Properties

Label 81.10.a.b.1.2
Level $81$
Weight $10$
Character 81.1
Self dual yes
Analytic conductor $41.718$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(1,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7179027293\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1314x^{2} + 10232x + 106624 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.97760\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.02240 q^{2} -507.910 q^{4} -643.210 q^{5} +2952.58 q^{7} -2062.66 q^{8} -1300.83 q^{10} +61533.0 q^{11} +47852.7 q^{13} +5971.30 q^{14} +255878. q^{16} -315492. q^{17} +284556. q^{19} +326693. q^{20} +124444. q^{22} -19567.0 q^{23} -1.53941e6 q^{25} +96777.2 q^{26} -1.49965e6 q^{28} -3.09788e6 q^{29} -5.43262e6 q^{31} +1.57357e6 q^{32} -638050. q^{34} -1.89913e6 q^{35} -7.66765e6 q^{37} +575485. q^{38} +1.32673e6 q^{40} +2.22462e7 q^{41} -5.71372e6 q^{43} -3.12532e7 q^{44} -39572.2 q^{46} +3.70005e7 q^{47} -3.16359e7 q^{49} -3.11329e6 q^{50} -2.43049e7 q^{52} -1.11104e8 q^{53} -3.95786e7 q^{55} -6.09018e6 q^{56} -6.26515e6 q^{58} +1.61683e8 q^{59} -1.51282e8 q^{61} -1.09869e7 q^{62} -1.27827e8 q^{64} -3.07794e7 q^{65} -2.10872e8 q^{67} +1.60241e8 q^{68} -3.84080e6 q^{70} -2.50785e8 q^{71} -2.10869e8 q^{73} -1.55070e7 q^{74} -1.44529e8 q^{76} +1.81681e8 q^{77} -1.98853e8 q^{79} -1.64584e8 q^{80} +4.49907e7 q^{82} +4.01229e8 q^{83} +2.02928e8 q^{85} -1.15554e7 q^{86} -1.26922e8 q^{88} -5.59701e8 q^{89} +1.41289e8 q^{91} +9.93826e6 q^{92} +7.48296e7 q^{94} -1.83029e8 q^{95} +8.24474e8 q^{97} -6.39802e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 33 q^{2} + 853 q^{4} + 570 q^{5} - 3238 q^{7} + 4791 q^{8} - 9723 q^{10} - 96690 q^{11} - 141118 q^{13} + 3036 q^{14} - 244463 q^{16} + 285156 q^{17} - 465166 q^{19} - 1041711 q^{20} - 2244480 q^{22}+ \cdots + 735501321 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.02240 0.0893781 0.0446891 0.999001i \(-0.485770\pi\)
0.0446891 + 0.999001i \(0.485770\pi\)
\(3\) 0 0
\(4\) −507.910 −0.992012
\(5\) −643.210 −0.460244 −0.230122 0.973162i \(-0.573912\pi\)
−0.230122 + 0.973162i \(0.573912\pi\)
\(6\) 0 0
\(7\) 2952.58 0.464795 0.232397 0.972621i \(-0.425343\pi\)
0.232397 + 0.972621i \(0.425343\pi\)
\(8\) −2062.66 −0.178042
\(9\) 0 0
\(10\) −1300.83 −0.0411357
\(11\) 61533.0 1.26719 0.633594 0.773666i \(-0.281579\pi\)
0.633594 + 0.773666i \(0.281579\pi\)
\(12\) 0 0
\(13\) 47852.7 0.464688 0.232344 0.972634i \(-0.425360\pi\)
0.232344 + 0.972634i \(0.425360\pi\)
\(14\) 5971.30 0.0415425
\(15\) 0 0
\(16\) 255878. 0.976098
\(17\) −315492. −0.916153 −0.458076 0.888913i \(-0.651461\pi\)
−0.458076 + 0.888913i \(0.651461\pi\)
\(18\) 0 0
\(19\) 284556. 0.500929 0.250465 0.968126i \(-0.419417\pi\)
0.250465 + 0.968126i \(0.419417\pi\)
\(20\) 326693. 0.456567
\(21\) 0 0
\(22\) 124444. 0.113259
\(23\) −19567.0 −0.0145797 −0.00728985 0.999973i \(-0.502320\pi\)
−0.00728985 + 0.999973i \(0.502320\pi\)
\(24\) 0 0
\(25\) −1.53941e6 −0.788176
\(26\) 96777.2 0.0415330
\(27\) 0 0
\(28\) −1.49965e6 −0.461082
\(29\) −3.09788e6 −0.813343 −0.406672 0.913574i \(-0.633311\pi\)
−0.406672 + 0.913574i \(0.633311\pi\)
\(30\) 0 0
\(31\) −5.43262e6 −1.05653 −0.528265 0.849080i \(-0.677157\pi\)
−0.528265 + 0.849080i \(0.677157\pi\)
\(32\) 1.57357e6 0.265284
\(33\) 0 0
\(34\) −638050. −0.0818840
\(35\) −1.89913e6 −0.213919
\(36\) 0 0
\(37\) −7.66765e6 −0.672596 −0.336298 0.941756i \(-0.609175\pi\)
−0.336298 + 0.941756i \(0.609175\pi\)
\(38\) 575485. 0.0447721
\(39\) 0 0
\(40\) 1.32673e6 0.0819428
\(41\) 2.22462e7 1.22950 0.614751 0.788721i \(-0.289257\pi\)
0.614751 + 0.788721i \(0.289257\pi\)
\(42\) 0 0
\(43\) −5.71372e6 −0.254865 −0.127433 0.991847i \(-0.540674\pi\)
−0.127433 + 0.991847i \(0.540674\pi\)
\(44\) −3.12532e7 −1.25706
\(45\) 0 0
\(46\) −39572.2 −0.00130311
\(47\) 3.70005e7 1.10603 0.553015 0.833171i \(-0.313477\pi\)
0.553015 + 0.833171i \(0.313477\pi\)
\(48\) 0 0
\(49\) −3.16359e7 −0.783966
\(50\) −3.11329e6 −0.0704457
\(51\) 0 0
\(52\) −2.43049e7 −0.460976
\(53\) −1.11104e8 −1.93414 −0.967070 0.254512i \(-0.918085\pi\)
−0.967070 + 0.254512i \(0.918085\pi\)
\(54\) 0 0
\(55\) −3.95786e7 −0.583215
\(56\) −6.09018e6 −0.0827531
\(57\) 0 0
\(58\) −6.26515e6 −0.0726951
\(59\) 1.61683e8 1.73712 0.868559 0.495586i \(-0.165047\pi\)
0.868559 + 0.495586i \(0.165047\pi\)
\(60\) 0 0
\(61\) −1.51282e8 −1.39895 −0.699477 0.714655i \(-0.746583\pi\)
−0.699477 + 0.714655i \(0.746583\pi\)
\(62\) −1.09869e7 −0.0944307
\(63\) 0 0
\(64\) −1.27827e8 −0.952388
\(65\) −3.07794e7 −0.213870
\(66\) 0 0
\(67\) −2.10872e8 −1.27845 −0.639223 0.769021i \(-0.720744\pi\)
−0.639223 + 0.769021i \(0.720744\pi\)
\(68\) 1.60241e8 0.908834
\(69\) 0 0
\(70\) −3.84080e6 −0.0191197
\(71\) −2.50785e8 −1.17122 −0.585610 0.810593i \(-0.699145\pi\)
