Properties

Label 81.10.a.b.1.1
Level $81$
Weight $10$
Character 81.1
Self dual yes
Analytic conductor $41.718$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(1,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7179027293\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1314x^{2} + 10232x + 106624 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-38.3405\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-30.3405 q^{2} +408.549 q^{4} +231.735 q^{5} -1699.35 q^{7} +3138.77 q^{8} -7030.96 q^{10} -36802.4 q^{11} -13021.3 q^{13} +51559.1 q^{14} -304409. q^{16} +359721. q^{17} -337522. q^{19} +94675.0 q^{20} +1.11661e6 q^{22} +1.14334e6 q^{23} -1.89942e6 q^{25} +395074. q^{26} -694266. q^{28} +6.10721e6 q^{29} +9.83838e6 q^{31} +7.62888e6 q^{32} -1.09141e7 q^{34} -393798. q^{35} -3.37388e6 q^{37} +1.02406e7 q^{38} +727362. q^{40} +1.22428e7 q^{41} -2.33934e7 q^{43} -1.50356e7 q^{44} -3.46894e7 q^{46} -2.24131e7 q^{47} -3.74658e7 q^{49} +5.76296e7 q^{50} -5.31985e6 q^{52} -6.19733e7 q^{53} -8.52841e6 q^{55} -5.33385e6 q^{56} -1.85296e8 q^{58} -2.47418e7 q^{59} +6.51623e7 q^{61} -2.98502e8 q^{62} -7.56071e7 q^{64} -3.01750e6 q^{65} -1.54834e8 q^{67} +1.46963e8 q^{68} +1.19480e7 q^{70} -3.00576e8 q^{71} +1.59289e7 q^{73} +1.02365e8 q^{74} -1.37894e8 q^{76} +6.25400e7 q^{77} -3.37962e8 q^{79} -7.05422e7 q^{80} -3.71453e8 q^{82} -1.95275e8 q^{83} +8.33599e7 q^{85} +7.09769e8 q^{86} -1.15514e8 q^{88} +3.80741e8 q^{89} +2.21277e7 q^{91} +4.67109e8 q^{92} +6.80027e8 q^{94} -7.82156e7 q^{95} -1.71747e9 q^{97} +1.13673e9 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 33 q^{2} + 853 q^{4} + 570 q^{5} - 3238 q^{7} + 4791 q^{8} - 9723 q^{10} - 96690 q^{11} - 141118 q^{13} + 3036 q^{14} - 244463 q^{16} + 285156 q^{17} - 465166 q^{19} - 1041711 q^{20} - 2244480 q^{22}+ \cdots + 735501321 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −30.3405 −1.34088 −0.670438 0.741966i \(-0.733894\pi\)
−0.670438 + 0.741966i \(0.733894\pi\)
\(3\) 0 0
\(4\) 408.549 0.797947
\(5\) 231.735 0.165816 0.0829080 0.996557i \(-0.473579\pi\)
0.0829080 + 0.996557i \(0.473579\pi\)
\(6\) 0 0
\(7\) −1699.35 −0.267510 −0.133755 0.991014i \(-0.542704\pi\)
−0.133755 + 0.991014i \(0.542704\pi\)
\(8\) 3138.77 0.270928
\(9\) 0 0
\(10\) −7030.96 −0.222339
\(11\) −36802.4 −0.757895 −0.378948 0.925418i \(-0.623714\pi\)
−0.378948 + 0.925418i \(0.623714\pi\)
\(12\) 0 0
\(13\) −13021.3 −0.126447 −0.0632237 0.997999i \(-0.520138\pi\)
−0.0632237 + 0.997999i \(0.520138\pi\)
\(14\) 51559.1 0.358698
\(15\) 0 0
\(16\) −304409. −1.16123
