e12 2.78653
\(561\) 0 0
\(562\) −6.74066e11 −0.285029
\(563\) −1.02936e12 −0.431797 −0.215899 0.976416i \(-0.569268\pi\)
−0.215899 + 0.976416i \(0.569268\pi\)
\(564\) 0 0
\(565\) −3.93382e12 −1.62404
\(566\) 1.02068e12 0.418039
\(567\) 0 0
\(568\) 1.10995e12 0.447443
\(569\) −3.66470e12 −1.46566 −0.732830 0.680411i \(-0.761801\pi\)
−0.732830 + 0.680411i \(0.761801\pi\)
\(570\) 0 0
\(571\) 8.50009e11 0.334627 0.167314 0.985904i \(-0.446491\pi\)
0.167314 + 0.985904i \(0.446491\pi\)
\(572\) −8.75163e10 −0.0341827
\(573\) 0 0
\(574\) 3.68604e12 1.41728
\(575\) 3.24187e12 1.23678
\(576\) 0 0
\(577\) −1.82898e12 −0.686938 −0.343469 0.939164i \(-0.611602\pi\)
−0.343469 + 0.939164i \(0.611602\pi\)
\(578\) −9.61586e11 −0.358355
\(579\) 0 0
\(580\) −3.48975e11 −0.128047
\(581\) 1.94722e12 0.708960
\(582\) 0 0
\(583\) 4.18467e12 1.50021
\(584\) 5.86729e10 0.0208728
\(585\) 0 0
\(586\) −4.11033e11 −0.143992
\(587\) −2.04313e12 −0.710271 −0.355135 0.934815i \(-0.615565\pi\)
−0.355135 + 0.934815i \(0.615565\pi\)
\(588\) 0 0
\(589\) 1.13247e12 0.387712
\(590\) 5.93345e12 2.01592
\(591\) 0 0
\(592\) −2.07225e11 −0.0693417
\(593\) −4.13707e12 −1.37387 −0.686937 0.726717i \(-0.741045\pi\)
−0.686937 + 0.726717i \(0.741045\pi\)
\(594\) 0 0
\(595\) 6.34700e12 2.07607
\(596\) −1.63357e11 −0.0530309
\(597\) 0 0
\(598\) 3.03195e11 0.0969541
\(599\) −1.61690e12 −0.513170 −0.256585 0.966522i \(-0.582597\pi\)
−0.256585 + 0.966522i \(0.582597\pi\)
\(600\) 0 0
\(601\) −2.26777e12 −0.709030 −0.354515 0.935050i \(-0.615354\pi\)
−0.354515 + 0.935050i \(0.615354\pi\)
\(602\) 1.63843e12 0.508444
\(603\) 0 0
\(604\) 9.64787e10 0.0294961
\(605\) 1.01848e13 3.09068
\(606\) 0 0
\(607\) 1.88066e12 0.562290 0.281145 0.959665i \(-0.409286\pi\)
0.281145 + 0.959665i \(0.409286\pi\)
\(608\) 3.29592e11 0.0978163
\(609\) 0 0
\(610\) −9.18066e12 −2.68466
\(611\) 8.84697e10 0.0256808
\(612\) 0 0
\(613\) −5.78740e12 −1.65543 −0.827717 0.561146i \(-0.810360\pi\)
−0.827717 + 0.561146i \(0.810360\pi\)
\(614\) −4.82080e12 −1.36887
\(615\) 0 0
\(616\) −7.01395e12 −1.96268
\(617\) 1.70164e12 0.472699 0.236349 0.971668i \(-0.424049\pi\)
0.236349 + 0.971668i \(0.424049\pi\)
\(618\) 0 0
\(619\) −5.62977e12 −1.54128 −0.770642 0.637268i \(-0.780065\pi\)
−0.770642 + 0.637268i \(0.780065\pi\)
\(620\) −5.57209e11 −0.151445
\(621\) 0 0
\(622\) 6.22714e12 1.66814
\(623\) −4.43084e12 −1.17839
\(624\) 0 0
\(625\) 1.71059e13 4.48420
\(626\) 4.41229e11 0.114836
\(627\) 0 0
\(628\) 6.08411e11 0.156091
\(629\) −2.02815e11 −0.0516622
\(630\) 0 0
\(631\) −2.93043e12 −0.735868 −0.367934 0.929852i \(-0.619935\pi\)