−0.585610 + 0.810593i \(0.699145\pi\)
\(72\) 0 0
\(73\) −2.10869e8 −0.869082 −0.434541 0.900652i \(-0.643089\pi\)
−0.434541 + 0.900652i \(0.643089\pi\)
\(74\) −1.55070e7 −0.0601154
\(75\) 0 0
\(76\) −1.44529e8 −0.496928
\(77\) 1.81681e8 0.588982
\(78\) 0 0
\(79\) −1.98853e8 −0.574394 −0.287197 0.957872i \(-0.592723\pi\)
−0.287197 + 0.957872i \(0.592723\pi\)
\(80\) −1.64584e8 −0.449243
\(81\) 0 0
\(82\) 4.49907e7 0.109891
\(83\) 4.01229e8 0.927984 0.463992 0.885839i \(-0.346417\pi\)
0.463992 + 0.885839i \(0.346417\pi\)
\(84\) 0 0
\(85\) 2.02928e8 0.421654
\(86\) −1.15554e7 −0.0227794
\(87\) 0 0
\(88\) −1.26922e8 −0.225613
\(89\) −5.59701e8 −0.945586 −0.472793 0.881174i \(-0.656754\pi\)
−0.472793 + 0.881174i \(0.656754\pi\)
\(90\) 0 0
\(91\) 1.41289e8 0.215985
\(92\) 9.93826e6 0.0144632
\(93\) 0 0
\(94\) 7.48296e7 0.0988549
\(95\) −1.83029e8 −0.230550
\(96\) 0 0
\(97\) 8.24474e8 0.945593 0.472796 0.881172i \(-0.343245\pi\)
0.472796 + 0.881172i \(0.343245\pi\)
\(98\) −6.39802e7 −0.0700694
\(99\) 0 0
\(100\) 7.81879e8 0.781879
\(101\) −6.32029e8 −0.604353 −0.302177 0.953252i \(-0.597713\pi\)
−0.302177 + 0.953252i \(0.597713\pi\)
\(102\) 0 0
\(103\) −3.15128e8 −0.275879 −0.137940 0.990441i \(-0.544048\pi\)
−0.137940 + 0.990441i \(0.544048\pi\)
\(104\) −9.87040e7 −0.0827341
\(105\) 0 0
\(106\) −2.24696e8 −0.172870
\(107\) 2.65705e9 1.95963 0.979813 0.199916i \(-0.0640668\pi\)
0.979813 + 0.199916i \(0.0640668\pi\)
\(108\) 0 0
\(109\) −1.16479e9 −0.790368 −0.395184 0.918602i \(-0.629319\pi\)
−0.395184 + 0.918602i \(0.629319\pi\)
\(110\) −8.00437e7 −0.0521267
\(111\) 0 0
\(112\) 7.55502e8 0.453685
\(113\) −1.83747e9 −1.06015 −0.530075 0.847951i \(-0.677836\pi\)
−0.530075 + 0.847951i \(0.677836\pi\)
\(114\) 0 0
\(115\) 1.25857e7 0.00671021
\(116\) 1.57345e9 0.806846
\(117\) 0 0
\(118\) 3.26986e8 0.155260
\(119\) −9.31516e8 −0.425823
\(120\) 0 0
\(121\) 1.42836e9 0.605764
\(122\) −3.05952e8 −0.125036
\(123\) 0 0
\(124\) 2.75928e9 1.04809
\(125\) 2.24643e9 0.822997
\(126\) 0 0
\(127\) 4.41296e9 1.50527 0.752633 0.658440i \(-0.228783\pi\)
0.752633 + 0.658440i \(0.228783\pi\)
\(128\) −1.06419e9 −0.350407
\(129\) 0 0
\(130\) −6.22481e7 −0.0191153
\(131\) −4.69617e9 −1.39323 −0.696615 0.717445i \(-0.745312\pi\)
−0.696615 + 0.717445i \(0.745312\pi\)
\(132\) 0 0
\(133\) 8.40176e8 0.232829
\(134\) −4.26467e8 −0.114265
\(135\) 0 0
\(136\) 6.50753e8 0.163114
\(137\) 3.17527e9 0.770085 0.385042 0.922899i \(-0.374187\pi\)
0.385042 + 0.922899i \(0.374187\pi\)
\(138\) 0 0
\(139\) 5.55423e9 1.26199 0.630997 0.775785i \(-0.282646\pi\)
0.630997 + 0.775785i \(0.282646\pi\)
\(140\) 9.64588e8 0.212210
\(141\) 0 0
\(142\) −5.07186e8 −0.104681
\(143\) 2.94452e9 0.588847
\(144\) 0 0
\(145\) 1.99259e9 0.374336
\(146\) −4.26461e8 −0.0776769
\(147\) 0 0
\(148\) 3.89448e9 0.667223
\(149\) −1.99493e9 −0.331582 −0.165791 0.986161i \(-0.553018\pi\)
−0.165791 + 0.986161i \(0.553018\pi\)
\(150\) 0 0
\(151\) 3.50374e9 0.548448 0.274224 0.961666i \(-0.411579\pi\)
0.274224 + 0.961666i \(0.411579\pi\)
\(152\) −5.86943e8 −0.0891866
\(153\) 0 0
\(154\) 3.67432e8 0.0526421
\(155\) 3.49432e9 0.486261
\(156\) 0 0
\(157\) −1.31064e10 −1.72161 −0.860807 0.508931i \(-0.830041\pi\)
−0.860807 + 0.508931i \(0.830041\pi\)
\(158\) −4.02159e8 −0.0513382
\(159\) 0 0
\(160\) −1.01214e9 −0.122095
\(161\) −5.77731e7 −0.00677656
\(162\) 0 0
\(163\) −1.33062e10 −1.47642 −0.738210 0.674571i \(-0.764329\pi\)
−0.738210 + 0.674571i \(0.764329\pi\)
\(164\) −1.12991e10 −1.21968
\(165\) 0 0
\(166\) 8.11443e8 0.0829415
\(167\) 5.12547e9 0.509928 0.254964 0.966950i \(-0.417936\pi\)
0.254964 + 0.966950i \(0.417936\pi\)
\(168\) 0 0
\(169\) −8.31462e9 −0.784065
\(170\) 4.10400e8 0.0376866
\(171\) 0 0
\(172\) 2.90205e9 0.252829
\(173\) 1.63773e9 0.139006 0.0695030 0.997582i \(-0.477859\pi\)
0.0695030 + 0.997582i \(0.477859\pi\)
\(174\) 0 0
\(175\) −4.54523e9 −0.366340
\(176\) 1.57450e10 1.23690
\(177\) 0 0
\(178\) −1.13194e9 −0.0845147
\(179\) −1.20732e10 −0.878986 −0.439493 0.898246i \(-0.644842\pi\)
−0.439493 + 0.898246i \(0.644842\pi\)
\(180\) 0 0
\(181\) −2.08579e9 −0.144450 −0.0722250 0.997388i \(-0.523010\pi\)
−0.0722250 + 0.997388i \(0.523010\pi\)
\(182\) 2.85743e8 0.0193043
\(183\) 0 0
\(184\) 4.03601e7 0.00259580
\(185\) 4.93191e9 0.309558
\(186\) 0 0
\(187\) −1.94132e10 −1.16094
\(188\) −1.87929e10 −1.09719
\(189\) 0 0
\(190\) −3.70158e8 −0.0206061
\(191\) 1.41695e10 0.770376 0.385188 0.922838i \(-0.374137\pi\)
0.385188 + 0.922838i \(0.374137\pi\)
\(192\) 0 0
\(193\) −1.50524e10 −0.780903 −0.390452 0.920623i \(-0.627681\pi\)
−0.390452 + 0.920623i \(0.627681\pi\)
\(194\) 1.66741e9 0.0845153
\(195\) 0 0
\(196\) 1.60682e10 0.777703
\(197\) −3.47012e10 −1.64152 −0.820760 0.571272i \(-0.806450\pi\)