\(17\) 359721. 1.04459 0.522294 0.852765i \(-0.325076\pi\)
0.522294 + 0.852765i \(0.325076\pi\)
\(18\) 0 0
\(19\) −337522. −0.594170 −0.297085 0.954851i \(-0.596014\pi\)
−0.297085 + 0.954851i \(0.596014\pi\)
\(20\) 94675.0 0.132312
\(21\) 0 0
\(22\) 1.11661e6 1.01624
\(23\) 1.14334e6 0.851920 0.425960 0.904742i \(-0.359936\pi\)
0.425960 + 0.904742i \(0.359936\pi\)
\(24\) 0 0
\(25\) −1.89942e6 −0.972505
\(26\) 395074. 0.169550
\(27\) 0 0
\(28\) −694266. −0.213459
\(29\) 6.10721e6 1.60344 0.801718 0.597702i \(-0.203920\pi\)
0.801718 + 0.597702i \(0.203920\pi\)
\(30\) 0 0
\(31\) 9.83838e6 1.91336 0.956679 0.291146i \(-0.0940365\pi\)
0.956679 + 0.291146i \(0.0940365\pi\)
\(32\) 7.62888e6 1.28613
\(33\) 0 0
\(34\) −1.09141e7 −1.40066
\(35\) −393798. −0.0443575
\(36\) 0 0
\(37\) −3.37388e6 −0.295952 −0.147976 0.988991i \(-0.547276\pi\)
−0.147976 + 0.988991i \(0.547276\pi\)
\(38\) 1.02406e7 0.796708
\(39\) 0 0
\(40\) 727362. 0.0449242
\(41\) 1.22428e7 0.676633 0.338316 0.941032i \(-0.390143\pi\)
0.338316 + 0.941032i \(0.390143\pi\)
\(42\) 0 0
\(43\) −2.33934e7 −1.04348 −0.521741 0.853104i \(-0.674717\pi\)
−0.521741 + 0.853104i \(0.674717\pi\)
\(44\) −1.50356e7 −0.604760
\(45\) 0 0
\(46\) −3.46894e7 −1.14232
\(47\) −2.24131e7 −0.669981 −0.334991 0.942221i \(-0.608733\pi\)
−0.334991 + 0.942221i \(0.608733\pi\)
\(48\) 0 0
\(49\) −3.74658e7 −0.928438
\(50\) 5.76296e7 1.30401
\(51\) 0 0
\(52\) −5.31985e6 −0.100898
\(53\) −6.19733e7 −1.07886 −0.539428 0.842032i \(-0.681359\pi\)
−0.539428 + 0.842032i \(0.681359\pi\)
\(54\) 0 0
\(55\) −8.52841e6 −0.125671
\(56\) −5.33385e6 −0.0724761
\(57\) 0 0
\(58\) −1.85296e8 −2.15001
\(59\) −2.47418e7 −0.265825 −0.132913 0.991128i \(-0.542433\pi\)
−0.132913 + 0.991128i \(0.542433\pi\)
\(60\) 0 0
\(61\) 6.51623e7 0.602576 0.301288 0.953533i \(-0.402583\pi\)
0.301288 + 0.953533i \(0.402583\pi\)
\(62\) −2.98502e8 −2.56557
\(63\) 0 0
\(64\) −7.56071e7 −0.563317
\(65\) −3.01750e6 −0.0209670
\(66\) 0 0
\(67\) −1.54834e8 −0.938704 −0.469352 0.883011i \(-0.655512\pi\)
−0.469352 + 0.883011i \(0.655512\pi\)
\(68\) 1.46963e8 0.833526
\(69\) 0 0
\(70\) 1.19480e7 0.0594779
\(71\) −3.00576e8 −1.40376 −0.701879 0.712296i \(-0.747655\pi\)
−0.701879 + 0.712296i \(0.747655\pi\)
\(72\) 0 0
\(73\) 1.59289e7 0.0656497 0.0328249 0.999461i \(-0.489550\pi\)
0.0328249 + 0.999461i \(0.489550\pi\)
\(74\) 1.02365e8 0.396835
\(75\) 0 0
\(76\) −1.37894e8 −0.474116
\(77\) 6.25400e7 0.202745
\(78\) 0 0
\(79\) −3.37962e8 −0.976217 −0.488109 0.872783i \(-0.662313\pi\)
−0.488109 + 0.872783i \(0.662313\pi\)
\(80\) −7.05422e7 −0.192550
\(81\) 0 0