−0.367934 + 0.929852i \(0.619935\pi\)
\(632\) −2.02895e12 −0.505877
\(633\) 0 0
\(634\) 6.13361e12 1.50770
\(635\) −1.08118e13 −2.63886
\(636\) 0 0
\(637\) 6.13234e11 0.147570
\(638\) 4.62556e12 1.10528
\(639\) 0 0
\(640\) 9.39705e12 2.21402
\(641\) 5.53422e12 1.29478 0.647389 0.762160i \(-0.275861\pi\)
0.647389 + 0.762160i \(0.275861\pi\)
\(642\) 0 0
\(643\) −7.28546e12 −1.68077 −0.840383 0.541993i \(-0.817670\pi\)
−0.840383 + 0.541993i \(0.817670\pi\)
\(644\) −2.38377e11 −0.0546108
\(645\) 0 0
\(646\) 1.87416e12 0.423409
\(647\) 5.73701e12 1.28711 0.643556 0.765399i \(-0.277458\pi\)
0.643556 + 0.765399i \(0.277458\pi\)
\(648\) 0 0
\(649\) −7.05613e12 −1.56123
\(650\) 2.98929e12 0.656838
\(651\) 0 0
\(652\) −1.11458e11 −0.0241544
\(653\) −3.54942e12 −0.763920 −0.381960 0.924179i \(-0.624751\pi\)
−0.381960 + 0.924179i \(0.624751\pi\)
\(654\) 0 0
\(655\) 1.06830e13 2.26782
\(656\) 5.38535e12 1.13539
\(657\) 0 0
\(658\) −7.75261e11 −0.161225
\(659\) −3.26894e12 −0.675185 −0.337593 0.941292i \(-0.609613\pi\)
−0.337593 + 0.941292i \(0.609613\pi\)
\(660\) 0 0
\(661\) −7.06519e12 −1.43952 −0.719760 0.694223i \(-0.755748\pi\)
−0.719760 + 0.694223i \(0.755748\pi\)
\(662\) −9.32131e12 −1.88632
\(663\) 0 0
\(664\) 2.58739e12 0.516542
\(665\) 6.42682e12 1.27438
\(666\) 0 0
\(667\) −1.43776e12 −0.281268
\(668\) −8.21106e11 −0.159553
\(669\) 0 0
\(670\) 6.38963e12 1.22501
\(671\) 1.09178e13 2.07913
\(672\) 0 0
\(673\) 7.72311e12 1.45119 0.725595 0.688122i \(-0.241565\pi\)
0.725595 + 0.688122i \(0.241565\pi\)
\(674\) −3.96277e12 −0.739656
\(675\) 0 0
\(676\) −5.10066e11 −0.0939434
\(677\) −3.13880e12 −0.574268 −0.287134 0.957890i \(-0.592703\pi\)
−0.287134 + 0.957890i \(0.592703\pi\)
\(678\) 0 0
\(679\) −5.85996e12 −1.05799
\(680\) 8.43366e12 1.51261
\(681\) 0 0
\(682\) 7.38563e12 1.30725
\(683\) −8.82159e11 −0.155115 −0.0775575 0.996988i \(-0.524712\pi\)
−0.0775575 + 0.996988i \(0.524712\pi\)
\(684\) 0 0
\(685\) 5.59568e12 0.971059
\(686\) 2.51001e12 0.432731
\(687\) 0 0
\(688\) 2.39377e12 0.407318
\(689\) −1.19938e12 −0.202754
\(690\) 0 0
\(691\) −6.02737e12 −1.00572 −0.502860 0.864368i \(-0.667719\pi\)
−0.502860 + 0.864368i \(0.667719\pi\)
\(692\) 4.51654e11 0.0748735
\(693\) 0 0
\(694\) 7.67672e12 1.25620
\(695\) 1.44949e12 0.235659
\(696\) 0 0
\(697\) 5.27075e12 0.845912
\(698\) −7.38778e12 −1.17805
\(699\) 0 0
\(700\) −2.35024e12 −0.369974
\(701\) −1.41432e11 −0.0221216 −0.0110608 0.999939i \(-0.503521\pi\)
−0.0110608 + 0.999939i \(0.503521\pi\)
\(702\) 0 0
\(703\) −2.05366e11 −0.0317124
\(704\) −9.21845e12 −1.41443
\(705\) 0 0