−0.820760 + 0.571272i \(0.806450\pi\)
\(198\) 0 0
\(199\) −2.00127e10 −0.904621 −0.452310 0.891861i \(-0.649400\pi\)
−0.452310 + 0.891861i \(0.649400\pi\)
\(200\) 3.17527e9 0.140329
\(201\) 0 0
\(202\) −1.27821e9 −0.0540160
\(203\) −9.14676e9 −0.378038
\(204\) 0 0
\(205\) −1.43090e10 −0.565871
\(206\) −6.37313e8 −0.0246576
\(207\) 0 0
\(208\) 1.22445e10 0.453581
\(209\) 1.75096e10 0.634771
\(210\) 0 0
\(211\) −3.53163e9 −0.122660 −0.0613302 0.998118i \(-0.519534\pi\)
−0.0613302 + 0.998118i \(0.519534\pi\)
\(212\) 5.64308e10 1.91869
\(213\) 0 0
\(214\) 5.37362e9 0.175148
\(215\) 3.67512e9 0.117300
\(216\) 0 0
\(217\) −1.60403e10 −0.491069
\(218\) −2.35567e9 −0.0706417
\(219\) 0 0
\(220\) 2.01024e10 0.578556
\(221\) −1.50971e10 −0.425725
\(222\) 0 0
\(223\) −1.90687e10 −0.516355 −0.258177 0.966098i \(-0.583122\pi\)
−0.258177 + 0.966098i \(0.583122\pi\)
\(224\) 4.64610e9 0.123303
\(225\) 0 0
\(226\) −3.71610e9 −0.0947543
\(227\) −4.24420e9 −0.106091 −0.0530456 0.998592i \(-0.516893\pi\)
−0.0530456 + 0.998592i \(0.516893\pi\)
\(228\) 0 0
\(229\) −2.89589e10 −0.695861 −0.347931 0.937520i \(-0.613116\pi\)
−0.347931 + 0.937520i \(0.613116\pi\)
\(230\) 2.54532e7 0.000599746 0
\(231\) 0 0
\(232\) 6.38989e9 0.144810
\(233\) 4.32035e10 0.960324 0.480162 0.877180i \(-0.340578\pi\)
0.480162 + 0.877180i \(0.340578\pi\)
\(234\) 0 0
\(235\) −2.37991e10 −0.509043
\(236\) −8.21202e10 −1.72324
\(237\) 0 0
\(238\) −1.88390e9 −0.0380593
\(239\) −4.43684e10 −0.879595 −0.439798 0.898097i \(-0.644950\pi\)
−0.439798 + 0.898097i \(0.644950\pi\)
\(240\) 0 0
\(241\) 1.51214e10 0.288746 0.144373 0.989523i \(-0.453883\pi\)
0.144373 + 0.989523i \(0.453883\pi\)
\(242\) 2.88871e9 0.0541421
\(243\) 0 0
\(244\) 7.68377e10 1.38778
\(245\) 2.03485e10 0.360815
\(246\) 0 0
\(247\) 1.36168e10 0.232776
\(248\) 1.12057e10 0.188107
\(249\) 0 0
\(250\) 4.54317e9 0.0735579
\(251\) 5.52302e10 0.878304 0.439152 0.898413i \(-0.355279\pi\)
0.439152 + 0.898413i \(0.355279\pi\)
\(252\) 0 0
\(253\) −1.20401e9 −0.0184752
\(254\) 8.92476e9 0.134538
\(255\) 0 0
\(256\) 6.32954e10 0.921069
\(257\) −1.14200e11 −1.63293 −0.816463 0.577398i \(-0.804068\pi\)
−0.816463 + 0.577398i \(0.804068\pi\)
\(258\) 0 0
\(259\) −2.26394e10 −0.312619
\(260\) 1.56331e10 0.212161
\(261\) 0 0
\(262\) −9.49752e9 −0.124524
\(263\) 1.05397e11 1.35841 0.679203 0.733951i \(-0.262326\pi\)
0.679203 + 0.733951i \(0.262326\pi\)
\(264\) 0 0
\(265\) 7.14631e10 0.890175
\(266\) 1.69917e9 0.0208099
\(267\) 0 0
\(268\) 1.07104e11 1.26823
\(269\) 4.73937e10 0.551868 0.275934 0.961177i \(-0.411013\pi\)
0.275934 + 0.961177i \(0.411013\pi\)
\(270\) 0 0
\(271\) 1.35742e11 1.52880 0.764402 0.644740i \(-0.223035\pi\)
0.764402 + 0.644740i \(0.223035\pi\)
\(272\) −8.07275e10 −0.894255
\(273\) 0 0
\(274\) 6.42166e9 0.0688287
\(275\) −9.47242e10 −0.998766
\(276\) 0 0
\(277\) 1.37164e11 1.39985 0.699927 0.714215i \(-0.253216\pi\)
0.699927 + 0.714215i \(0.253216\pi\)
\(278\) 1.12329e10 0.112795
\(279\) 0 0
\(280\) 3.91727e9 0.0380866
\(281\) −1.44374e10 −0.138137 −0.0690686 0.997612i \(-0.522003\pi\)
−0.0690686 + 0.997612i \(0.522003\pi\)
\(282\) 0 0
\(283\) −7.59649e10 −0.704002 −0.352001 0.936000i \(-0.614499\pi\)
−0.352001 + 0.936000i \(0.614499\pi\)
\(284\) 1.27376e11 1.16186
\(285\) 0 0
\(286\) 5.95499e9 0.0526300
\(287\) 6.56839e10 0.571466
\(288\) 0 0
\(289\) −1.90528e10 −0.160664
\(290\) 4.02981e9 0.0334575
\(291\) 0 0
\(292\) 1.07103e11 0.862139
\(293\) −1.78898e11 −1.41808 −0.709042 0.705166i \(-0.750872\pi\)
−0.709042 + 0.705166i \(0.750872\pi\)
\(294\) 0 0
\(295\) −1.03996e11 −0.799497
\(296\) 1.58158e10 0.119751
\(297\) 0 0
\(298\) −4.03455e9 −0.0296362
\(299\) −9.36333e8 −0.00677501
\(300\) 0 0
\(301\) −1.68702e10 −0.118460
\(302\) 7.08594e9 0.0490192
\(303\) 0 0
\(304\) 7.28117e10 0.488956
\(305\) 9.73062e10 0.643859
\(306\) 0 0
\(307\) −1.35070e11 −0.867832 −0.433916 0.900953i \(-0.642869\pi\)
−0.433916 + 0.900953i \(0.642869\pi\)
\(308\) −9.22777e10 −0.584277
\(309\) 0 0
\(310\) 7.06689e9 0.0434611
\(311\) 7.02212e10 0.425644 0.212822 0.977091i \(-0.431735\pi\)
0.212822 + 0.977091i \(0.431735\pi\)
\(312\) 0 0
\(313\) −3.05164e11 −1.79715 −0.898573 0.438824i \(-0.855395\pi\)
−0.898573 + 0.438824i \(0.855395\pi\)
\(314\) −2.65064e10 −0.153875
\(315\) 0 0
\(316\) 1.00999e11 0.569805
\(317\) −3.03284e10 −0.168688 −0.0843438 0.996437i \(-0.526879\pi\)
−0.0843438 + 0.996437i \(0.526879\pi\)
\(318\) 0 0
\(319\) −1.90622e11 −1.03066
\(320\) 8.22198e10 0.438330
\(321\) 0 0
\(322\) −1.16840e8 −0.000605677 0
\(323\) −8.97751e10 −0.458928
\(324\) 0 0
\(325\) −7.36647e10 −0.366256
\(326\) −2.69104e10 −0.131960
\(327\) 0 0
\(328\) −4.58865e10 −0.218903
\(329\) 1.09247e11 0.514077
\(330\) 0 0
\(331\) 1.58072e11 0.723819 0.361910 0.932213i \(-0.382125\pi\)