\(82\) −3.71453e8 −0.907280
\(83\) −1.95275e8 −0.451643 −0.225822 0.974169i \(-0.572507\pi\)
−0.225822 + 0.974169i \(0.572507\pi\)
\(84\) 0 0
\(85\) 8.33599e7 0.173210
\(86\) 7.09769e8 1.39918
\(87\) 0 0
\(88\) −1.15514e8 −0.205335
\(89\) 3.80741e8 0.643243 0.321622 0.946868i \(-0.395772\pi\)
0.321622 + 0.946868i \(0.395772\pi\)
\(90\) 0 0
\(91\) 2.21277e7 0.0338260
\(92\) 4.67109e8 0.679787
\(93\) 0 0
\(94\) 6.80027e8 0.898361
\(95\) −7.82156e7 −0.0985229
\(96\) 0 0
\(97\) −1.71747e9 −1.96977 −0.984887 0.173197i \(-0.944590\pi\)
−0.984887 + 0.173197i \(0.944590\pi\)
\(98\) 1.13673e9 1.24492
\(99\) 0 0
\(100\) −7.76007e8 −0.776007
\(101\) 4.02896e8 0.385254 0.192627 0.981272i \(-0.438299\pi\)
0.192627 + 0.981272i \(0.438299\pi\)
\(102\) 0 0
\(103\) 1.67242e9 1.46412 0.732061 0.681239i \(-0.238558\pi\)
0.732061 + 0.681239i \(0.238558\pi\)
\(104\) −4.08709e7 −0.0342582
\(105\) 0 0
\(106\) 1.88030e9 1.44661
\(107\) −3.79101e8 −0.279594 −0.139797 0.990180i \(-0.544645\pi\)
−0.139797 + 0.990180i \(0.544645\pi\)
\(108\) 0 0
\(109\) 2.43370e9 1.65138 0.825692 0.564122i \(-0.190785\pi\)
0.825692 + 0.564122i \(0.190785\pi\)
\(110\) 2.58757e8 0.168509
\(111\) 0 0
\(112\) 5.17296e8 0.310640
\(113\) −1.65738e9 −0.956242 −0.478121 0.878294i \(-0.658682\pi\)
−0.478121 + 0.878294i \(0.658682\pi\)
\(114\) 0 0
\(115\) 2.64951e8 0.141262
\(116\) 2.49509e9 1.27946
\(117\) 0 0
\(118\) 7.50678e8 0.356439
\(119\) −6.11290e8 −0.279438
\(120\) 0 0
\(121\) −1.00353e9 −0.425594
\(122\) −1.97706e9 −0.807979
\(123\) 0 0
\(124\) 4.01946e9 1.52676
\(125\) −8.92770e8 −0.327073
\(126\) 0 0
\(127\) 7.89177e8 0.269189 0.134595 0.990901i \(-0.457027\pi\)
0.134595 + 0.990901i \(0.457027\pi\)
\(128\) −1.61203e9 −0.530796
\(129\) 0 0
\(130\) 9.15525e7 0.0281142
\(131\) −5.21040e9 −1.54579 −0.772895 0.634534i \(-0.781192\pi\)
−0.772895 + 0.634534i \(0.781192\pi\)
\(132\) 0 0
\(133\) 5.73566e8 0.158947
\(134\) 4.69774e9 1.25868
\(135\) 0 0
\(136\) 1.12908e9 0.283008
\(137\) −5.79176e9 −1.40465 −0.702325 0.711856i \(-0.747855\pi\)
−0.702325 + 0.711856i \(0.747855\pi\)
\(138\) 0 0
\(139\) −5.50037e9 −1.24976 −0.624879 0.780722i \(-0.714852\pi\)
−0.624879 + 0.780722i \(0.714852\pi\)
\(140\) −1.60886e8 −0.0353949
\(141\) 0 0
\(142\) 9.11965e9 1.88226
\(143\) 4.79216e8 0.0958340
\(144\) 0 0
\(145\) 1.41525e9 0.265875
\(146\) −4.83292e8 −0.0880281
\(147\) 0 0
\(148\) −1.37839e9 −0.236154
\(149\) −6.32833e9 −1.05184 −0.525921 0.850533i \(-0.676279\pi\)
−0.525921 + 0.850533i \(0.676279\pi\)
\(150\) 0 0
\(151\) −8.47040e9 −1.32589 −0.662946 0.748668i \(-0.730694\pi\)