\(706\) −4.92714e12 −0.746404
\(707\) −1.08801e13 −1.63775
\(708\) 0 0
\(709\) 3.93409e12 0.584704 0.292352 0.956311i \(-0.405562\pi\)
0.292352 + 0.956311i \(0.405562\pi\)
\(710\) −6.63280e12 −0.979568
\(711\) 0 0
\(712\) −5.88753e12 −0.858564
\(713\) −2.29567e12 −0.332665
\(714\) 0 0
\(715\) −4.78301e12 −0.684422
\(716\) −6.62699e11 −0.0942340
\(717\) 0 0
\(718\) −3.96978e12 −0.557450
\(719\) 6.55887e12 0.915270 0.457635 0.889140i \(-0.348697\pi\)
0.457635 + 0.889140i \(0.348697\pi\)
\(720\) 0 0
\(721\) 1.31318e13 1.80974
\(722\) −5.75524e12 −0.788218
\(723\) 0 0
\(724\) −1.10157e12 −0.149000
\(725\) −1.41753e13 −1.90552
\(726\) 0 0
\(727\) 4.37762e12 0.581210 0.290605 0.956843i \(-0.406144\pi\)
0.290605 + 0.956843i \(0.406144\pi\)
\(728\) 2.01029e12 0.265257
\(729\) 0 0
\(730\) −3.50614e11 −0.0456959
\(731\) 2.34283e12 0.303467
\(732\) 0 0
\(733\) −2.26970e12 −0.290402 −0.145201 0.989402i \(-0.546383\pi\)
−0.145201 + 0.989402i \(0.546383\pi\)
\(734\) −7.82011e12 −0.994444
\(735\) 0 0
\(736\) −6.68127e11 −0.0839284
\(737\) −7.59863e12 −0.948706
\(738\) 0 0
\(739\) −9.68674e12 −1.19475 −0.597376 0.801961i \(-0.703790\pi\)
−0.597376 + 0.801961i \(0.703790\pi\)
\(740\) 1.01046e11 0.0123872
\(741\) 0 0
\(742\) 1.05102e13 1.27290
\(743\) 1.22572e13 1.47550 0.737752 0.675071i \(-0.235887\pi\)
0.737752 + 0.675071i \(0.235887\pi\)
\(744\) 0 0
\(745\) −8.92792e12 −1.06181
\(746\) −1.47306e13 −1.74139
\(747\) 0 0
\(748\) 1.09662e12 0.128085
\(749\) 1.17537e13 1.36460
\(750\) 0 0
\(751\) −1.28832e13 −1.47790 −0.738948 0.673763i \(-0.764677\pi\)
−0.738948 + 0.673763i \(0.764677\pi\)
\(752\) −1.13267e12 −0.129158
\(753\) 0 0
\(754\) −1.32574e12 −0.149378
\(755\) 5.27283e12 0.590585
\(756\) 0 0
\(757\) −4.80929e12 −0.532291 −0.266145 0.963933i \(-0.585750\pi\)
−0.266145 + 0.963933i \(0.585750\pi\)
\(758\) −7.15837e11 −0.0787595
\(759\) 0 0
\(760\) 8.53971e12 0.928500
\(761\) 1.65944e13 1.79362 0.896812 0.442412i \(-0.145877\pi\)
0.896812 + 0.442412i \(0.145877\pi\)
\(762\) 0 0
\(763\) −1.74709e13 −1.86619
\(764\) 1.64385e12 0.174559
\(765\) 0 0
\(766\) 1.05979e13 1.11222
\(767\) 2.02238e12 0.211000
\(768\) 0 0
\(769\) −7.94565e12 −0.819334 −0.409667 0.912235i \(-0.634355\pi\)
−0.409667 + 0.912235i \(0.634355\pi\)
\(770\) 4.19136e13 4.29682
\(771\) 0 0
\(772\) 6.07796e11 0.0615857
\(773\) 1.28741e12 0.129690 0.0648452 0.997895i \(-0.479345\pi\)
0.0648452 + 0.997895i \(0.479345\pi\)
\(774\) 0 0
\(775\) −2.26338e13 −2.25372
\(776\) −7.78649e12 −0.770840
\(777\) 0 0
\(778\) 5.14224e11 0.0503204
\(779\) 5.33703e12 0.519256
\(780\) 0 0
\(781\) 7.88781e12 0.758625