0.361910 + 0.932213i \(0.382125\pi\)
\(332\) −2.03788e11 −0.920571
\(333\) 0 0
\(334\) 1.03657e10 0.0455765
\(335\) 1.35635e11 0.588397
\(336\) 0 0
\(337\) 4.89525e8 0.00206748 0.00103374 0.999999i \(-0.499671\pi\)
0.00103374 + 0.999999i \(0.499671\pi\)
\(338\) −1.68155e10 −0.0700783
\(339\) 0 0
\(340\) −1.03069e11 −0.418285
\(341\) −3.34285e11 −1.33882
\(342\) 0 0
\(343\) −2.12555e11 −0.829178
\(344\) 1.17855e10 0.0453768
\(345\) 0 0
\(346\) 3.31213e9 0.0124241
\(347\) 2.55900e11 0.947517 0.473759 0.880655i \(-0.342897\pi\)
0.473759 + 0.880655i \(0.342897\pi\)
\(348\) 0 0
\(349\) −6.31618e10 −0.227898 −0.113949 0.993487i \(-0.536350\pi\)
−0.113949 + 0.993487i \(0.536350\pi\)
\(350\) −9.19225e9 −0.0327428
\(351\) 0 0
\(352\) 9.68265e10 0.336165
\(353\) 5.04911e11 1.73073 0.865364 0.501143i \(-0.167087\pi\)
0.865364 + 0.501143i \(0.167087\pi\)
\(354\) 0 0
\(355\) 1.61307e11 0.539046
\(356\) 2.84278e11 0.938032
\(357\) 0 0
\(358\) −2.44167e10 −0.0785622
\(359\) −3.39429e11 −1.07851 −0.539254 0.842143i \(-0.681294\pi\)
−0.539254 + 0.842143i \(0.681294\pi\)
\(360\) 0 0
\(361\) −2.41716e11 −0.749070
\(362\) −4.21830e9 −0.0129107
\(363\) 0 0
\(364\) −7.17622e10 −0.214259
\(365\) 1.35633e11 0.399989
\(366\) 0 0
\(367\) −1.11046e11 −0.319525 −0.159762 0.987155i \(-0.551073\pi\)
−0.159762 + 0.987155i \(0.551073\pi\)
\(368\) −5.00676e9 −0.0142312
\(369\) 0 0
\(370\) 9.97428e9 0.0276677
\(371\) −3.28044e11 −0.898978
\(372\) 0 0
\(373\) −5.93701e11 −1.58810 −0.794051 0.607851i \(-0.792032\pi\)
−0.794051 + 0.607851i \(0.792032\pi\)
\(374\) −3.92611e10 −0.103762
\(375\) 0 0
\(376\) −7.63195e10 −0.196920
\(377\) −1.48242e11 −0.377951
\(378\) 0 0
\(379\) −8.56009e10 −0.213109 −0.106554 0.994307i \(-0.533982\pi\)
−0.106554 + 0.994307i \(0.533982\pi\)
\(380\) 9.29624e10 0.228708
\(381\) 0 0
\(382\) 2.86563e10 0.0688548
\(383\) −3.76619e11 −0.894351 −0.447176 0.894446i \(-0.647570\pi\)
−0.447176 + 0.894446i \(0.647570\pi\)
\(384\) 0 0
\(385\) −1.16859e11 −0.271075
\(386\) −3.04419e10 −0.0697957
\(387\) 0 0
\(388\) −4.18758e11 −0.938039
\(389\) −2.79708e11 −0.619344 −0.309672 0.950843i \(-0.600219\pi\)
−0.309672 + 0.950843i \(0.600219\pi\)
\(390\) 0 0
\(391\) 6.17322e9 0.0133572
\(392\) 6.52541e10 0.139579
\(393\) 0 0
\(394\) −7.01796e10 −0.146716
\(395\) 1.27904e11 0.264361
\(396\) 0 0
\(397\) 6.81921e11 1.37777 0.688886 0.724870i \(-0.258100\pi\)
0.688886 + 0.724870i \(0.258100\pi\)
\(398\) −4.04736e10 −0.0808533
\(399\) 0 0
\(400\) −3.93901e11 −0.769337
\(401\) 5.49901e11 1.06202 0.531012 0.847364i \(-0.321812\pi\)
0.531012 + 0.847364i \(0.321812\pi\)
\(402\) 0 0
\(403\) −2.59966e11 −0.490957
\(404\) 3.21014e11 0.599525
\(405\) 0 0
\(406\) −1.84984e10 −0.0337883
\(407\) −4.71813e11 −0.852306
\(408\) 0 0
\(409\) 1.02139e12 1.80484 0.902418 0.430861i \(-0.141790\pi\)
0.902418 + 0.430861i \(0.141790\pi\)
\(410\) −2.89385e10 −0.0505765
\(411\) 0 0
\(412\) 1.60056e11 0.273675
\(413\) 4.77381e11 0.807403
\(414\) 0 0
\(415\) −2.58074e11 −0.427099
\(416\) 7.52996e10 0.123274
\(417\) 0 0
\(418\) 3.54113e10 0.0567347
\(419\) −3.43844e11 −0.545002 −0.272501 0.962156i \(-0.587851\pi\)
−0.272501 + 0.962156i \(0.587851\pi\)
\(420\) 0 0
\(421\) 6.76990e11 1.05030 0.525149 0.851010i \(-0.324009\pi\)
0.525149 + 0.851010i \(0.324009\pi\)
\(422\) −7.14236e9 −0.0109632
\(423\) 0 0
\(424\) 2.29170e11 0.344359
\(425\) 4.85670e11 0.722089
\(426\) 0 0
\(427\) −4.46673e11 −0.650226
\(428\) −1.34954e12 −1.94397
\(429\) 0 0
\(430\) 7.43255e9 0.0104841
\(431\) 2.07875e11 0.290171 0.145085 0.989419i \(-0.453654\pi\)
0.145085 + 0.989419i \(0.453654\pi\)
\(432\) 0 0
\(433\) 3.79352e11 0.518617 0.259309 0.965795i \(-0.416505\pi\)
0.259309 + 0.965795i \(0.416505\pi\)
\(434\) −3.24398e10 −0.0438909
\(435\) 0 0
\(436\) 5.91610e11 0.784055
\(437\) −5.56790e9 −0.00730340
\(438\) 0 0
\(439\) 1.39999e12 1.79901 0.899504 0.436912i \(-0.143928\pi\)
0.899504 + 0.436912i \(0.143928\pi\)
\(440\) 8.16374e10 0.103837
\(441\) 0 0
\(442\) −3.05324e10 −0.0380505
\(443\) 2.61274e11 0.322314 0.161157 0.986929i \(-0.448478\pi\)
0.161157 + 0.986929i \(0.448478\pi\)
\(444\) 0 0
\(445\) 3.60005e11 0.435200
\(446\) −3.85644e10 −0.0461508
\(447\) 0 0
\(448\) −3.77421e11 −0.442665
\(449\) 6.64538e11 0.771634 0.385817 0.922575i \(-0.373920\pi\)
0.385817 + 0.922575i \(0.373920\pi\)
\(450\) 0 0
\(451\) 1.36888e12 1.55801
\(452\) 9.33270e11 1.05168
\(453\) 0 0
\(454\) −8.58345e9 −0.00948223
\(455\) −9.08786e10 −0.0994055
\(456\) 0 0
\(457\) 5.50957e10 0.0590874 0.0295437 0.999563i \(-0.490595\pi\)
0.0295437 + 0.999563i \(0.490595\pi\)
\(458\) −5.85664e10 −0.0621948
\(459\) 0 0
\(460\) −6.39239e9 −0.00665661
\(461\) −9.65322e11 −0.995447 −0.497723 0.867336i \(-0.665831\pi\)
−0.497723 + 0.867336i \(0.665831\pi\)