−0.662946 + 0.748668i \(0.730694\pi\)
\(152\) −1.05940e9 −0.160977
\(153\) 0 0
\(154\) −1.89750e9 −0.271856
\(155\) 2.27990e9 0.317265
\(156\) 0 0
\(157\) 7.68862e9 1.00995 0.504975 0.863134i \(-0.331502\pi\)
0.504975 + 0.863134i \(0.331502\pi\)
\(158\) 1.02540e10 1.30899
\(159\) 0 0
\(160\) 1.76788e9 0.213262
\(161\) −1.94292e9 −0.227897
\(162\) 0 0
\(163\) 5.49272e9 0.609458 0.304729 0.952439i \(-0.401434\pi\)
0.304729 + 0.952439i \(0.401434\pi\)
\(164\) 5.00178e9 0.539917
\(165\) 0 0
\(166\) 5.92475e9 0.605597
\(167\) 4.50814e9 0.448512 0.224256 0.974530i \(-0.428005\pi\)
0.224256 + 0.974530i \(0.428005\pi\)
\(168\) 0 0
\(169\) −1.04349e10 −0.984011
\(170\) −2.52918e9 −0.232252
\(171\) 0 0
\(172\) −9.55734e9 −0.832644
\(173\) 1.74009e10 1.47695 0.738473 0.674283i \(-0.235547\pi\)
0.738473 + 0.674283i \(0.235547\pi\)
\(174\) 0 0
\(175\) 3.22778e9 0.260155
\(176\) 1.12030e10 0.880089
\(177\) 0 0
\(178\) −1.15519e10 −0.862509
\(179\) −8.60652e9 −0.626598 −0.313299 0.949655i \(-0.601434\pi\)
−0.313299 + 0.949655i \(0.601434\pi\)
\(180\) 0 0
\(181\) −1.49085e10 −1.03248 −0.516238 0.856445i \(-0.672668\pi\)
−0.516238 + 0.856445i \(0.672668\pi\)
\(182\) −6.71368e8 −0.0453565
\(183\) 0 0
\(184\) 3.58867e9 0.230809
\(185\) −7.81845e8 −0.0490736
\(186\) 0 0
\(187\) −1.32386e10 −0.791689
\(188\) −9.15686e9 −0.534609
\(189\) 0 0
\(190\) 2.37310e9 0.132107
\(191\) −2.93575e9 −0.159613 −0.0798067 0.996810i \(-0.525430\pi\)
−0.0798067 + 0.996810i \(0.525430\pi\)
\(192\) 0 0
\(193\) −9.42902e9 −0.489169 −0.244584 0.969628i \(-0.578651\pi\)
−0.244584 + 0.969628i \(0.578651\pi\)
\(194\) 5.21090e10 2.64122
\(195\) 0 0
\(196\) −1.53066e10 −0.740844
\(197\) 1.63450e10 0.773191 0.386596 0.922249i \(-0.373651\pi\)
0.386596 + 0.922249i \(0.373651\pi\)
\(198\) 0 0
\(199\) −1.92599e10 −0.870594 −0.435297 0.900287i \(-0.643357\pi\)
−0.435297 + 0.900287i \(0.643357\pi\)
\(200\) −5.96185e9 −0.263479
\(201\) 0 0
\(202\) −1.22241e10 −0.516578
\(203\) −1.03783e10 −0.428936
\(204\) 0 0
\(205\) 2.83708e9 0.112197
\(206\) −5.07421e10 −1.96321
\(207\) 0 0
\(208\) 3.96381e9 0.146834
\(209\) 1.24216e10 0.450319
\(210\) 0 0
\(211\) −4.35260e10 −1.51174 −0.755871 0.654721i \(-0.772786\pi\)
−0.755871 + 0.654721i \(0.772786\pi\)
\(212\) −2.53191e10 −0.860869
\(213\) 0 0
\(214\) 1.15021e10 0.374901
\(215\) −5.42107e9 −0.173026
\(216\) 0 0
\(217\) −1.67188e10 −0.511843
\(218\) −7.38398e10 −2.21430
\(219\) 0 0
\(220\) −3.48427e9 −0.100279
\(221\) −4.68404e9 −0.132086
\(222\) 0 0
\(223\) 4.31472e10 1.16837 0.584185 0.811620i \(-0.301414\pi\)