\(782\) −3.79916e12 −0.363293
\(783\) 0 0
\(784\) −7.85117e12 −0.742185
\(785\) 3.32514e13 3.12533
\(786\) 0 0
\(787\) 1.64637e13 1.52982 0.764911 0.644136i \(-0.222783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(788\) 2.08071e11 0.0192240
\(789\) 0 0
\(790\) 1.21245e13 1.10750
\(791\) 1.17496e13 1.06716
\(792\) 0 0
\(793\) −3.12917e12 −0.280995
\(794\) −1.12569e13 −1.00514
\(795\) 0 0
\(796\) 5.68606e11 0.0501999
\(797\) −1.52321e13 −1.33720 −0.668602 0.743621i \(-0.733107\pi\)
−0.668602 + 0.743621i \(0.733107\pi\)
\(798\) 0 0
\(799\) −1.10856e12 −0.0962277
\(800\) −6.58727e12 −0.568592
\(801\) 0 0
\(802\) −1.50352e13 −1.28329
\(803\) 4.16955e11 0.0353891
\(804\) 0 0
\(805\) −1.30280e13 −1.09344
\(806\) −2.11681e12 −0.176675
\(807\) 0 0
\(808\) −1.44571e13 −1.19325
\(809\) −6.05897e12 −0.497313 −0.248657 0.968592i \(-0.579989\pi\)
−0.248657 + 0.968592i \(0.579989\pi\)
\(810\) 0 0
\(811\) 1.47666e13 1.19863 0.599317 0.800512i \(-0.295439\pi\)
0.599317 + 0.800512i \(0.295439\pi\)
\(812\) 1.04232e12 0.0841396
\(813\) 0 0
\(814\) −1.33933e12 −0.106925
\(815\) −6.09147e12 −0.483630
\(816\) 0 0
\(817\) 2.37229e12 0.186281
\(818\) −3.34408e12 −0.261148
\(819\) 0 0
\(820\) −2.62597e12 −0.202828
\(821\) −7.00160e12 −0.537840 −0.268920 0.963163i \(-0.586667\pi\)
−0.268920 + 0.963163i \(0.586667\pi\)
\(822\) 0 0
\(823\) 1.18700e13 0.901889 0.450944 0.892552i \(-0.351087\pi\)
0.450944 + 0.892552i \(0.351087\pi\)
\(824\) 1.74491e13 1.31856
\(825\) 0 0
\(826\) −1.77221e13 −1.32466
\(827\) −2.53412e13 −1.88388 −0.941938 0.335788i \(-0.890998\pi\)
−0.941938 + 0.335788i \(0.890998\pi\)
\(828\) 0 0
\(829\) 7.44726e12 0.547647 0.273824 0.961780i \(-0.411712\pi\)
0.273824 + 0.961780i \(0.411712\pi\)
\(830\) −1.54616e13 −1.13084
\(831\) 0 0
\(832\) 2.64212e12 0.191160
\(833\) −7.68410e12 −0.552956
\(834\) 0 0
\(835\) −4.48758e13 −3.19465
\(836\) 1.11041e12 0.0786238
\(837\) 0 0
\(838\) 1.48816e13 1.04244
\(839\) 1.75645e13 1.22379 0.611895 0.790939i \(-0.290408\pi\)
0.611895 + 0.790939i \(0.290408\pi\)
\(840\) 0 0
\(841\) −8.22043e12 −0.566647
\(842\) −2.53087e11 −0.0173526
\(843\) 0 0
\(844\) −2.04091e12 −0.138447
\(845\) −2.78766e13 −1.88098
\(846\) 0 0
\(847\) −3.04201e13 −2.03089
\(848\) 1.53555e13 1.01973
\(849\) 0 0
\(850\) −3.74571e13 −2.46121
\(851\) 4.16303e11 0.0272099
\(852\) 0 0
\(853\) 1.77887e13 1.15046 0.575232 0.817990i \(-0.304912\pi\)
0.575232 + 0.817990i \(0.304912\pi\)
\(854\) 2.74209e13 1.76409
\(855\) 0 0
\(856\) 1.56179e13 0.994238
\(857\) −1.35605e13 −0.858738 −0.429369 0.903129i \(-0.641264\pi\)
−0.429369 + 0.903129i \(0.641264\pi\)