\(462\) 0 0
\(463\) 1.47645e12 1.49315 0.746576 0.665300i \(-0.231696\pi\)
0.746576 + 0.665300i \(0.231696\pi\)
\(464\) −7.92681e11 −0.793903
\(465\) 0 0
\(466\) 8.73747e10 0.0858320
\(467\) 1.48210e12 1.44195 0.720976 0.692960i \(-0.243694\pi\)
0.720976 + 0.692960i \(0.243694\pi\)
\(468\) 0 0
\(469\) −6.22618e11 −0.594215
\(470\) −4.81312e10 −0.0454973
\(471\) 0 0
\(472\) −3.33497e11 −0.309280
\(473\) −3.51582e11 −0.322962
\(474\) 0 0
\(475\) −4.38047e11 −0.394820
\(476\) 4.73126e11 0.422421
\(477\) 0 0
\(478\) −8.97304e10 −0.0786166
\(479\) −1.46496e12 −1.27150 −0.635751 0.771894i \(-0.719310\pi\)
−0.635751 + 0.771894i \(0.719310\pi\)
\(480\) 0 0
\(481\) −3.66918e11 −0.312548
\(482\) 3.05816e10 0.0258076
\(483\) 0 0
\(484\) −7.25478e11 −0.600925
\(485\) −5.30310e11 −0.435203
\(486\) 0 0
\(487\) 1.26436e12 1.01857 0.509286 0.860598i \(-0.329910\pi\)
0.509286 + 0.860598i \(0.329910\pi\)
\(488\) 3.12044e11 0.249073
\(489\) 0 0
\(490\) 4.11527e10 0.0322490
\(491\) 1.07798e12 0.837038 0.418519 0.908208i \(-0.362549\pi\)
0.418519 + 0.908208i \(0.362549\pi\)
\(492\) 0 0
\(493\) 9.77357e11 0.745147
\(494\) 2.75385e10 0.0208051
\(495\) 0 0
\(496\) −1.39009e12 −1.03128
\(497\) −7.40463e11 −0.544377
\(498\) 0 0
\(499\) −5.39531e11 −0.389551 −0.194775 0.980848i \(-0.562398\pi\)
−0.194775 + 0.980848i \(0.562398\pi\)
\(500\) −1.14098e12 −0.816422
\(501\) 0 0
\(502\) 1.11697e11 0.0785012
\(503\) 1.09449e10 0.00762354 0.00381177 0.999993i \(-0.498787\pi\)
0.00381177 + 0.999993i \(0.498787\pi\)
\(504\) 0 0
\(505\) 4.06527e11 0.278150
\(506\) −2.43499e9 −0.00165128
\(507\) 0 0
\(508\) −2.24139e12 −1.49324
\(509\) 9.46630e11 0.625101 0.312551 0.949901i \(-0.398817\pi\)
0.312551 + 0.949901i \(0.398817\pi\)
\(510\) 0 0
\(511\) −6.22610e11 −0.403945
\(512\) 6.72871e11 0.432730
\(513\) 0 0
\(514\) −2.30957e11 −0.145948
\(515\) 2.02693e11 0.126972
\(516\) 0 0
\(517\) 2.27675e12 1.40155
\(518\) −4.57858e10 −0.0279413
\(519\) 0 0
\(520\) 6.34874e10 0.0380779
\(521\) −2.51616e12 −1.49612 −0.748062 0.663629i \(-0.769016\pi\)
−0.748062 + 0.663629i \(0.769016\pi\)
\(522\) 0 0
\(523\) −2.27526e12 −1.32976 −0.664881 0.746949i \(-0.731518\pi\)
−0.664881 + 0.746949i \(0.731518\pi\)
\(524\) 2.38523e12 1.38210
\(525\) 0 0
\(526\) 2.13156e11 0.121412
\(527\) 1.71395e12 0.967943
\(528\) 0 0
\(529\) −1.80077e12 −0.999787
\(530\) 1.44527e11 0.0795622
\(531\) 0 0
\(532\) −4.26734e11 −0.230969
\(533\) 1.06454e12 0.571335
\(534\) 0 0
\(535\) −1.70904e12 −0.901906
\(536\) 4.34958e11 0.227618
\(537\) 0 0
\(538\) 9.58488e10 0.0493249
\(539\) −1.94665e12 −0.993432
\(540\) 0 0
\(541\) 1.83546e12 0.921205 0.460602 0.887607i \(-0.347633\pi\)
0.460602 + 0.887607i \(0.347633\pi\)
\(542\) 2.74524e11 0.136642
\(543\) 0 0
\(544\) −4.96449e11 −0.243041
\(545\) 7.49207e11 0.363762
\(546\) 0 0
\(547\) 2.78550e12 1.33033 0.665166 0.746695i \(-0.268361\pi\)
0.665166 + 0.746695i \(0.268361\pi\)
\(548\) −1.61275e12 −0.763933
\(549\) 0 0
\(550\) −1.91570e11 −0.0892679
\(551\) −8.81521e11 −0.407428
\(552\) 0 0
\(553\) −5.87129e11 −0.266975
\(554\) 2.77401e11 0.125116
\(555\) 0 0
\(556\) −2.82105e12 −1.25191
\(557\) −4.09039e12 −1.80060 −0.900298 0.435274i \(-0.856651\pi\)
−0.900298 + 0.435274i \(0.856651\pi\)
\(558\) 0 0
\(559\) −2.73417e11 −0.118433
\(560\) −4.85947e11 −0.208806
\(561\) 0 0
\(562\) −2.91982e10 −0.0123465
\(563\) 2.55335e12 1.07108 0.535540 0.844510i \(-0.320108\pi\)
0.535540 + 0.844510i \(0.320108\pi\)
\(564\) 0 0
\(565\) 1.18188e12 0.487928
\(566\) −1.53631e11 −0.0629224
\(567\) 0 0
\(568\) 5.17284e11 0.208527
\(569\) 2.27693e11 0.0910635 0.0455318 0.998963i \(-0.485502\pi\)
0.0455318 + 0.998963i \(0.485502\pi\)
\(570\) 0 0
\(571\) 1.76034e10 0.00693002 0.00346501 0.999994i \(-0.498897\pi\)
0.00346501 + 0.999994i \(0.498897\pi\)
\(572\) −1.49555e12 −0.584143
\(573\) 0 0
\(574\) 1.32839e11 0.0510766
\(575\) 3.01215e10 0.0114914
\(576\) 0 0
\(577\) −3.85224e12 −1.44684 −0.723422 0.690406i \(-0.757432\pi\)
−0.723422 + 0.690406i \(0.757432\pi\)
\(578\) −3.85323e10 −0.0143598
\(579\) 0 0
\(580\) −1.01206e12 −0.371346
\(581\) 1.18466e12 0.431322
\(582\) 0 0
\(583\) −6.83655e12 −2.45092
\(584\) 4.34952e11 0.154733
\(585\) 0 0
\(586\) −3.61803e11 −0.126746
\(587\) −1.24716e12 −0.433561 −0.216781 0.976220i \(-0.569556\pi\)
−0.216781 + 0.976220i \(0.569556\pi\)
\(588\) 0 0
\(589\) −1.54588e12 −0.529247
\(590\) −2.10321e11 −0.0714576
\(591\) 0 0
\(592\) −1.96199e12 −0.656520
\(593\) 2.85539e12 0.948242 0.474121 0.880460i \(-0.342766\pi\)
0.474121 + 0.880460i \(0.342766\pi\)
\(594\) 0 0
\(595\) 5.99161e11 0.195982
\(596\) 1.01325e12 0.328933
\(597\) 0 0
\(598\) −1.89364e9 −0.000605538 0
\(599\) 2.74976e12 0.872720 0.436360 0.899772i \(-0.356267\pi\)
0.436360 + 0.899772i \(0.356267\pi\)