\(858\) 0 0
\(859\) 1.41652e13 0.887674 0.443837 0.896107i \(-0.353617\pi\)
0.443837 + 0.896107i \(0.353617\pi\)
\(860\) −1.16723e12 −0.0727635
\(861\) 0 0
\(862\) 1.97666e13 1.21941
\(863\) 6.29108e12 0.386079 0.193040 0.981191i \(-0.438165\pi\)
0.193040 + 0.981191i \(0.438165\pi\)
\(864\) 0 0
\(865\) 2.46842e13 1.49915
\(866\) 2.98816e13 1.80540
\(867\) 0 0
\(868\) 1.66428e12 0.0995147
\(869\) −1.44186e13 −0.857698
\(870\) 0 0
\(871\) 2.17786e12 0.128218
\(872\) −2.32147e13 −1.35968
\(873\) 0 0
\(874\) −3.84694e12 −0.223005
\(875\) −8.40727e13 −4.84863
\(876\) 0 0
\(877\) 1.28376e13 0.732800 0.366400 0.930457i \(-0.380590\pi\)
0.366400 + 0.930457i \(0.380590\pi\)
\(878\) 8.99667e12 0.510924
\(879\) 0 0
\(880\) 6.12364e13 3.44221
\(881\) 1.70945e13 0.956013 0.478006 0.878356i \(-0.341360\pi\)
0.478006 + 0.878356i \(0.341360\pi\)
\(882\) 0 0
\(883\) −3.34104e12 −0.184952 −0.0924758 0.995715i \(-0.529478\pi\)
−0.0924758 + 0.995715i \(0.529478\pi\)
\(884\) −3.14304e11 −0.0173107
\(885\) 0 0
\(886\) −8.84462e12 −0.482200
\(887\) 1.76903e13 0.959574 0.479787 0.877385i \(-0.340714\pi\)
0.479787 + 0.877385i \(0.340714\pi\)
\(888\) 0 0
\(889\) 3.22929e13 1.73400
\(890\) 3.51824e13 1.87962
\(891\) 0 0
\(892\) −1.77936e12 −0.0941072
\(893\) −1.12250e12 −0.0590686
\(894\) 0 0
\(895\) −3.62184e13 −1.88680
\(896\) −2.80672e13 −1.45483
\(897\) 0 0
\(898\) −2.24642e12 −0.115278
\(899\) 1.00380e13 0.512541
\(900\) 0 0
\(901\) 1.50287e13 0.759734
\(902\) 3.48064e13 1.75077
\(903\) 0 0
\(904\) 1.56124e13 0.777520
\(905\) −6.02037e13 −2.98335
\(906\) 0 0
\(907\) −1.47850e13 −0.725418 −0.362709 0.931902i \(-0.618148\pi\)
−0.362709 + 0.931902i \(0.618148\pi\)
\(908\) −1.07813e12 −0.0526360
\(909\) 0 0
\(910\) −1.20130e13 −0.580716
\(911\) 2.68687e13 1.29245 0.646225 0.763147i \(-0.276347\pi\)
0.646225 + 0.763147i \(0.276347\pi\)
\(912\) 0 0
\(913\) 1.83871e13 0.875780
\(914\) 2.19432e13 1.04002
\(915\) 0 0
\(916\) 3.56281e12 0.167210
\(917\) −3.19082e13 −1.49018
\(918\) 0 0
\(919\) −3.94629e13 −1.82503 −0.912514 0.409046i \(-0.865861\pi\)
−0.912514 + 0.409046i \(0.865861\pi\)
\(920\) −1.73111e13 −0.796672
\(921\) 0 0
\(922\) 1.96679e13 0.896333
\(923\) −2.26074e12 −0.102528
\(924\) 0 0
\(925\) 4.10446e12 0.184340
\(926\) 3.05689e13 1.36625
\(927\) 0 0
\(928\) 2.92144e12 0.129310
\(929\) 1.25262e12 0.0551760 0.0275880 0.999619i \(-0.491217\pi\)
0.0275880 + 0.999619i \(0.491217\pi\)
\(930\) 0 0
\(931\) −7.78072e12 −0.339427
\(932\) 3.38889e12 0.147125
\(933\) 0 0
\(934\) −1.95539e13 −0.840760
\(935\) 5.99332e13 2.56458
\(936\) 0 0
\(937\) 1.15393e13 0.489046 0.244523 0.969644i \(-0.421369\pi\)
0.244523 + 0.969644i \(0.421369\pi\)
\(938\) −1.90846e13 −0.804954
\(939\) 0 0
\(940\) 5.52303e11 0.0230729
\(941\) 2.36134e13 0.981760 0.490880 0.871227i \(-0.336675\pi\)
0.490880 + 0.871227i \(0.336675\pi\)
\(942\) 0 0
\(943\) −1.08189e13 −0.445532
\(944\) −2.58922e13 −1.06120
\(945\) 0 0
\(946\) 1.54713e13 0.628082
\(947\) 7.08605e12 0.286305 0.143153 0.989701i \(-0.454276\pi\)
0.143153 + 0.989701i \(0.454276\pi\)
\(948\) 0 0
\(949\) −1.19504e11 −0.00478284
\(950\) −3.79282e13 −1.51080
\(951\) 0 0
\(952\) −2.51898e13 −0.993935
\(953\) −9.78924e12 −0.384442 −0.192221 0.981352i \(-0.561569\pi\)
−0.192221 + 0.981352i \(0.561569\pi\)
\(954\) 0 0
\(955\) 8.98412e13 3.49511
\(956\) −4.19650e12 −0.162490
\(957\) 0 0
\(958\) 7.23012e12 0.277333
\(959\) −1.67133e13 −0.638084
\(960\) 0 0
\(961\) −1.04119e13 −0.393801
\(962\) 3.83868e11 0.0144509
\(963\) 0 0
\(964\) −2.37006e12 −0.0883921
\(965\) 3.32178e13 1.23310
\(966\) 0 0
\(967\) 3.95029e13 1.45281 0.726406 0.687265i \(-0.241189\pi\)
0.726406 + 0.687265i \(0.241189\pi\)
\(968\) −4.04211e13 −1.47969
\(969\) 0 0
\(970\) 4.65301e13 1.68757
\(971\) 4.12585e13 1.48945 0.744727 0.667369i \(-0.232580\pi\)
0.744727 + 0.667369i \(0.232580\pi\)
\(972\) 0 0
\(973\) −4.32937e12 −0.154852
\(974\) −5.75964e13 −2.05059
\(975\) 0 0
\(976\) 4.00624e13 1.41323
\(977\) 2.31785e13 0.813881 0.406940 0.913455i \(-0.366596\pi\)
0.406940 + 0.913455i \(0.366596\pi\)
\(978\) 0 0
\(979\) −4.18393e13 −1.45567
\(980\) 3.82833e12 0.132584
\(981\) 0 0
\(982\) 3.33714e13 1.14518
\(983\) −1.46986e13 −0.502093 −0.251047 0.967975i \(-0.580775\pi\)
−0.251047 + 0.967975i \(0.580775\pi\)
\(984\) 0 0
\(985\) 1.13717e13 0.384912
\(986\) 1.66121e13 0.559731
\(987\) 0 0
\(988\) −3.18257e11 −0.0106260
\(989\) −4.80893e12 −0.159833
\(990\) 0 0
\(991\) 1.69616e13 0.558646 0.279323 0.960197i \(-0.409890\pi\)
0.279323 + 0.960197i \(0.409890\pi\)
\(992\) 4.66466e12 0.152939
\(993\) 0 0
\(994\) 1.98109e13 0.643675
\(995\) 3.10759e13 1.00513
\(996\) 0 0
\(997\) 6.45914e12 0.207036 0.103518 0.994628i \(-0.466990\pi\)
0.103518 + 0.994628i \(0.466990\pi\)
\(998\) −4.09810e12 −0.130766
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.a.b.1.3 yes 4
3.2 odd 2 81.10.a.a.1.2 4
9.2 odd 6 81.10.c.k.28.3 8
9.4 even 3 81.10.c.i.55.2 8
9.5 odd 6 81.10.c.k.55.3 8
9.7 even 3 81.10.c.i.28.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.10.a.a.1.2 4 3.2 odd 2
81.10.a.b.1.3 yes 4 1.1 even 1 trivial
81.10.c.i.28.2 8 9.7 even 3
81.10.c.i.55.2 8 9.4 even 3
81.10.c.k.28.3 8 9.2 odd 6
81.10.c.k.55.3 8 9.5 odd 6