\(600\) 0 0
\(601\) 4.71796e12 1.47509 0.737546 0.675297i \(-0.235985\pi\)
0.737546 + 0.675297i \(0.235985\pi\)
\(602\) −3.41183e10 −0.0105877
\(603\) 0 0
\(604\) −1.77958e12 −0.544066
\(605\) −9.18735e11 −0.278799
\(606\) 0 0
\(607\) 2.37767e11 0.0710891 0.0355445 0.999368i \(-0.488683\pi\)
0.0355445 + 0.999368i \(0.488683\pi\)
\(608\) 4.47769e11 0.132889
\(609\) 0 0
\(610\) 1.96792e11 0.0575470
\(611\) 1.77057e12 0.513959
\(612\) 0 0
\(613\) 2.76439e12 0.790729 0.395365 0.918524i \(-0.370618\pi\)
0.395365 + 0.918524i \(0.370618\pi\)
\(614\) −2.73165e11 −0.0775652
\(615\) 0 0
\(616\) −3.74747e11 −0.104864
\(617\) −3.68615e12 −1.02398 −0.511988 0.858993i \(-0.671091\pi\)
−0.511988 + 0.858993i \(0.671091\pi\)
\(618\) 0 0
\(619\) −8.43418e11 −0.230906 −0.115453 0.993313i \(-0.536832\pi\)
−0.115453 + 0.993313i \(0.536832\pi\)
\(620\) −1.77480e12 −0.482377
\(621\) 0 0
\(622\) 1.42015e11 0.0380433
\(623\) −1.65256e12 −0.439503
\(624\) 0 0
\(625\) 1.56172e12 0.409397
\(626\) −6.17162e11 −0.160626
\(627\) 0 0
\(628\) 6.65688e12 1.70786
\(629\) 2.41908e12 0.616201
\(630\) 0 0
\(631\) −2.98482e12 −0.749526 −0.374763 0.927121i \(-0.622276\pi\)
−0.374763 + 0.927121i \(0.622276\pi\)
\(632\) 4.10166e11 0.102266
\(633\) 0 0
\(634\) −6.13361e10 −0.0150770
\(635\) −2.83846e12 −0.692789
\(636\) 0 0
\(637\) −1.51386e12 −0.364300
\(638\) −3.85513e11 −0.0921184
\(639\) 0 0
\(640\) 6.84495e11 0.161273
\(641\) 4.62829e12 1.08283 0.541414 0.840756i \(-0.317889\pi\)
0.541414 + 0.840756i \(0.317889\pi\)
\(642\) 0 0
\(643\) 1.98315e12 0.457516 0.228758 0.973483i \(-0.426534\pi\)
0.228758 + 0.973483i \(0.426534\pi\)
\(644\) 2.93436e10 0.00672243
\(645\) 0 0
\(646\) −1.81561e11 −0.0410181
\(647\) 1.06389e12 0.238687 0.119343 0.992853i \(-0.461921\pi\)
0.119343 + 0.992853i \(0.461921\pi\)
\(648\) 0 0
\(649\) 9.94881e12 2.20125
\(650\) −1.48979e11 −0.0327353
\(651\) 0 0
\(652\) 6.75835e12 1.46463
\(653\) −2.71397e11 −0.0584111 −0.0292056 0.999573i \(-0.509298\pi\)
−0.0292056 + 0.999573i \(0.509298\pi\)
\(654\) 0 0
\(655\) 3.02062e12 0.641226
\(656\) 5.69233e12 1.20012
\(657\) 0 0
\(658\) 2.20941e11 0.0459472
\(659\) −1.58636e12 −0.327655 −0.163828 0.986489i \(-0.552384\pi\)
−0.163828 + 0.986489i \(0.552384\pi\)
\(660\) 0 0
\(661\) 1.39250e12 0.283719 0.141859 0.989887i \(-0.454692\pi\)
0.141859 + 0.989887i \(0.454692\pi\)
\(662\) 3.19685e11 0.0646936
\(663\) 0 0
\(664\) −8.27599e11 −0.165220
\(665\) −5.40409e11 −0.107158
\(666\) 0 0
\(667\) 6.06162e10 0.0118583
\(668\) −2.60327e12 −0.505855
\(669\) 0 0
\(670\) 2.74308e11 0.0525898
\(671\) −9.30884e12 −1.77274
\(672\) 0 0
\(673\) 3.64372e12 0.684664 0.342332 0.939579i \(-0.388783\pi\)
0.342332 + 0.939579i \(0.388783\pi\)
\(674\) 9.90014e8 0.000184787 0
\(675\) 0 0
\(676\) 4.22308e12 0.777802
\(677\) 4.82076e12 0.881995 0.440998 0.897508i \(-0.354625\pi\)
0.440998 + 0.897508i \(0.354625\pi\)
\(678\) 0 0
\(679\) 2.43433e12 0.439506
\(680\) −4.18571e11 −0.0750722
\(681\) 0 0
\(682\) −6.76057e11 −0.119661
\(683\) 4.75897e12 0.836797 0.418398 0.908264i \(-0.362592\pi\)
0.418398 + 0.908264i \(0.362592\pi\)
\(684\) 0 0
\(685\) −2.04237e12 −0.354427
\(686\) −4.29870e11 −0.0741104
\(687\) 0 0
\(688\) −1.46202e12 −0.248774
\(689\) −5.31662e12 −0.898771
\(690\) 0 0
\(691\) −7.29490e11 −0.121722 −0.0608608 0.998146i \(-0.519385\pi\)
−0.0608608 + 0.998146i \(0.519385\pi\)
\(692\) −8.31817e11 −0.137896
\(693\) 0 0
\(694\) 5.17531e11 0.0846874
\(695\) −3.57254e12 −0.580825
\(696\) 0 0
\(697\) −7.01851e12 −1.12641
\(698\) −1.27738e11 −0.0203691
\(699\) 0 0
\(700\) 2.30857e12 0.363413
\(701\) 5.66331e12 0.885807 0.442903 0.896569i \(-0.353948\pi\)
0.442903 + 0.896569i \(0.353948\pi\)
\(702\) 0 0
\(703\) −2.18188e12 −0.336923
\(704\) −7.86560e12 −1.20685
\(705\) 0 0
\(706\) 1.02113e12 0.154689
\(707\) −1.86612e12 −0.280900
\(708\) 0 0
\(709\) 2.49414e12 0.370691 0.185346 0.982673i \(-0.440660\pi\)
0.185346 + 0.982673i \(0.440660\pi\)
\(710\) 3.26227e11 0.0481790
\(711\) 0 0
\(712\) 1.15447e12 0.168354
\(713\) 1.06300e11 0.0154039
\(714\) 0 0
\(715\) −1.89395e12 −0.271013
\(716\) 6.13207e12 0.871964
\(717\) 0 0
\(718\) −6.86459e11 −0.0963951
\(719\) 1.09356e13 1.52603 0.763013 0.646383i \(-0.223719\pi\)
0.763013 + 0.646383i \(0.223719\pi\)
\(720\) 0 0
\(721\) −9.30441e11 −0.128227
\(722\) −4.88845e11 −0.0669505
\(723\) 0 0
\(724\) 1.05939e12 0.143296
\(725\) 4.76890e12 0.641058
\(726\) 0 0
\(727\) −4.77124e12 −0.633470 −0.316735 0.948514i \(-0.602587\pi\)
−0.316735 + 0.948514i \(0.602587\pi\)
\(728\) −2.91432e11 −0.0384544
\(729\) 0 0
\(730\) 2.74304e11 0.0357503
\(731\) 1.80263e12 0.233496
\(732\) 0 0
\(733\) 1.27001e13 1.62495 0.812474 0.582998i \(-0.198120\pi\)
0.812474 + 0.582998i \(0.198120\pi\)
\(734\) −2.24579e11 −0.0285585
\(735\) 0 0
\(736\) −3.07900e10 −0.00386776
\(737\) −1.29756e13 −1.62003
\(738\) 0 0
\(739\) −1.38078e13 −1.70304 −0.851521 0.524321i \(-0.824319\pi\)
−0.851521 + 0.524321i \(0.824319\pi\)
\(740\) −2.50497e12 −0.307085
\(741\) 0 0
\(742\) −6.63434e11 −0.0803490
\(743\) 1.44320e12 0.173731 0.0868654 0.996220i \(-0.472315\pi\)
0.0868654 + 0.996220i \(0.472315\pi\)
\(744\) 0 0
\(745\) 1.28316e12 0.152608
\(746\) −1.20070e12 −0.141942
\(747\) 0 0
\(748\) 9.86013e12 1.15166
\(749\) 7.84517e12 0.910824
\(750\) 0 0
\(751\) −1.61064e13 −1.84765 −0.923824 0.382819i \(-0.874953\pi\)
−0.923824 + 0.382819i \(0.874953\pi\)
\(752\) 9.46762e12 1.07959
\(753\) 0 0
\(754\) −2.99804e11 −0.0337806
\(755\) −2.25364e12 −0.252420
\(756\) 0 0
\(757\) −5.19966e11 −0.0575498 −0.0287749 0.999586i \(-0.509161\pi\)
−0.0287749 + 0.999586i \(0.509161\pi\)
\(758\) −1.73119e11 −0.0190473
\(759\) 0 0
\(760\) 3.77528e11 0.0410476
\(761\) −1.30992e13 −1.41584 −0.707922 0.706291i \(-0.750367\pi\)
−0.707922 + 0.706291i \(0.750367\pi\)
\(762\) 0 0
\(763\) −3.43915e12 −0.367359
\(764\) −7.19681e12 −0.764222
\(765\) 0 0
\(766\) −7.61674e11 −0.0799354
\(767\) 7.73695e12 0.807218
\(768\) 0 0
\(769\) −1.48441e12 −0.153068 −0.0765340 0.997067i \(-0.524385\pi\)
−0.0765340 + 0.997067i \(0.524385\pi\)
\(770\) −2.36336e11 −0.0242282
\(771\) 0 0
\(772\) 7.64525e12 0.774665
\(773\) −1.60264e13 −1.61446 −0.807232 0.590234i \(-0.799035\pi\)
−0.807232 + 0.590234i \(0.799035\pi\)
\(774\) 0 0
\(775\) 8.36301e12 0.832731
\(776\) −1.70061e12 −0.168355
\(777\) 0 0
\(778\) −5.65681e11 −0.0553558
\(779\) 6.33030e12 0.615894
\(780\) 0 0
\(781\) −1.54315e13 −1.48415
\(782\) 1.24847e10 0.00119384
\(783\) 0 0
\(784\) −8.09493e12 −0.765228
\(785\) 8.43019e12 0.792362
\(786\) 0 0
\(787\) −5.17974e12 −0.481307 −0.240653 0.970611i \(-0.577362\pi\)
−0.240653 + 0.970611i \(0.577362\pi\)
\(788\) 1.76251e13 1.62841
\(789\) 0 0
\(790\) 2.58673e11 0.0236281
\(791\) −5.42529e12 −0.492752
\(792\) 0 0
\(793\) −7.23926e12 −0.650077
\(794\) 1.37912e12 0.123143
\(795\) 0 0
\(796\) 1.01646e13 0.897394
\(797\) −6.86643e11 −0.0602793 −0.0301397 0.999546i \(-0.509595\pi\)
−0.0301397 + 0.999546i \(0.509595\pi\)
\(798\) 0 0
\(799\) −1.16733e13 −1.01329
\(800\) −2.42236e12 −0.209091
\(801\) 0 0
\(802\) 1.11212e12 0.0949218
\(803\) −1.29754e13 −1.10129
\(804\) 0 0
\(805\) 3.71603e10 0.00311887
\(806\) −5.25754e11 −0.0438808
\(807\) 0 0
\(808\) 1.30366e12 0.107600
\(809\) −1.35129e13 −1.10912 −0.554562 0.832142i \(-0.687114\pi\)
−0.554562 + 0.832142i \(0.687114\pi\)
\(810\) 0 0
\(811\) −1.40287e13 −1.13874 −0.569371 0.822081i \(-0.692813\pi\)
−0.569371 + 0.822081i \(0.692813\pi\)
\(812\) 4.64573e12 0.375018
\(813\) 0 0
\(814\) −9.54194e11 −0.0761775
\(815\) 8.55869e12 0.679513
\(816\) 0 0
\(817\) −1.62587e12 −0.127669
\(818\) 2.06566e12 0.161313
\(819\) 0 0
\(820\) 7.26769e12 0.561350
\(821\) 1.31763e13 1.01216 0.506078 0.862487i \(-0.331095\pi\)
0.506078 + 0.862487i \(0.331095\pi\)
\(822\) 0 0
\(823\) −1.45311e13 −1.10408 −0.552039 0.833818i \(-0.686150\pi\)
−0.552039 + 0.833818i \(0.686150\pi\)
\(824\) 6.50002e11 0.0491182
\(825\) 0 0
\(826\) 9.65455e11 0.0721642
\(827\) 1.47807e13 1.09881 0.549403 0.835557i \(-0.314855\pi\)
0.549403 + 0.835557i \(0.314855\pi\)
\(828\) 0 0
\(829\) −1.06764e13 −0.785108 −0.392554 0.919729i \(-0.628408\pi\)
−0.392554 + 0.919729i \(0.628408\pi\)
\(830\) −5.21928e11 −0.0381733
\(831\) 0 0
\(832\) −6.11689e12 −0.442563
\(833\) 9.98085e12 0.718233
\(834\) 0 0
\(835\) −3.29675e12 −0.234691
\(836\) −8.89329e12 −0.629701
\(837\) 0 0
\(838\) −6.95389e11 −0.0487113
\(839\) −2.13448e13 −1.48718 −0.743589 0.668637i \(-0.766878\pi\)
−0.743589 + 0.668637i \(0.766878\pi\)
\(840\) 0 0
\(841\) −4.91027e12 −0.338472
\(842\) 1.36914e12 0.0938737
\(843\) 0 0
\(844\) 1.79375e12 0.121680
\(845\) 5.34805e12 0.360861
\(846\) 0 0
\(847\) 4.21735e12 0.281556
\(848\) −2.84291e13 −1.88791
\(849\) 0 0
\(850\) 9.82217e11 0.0645390
\(851\) 1.50033e11 0.00980625
\(852\) 0 0
\(853\) 1.07554e13 0.695595 0.347798 0.937570i \(-0.386930\pi\)
0.347798 + 0.937570i \(0.386930\pi\)
\(854\) −9.03350e11 −0.0581160
\(855\) 0 0
\(856\) −5.48060e12 −0.348896
\(857\) 2.41413e13 1.52879 0.764394 0.644749i \(-0.223038\pi\)
0.764394 + 0.644749i \(0.223038\pi\)
\(858\) 0 0
\(859\) −9.49185e12 −0.594815 −0.297407 0.954751i \(-0.596122\pi\)
−0.297407 + 0.954751i \(0.596122\pi\)
\(860\) −1.86663e12 −0.116363
\(861\) 0 0
\(862\) 4.20405e11 0.0259349
\(863\) 5.95369e12 0.365374 0.182687 0.983171i \(-0.441520\pi\)
0.182687 + 0.983171i \(0.441520\pi\)
\(864\) 0 0
\(865\) −1.05340e12 −0.0639766
\(866\) 7.67200e11 0.0463530
\(867\) 0 0
\(868\) 8.14701e12 0.487146
\(869\) −1.22360e13 −0.727864
\(870\) 0 0
\(871\) −1.00908e13 −0.594079
\(872\) 2.40258e12 0.140719
\(873\) 0 0
\(874\) −1.12605e10 −0.000652764 0
\(875\) 6.63278e12 0.382524
\(876\) 0 0
\(877\) 1.67021e13 0.953397 0.476699 0.879067i \(-0.341833\pi\)
0.476699 + 0.879067i \(0.341833\pi\)
\(878\) 2.83133e12 0.160792
\(879\) 0 0
\(880\) −1.01273e13 −0.569275
\(881\) −1.55578e11 −0.00870075 −0.00435037 0.999991i \(-0.501385\pi\)
−0.00435037 + 0.999991i \(0.501385\pi\)
\(882\) 0 0
\(883\) 5.33298e12 0.295221 0.147610 0.989046i \(-0.452842\pi\)
0.147610 + 0.989046i \(0.452842\pi\)
\(884\) 7.66799e12 0.422324
\(885\) 0 0
\(886\) 5.28399e11 0.0288078
\(887\) −2.96127e13 −1.60628 −0.803140 0.595791i \(-0.796839\pi\)
−0.803140 + 0.595791i \(0.796839\pi\)
\(888\) 0 0
\(889\) 1.30296e13 0.699640
\(890\) 7.28073e11 0.0388974
\(891\) 0 0
\(892\) 9.68516e12 0.512230
\(893\) 1.05287e13 0.554043
\(894\) 0 0
\(895\) 7.76557e12 0.404548
\(896\) −3.14210e12 −0.162867
\(897\) 0 0
\(898\) 1.34396e12 0.0689672
\(899\) 1.68296e13 0.859321
\(900\) 0 0
\(901\) 3.50524e13 1.77197
\(902\) 2.76841e12 0.139252
\(903\) 0 0
\(904\) 3.79008e12 0.188752
\(905\) 1.34160e12 0.0664822
\(906\) 0 0
\(907\) 2.00109e13 0.981823 0.490911 0.871210i \(-0.336664\pi\)
0.490911 + 0.871210i \(0.336664\pi\)
\(908\) 2.15567e12 0.105244
\(909\) 0 0
\(910\) −1.83793e11 −0.00888468
\(911\) −1.93475e13 −0.930661 −0.465330 0.885137i \(-0.654064\pi\)
−0.465330 + 0.885137i \(0.654064\pi\)
\(912\) 0 0
\(913\) 2.46888e13 1.17593
\(914\) 1.11425e11 0.00528112
\(915\) 0 0
\(916\) 1.47085e13 0.690302
\(917\) −1.38658e13 −0.647566
\(918\) 0 0
\(919\) −3.35697e10 −0.00155249 −0.000776243 1.00000i \(-0.500247\pi\)
−0.000776243 1.00000i \(0.500247\pi\)
\(920\) −2.59600e10 −0.00119470
\(921\) 0 0
\(922\) −1.95226e12 −0.0889712
\(923\) −1.20007e13 −0.544252
\(924\) 0 0
\(925\) 1.18036e13 0.530124
\(926\) 2.98597e12 0.133455
\(927\) 0 0
\(928\) −4.87474e12 −0.215767
\(929\) −9.02370e12 −0.397479 −0.198739 0.980052i \(-0.563685\pi\)
−0.198739 + 0.980052i \(0.563685\pi\)
\(930\) 0 0
\(931\) −9.00217e12 −0.392712
\(932\) −2.19435e13 −0.952652
\(933\) 0 0
\(934\) 2.99739e12 0.128879
\(935\) 1.24867e13 0.534314
\(936\) 0 0
\(937\) 1.76854e13 0.749525 0.374763 0.927121i \(-0.377724\pi\)
0.374763 + 0.927121i \(0.377724\pi\)
\(938\) −1.25918e12 −0.0531099
\(939\) 0 0
\(940\) 1.20878e13 0.504977
\(941\) −6.18651e12 −0.257213 −0.128606 0.991696i \(-0.541050\pi\)
−0.128606 + 0.991696i \(0.541050\pi\)
\(942\) 0 0
\(943\) −4.35292e11 −0.0179258
\(944\) 4.13711e13 1.69560
\(945\) 0 0
\(946\) −7.11038e11 −0.0288657
\(947\) −1.51685e13 −0.612870 −0.306435 0.951892i \(-0.599136\pi\)
−0.306435 + 0.951892i \(0.599136\pi\)
\(948\) 0 0
\(949\) −1.00907e13 −0.403852
\(950\) −8.85905e11 −0.0352883
\(951\) 0 0
\(952\) 1.92140e12 0.0758145
\(953\) 1.86178e13 0.731158 0.365579 0.930780i \(-0.380871\pi\)
0.365579 + 0.930780i \(0.380871\pi\)
\(954\) 0 0
\(955\) −9.11394e12 −0.354561
\(956\) 2.25351e13 0.872569
\(957\) 0 0
\(958\) −2.96274e12 −0.113645
\(959\) 9.37526e12 0.357931
\(960\) 0 0
\(961\) 3.07373e12 0.116255
\(962\) −7.42054e11 −0.0279349
\(963\) 0 0
\(964\) −7.68033e12 −0.286440
\(965\) 9.68184e12 0.359406
\(966\) 0 0
\(967\) 4.57262e13 1.68169 0.840845 0.541276i \(-0.182059\pi\)
0.840845 + 0.541276i \(0.182059\pi\)
\(968\) −2.94622e12 −0.107852
\(969\) 0 0
\(970\) −1.07250e12 −0.0388976
\(971\) 3.98751e13 1.43951 0.719756 0.694228i \(-0.244254\pi\)
0.719756 + 0.694228i \(0.244254\pi\)
\(972\) 0 0
\(973\) 1.63993e13 0.586568
\(974\) 2.55704e12 0.0910380
\(975\) 0 0
\(976\) −3.87098e13 −1.36552
\(977\) −1.94826e12 −0.0684104 −0.0342052 0.999415i \(-0.510890\pi\)
−0.0342052 + 0.999415i \(0.510890\pi\)
\(978\) 0 0
\(979\) −3.44401e13 −1.19823
\(980\) −1.03352e13 −0.357933
\(981\) 0 0
\(982\) 2.18011e12 0.0748129
\(983\) −4.09293e13 −1.39812 −0.699058 0.715065i \(-0.746397\pi\)
−0.699058 + 0.715065i \(0.746397\pi\)
\(984\) 0 0
\(985\) 2.23202e13 0.755500
\(986\) 1.97660e12 0.0665999
\(987\) 0 0
\(988\) −6.91610e12 −0.230916
\(989\) 1.11800e11 0.00371586
\(990\) 0 0
\(991\) −5.11076e13 −1.68327 −0.841636 0.540045i \(-0.818407\pi\)
−0.841636 + 0.540045i \(0.818407\pi\)
\(992\) −8.54861e12 −0.280281
\(993\) 0 0
\(994\) −1.49751e12 −0.0486554
\(995\) 1.28724e13 0.416346
\(996\) 0 0
\(997\) 3.28420e13 1.05269 0.526347 0.850270i \(-0.323561\pi\)
0.526347 + 0.850270i \(0.323561\pi\)
\(998\) −1.09115e12 −0.0348173
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.a.b.1.2 yes 4
3.2 odd 2 81.10.a.a.1.3 4
9.2 odd 6 81.10.c.k.28.2 8
9.4 even 3 81.10.c.i.55.3 8
9.5 odd 6 81.10.c.k.55.2 8
9.7 even 3 81.10.c.i.28.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.10.a.a.1.3 4 3.2 odd 2
81.10.a.b.1.2 yes 4 1.1 even 1 trivial
81.10.c.i.28.3 8 9.7 even 3
81.10.c.i.55.3 8 9.4 even 3
81.10.c.k.28.2 8 9.2 odd 6
81.10.c.k.55.2 8 9.5 odd 6