0.584185 + 0.811620i \(0.301414\pi\)
\(224\) −1.29641e10 −0.344054
\(225\) 0 0
\(226\) 5.02857e10 1.28220
\(227\) 6.55392e10 1.63827 0.819134 0.573602i \(-0.194454\pi\)
0.819134 + 0.573602i \(0.194454\pi\)
\(228\) 0 0
\(229\) −3.00286e10 −0.721564 −0.360782 0.932650i \(-0.617490\pi\)
−0.360782 + 0.932650i \(0.617490\pi\)
\(230\) −8.03876e9 −0.189415
\(231\) 0 0
\(232\) 1.91691e10 0.434416
\(233\) −4.03023e10 −0.895835 −0.447917 0.894075i \(-0.647834\pi\)
−0.447917 + 0.894075i \(0.647834\pi\)
\(234\) 0 0
\(235\) −5.19391e9 −0.111094
\(236\) −1.01082e10 −0.212114
\(237\) 0 0
\(238\) 1.85469e10 0.374692
\(239\) −6.11330e10 −1.21195 −0.605976 0.795483i \(-0.707217\pi\)
−0.605976 + 0.795483i \(0.707217\pi\)
\(240\) 0 0
\(241\) 1.79546e10 0.342846 0.171423 0.985197i \(-0.445163\pi\)
0.171423 + 0.985197i \(0.445163\pi\)
\(242\) 3.04476e10 0.570669
\(243\) 0 0
\(244\) 2.66220e10 0.480824
\(245\) −8.68214e9 −0.153950
\(246\) 0 0
\(247\) 4.39498e9 0.0751313
\(248\) 3.08804e10 0.518382
\(249\) 0 0
\(250\) 2.70871e10 0.438564
\(251\) 1.13782e11 1.80942 0.904711 0.426026i \(-0.140087\pi\)
0.904711 + 0.426026i \(0.140087\pi\)
\(252\) 0 0
\(253\) −4.20775e10 −0.645666
\(254\) −2.39441e10 −0.360949
\(255\) 0 0
\(256\) 8.76206e10 1.27505
\(257\) −5.87971e10 −0.840731 −0.420366 0.907355i \(-0.638098\pi\)
−0.420366 + 0.907355i \(0.638098\pi\)
\(258\) 0 0
\(259\) 5.73338e9 0.0791702
\(260\) −1.23279e9 −0.0167306
\(261\) 0 0
\(262\) 1.58086e11 2.07271
\(263\) 2.10338e10 0.271092 0.135546 0.990771i \(-0.456721\pi\)
0.135546 + 0.990771i \(0.456721\pi\)
\(264\) 0 0
\(265\) −1.43614e10 −0.178892
\(266\) −1.74023e10 −0.213128
\(267\) 0 0
\(268\) −6.32571e10 −0.749036
\(269\) 1.46308e11 1.70366 0.851832 0.523816i \(-0.175492\pi\)
0.851832 + 0.523816i \(0.175492\pi\)
\(270\) 0 0
\(271\) −1.33223e11 −1.50044 −0.750220 0.661188i \(-0.770052\pi\)
−0.750220 + 0.661188i \(0.770052\pi\)
\(272\) −1.09502e11 −1.21301
\(273\) 0 0
\(274\) 1.75725e11 1.88346
\(275\) 6.99034e10 0.737057
\(276\) 0 0
\(277\) −7.02879e10 −0.717335 −0.358667 0.933465i \(-0.616769\pi\)
−0.358667 + 0.933465i \(0.616769\pi\)
\(278\) 1.66884e11 1.67577
\(279\) 0 0
\(280\) −1.23604e9 −0.0120177
\(281\) 2.00193e11 1.91545 0.957724 0.287689i \(-0.0928871\pi\)
0.957724 + 0.287689i \(0.0928871\pi\)
\(282\) 0 0
\(283\) 8.46940e10 0.784899 0.392450 0.919774i \(-0.371628\pi\)
0.392450 + 0.919774i \(0.371628\pi\)
\(284\) −1.22800e11 −1.12012
\(285\) 0 0
\(286\) −1.45397e10 −0.128501
\(287\) −2.08047e10 −0.181006
\(288\) 0 0
\(289\) 1.08111e10 0.0911653
\(290\) −4.29396e10 −0.356506
\(291\) 0 0
\(292\) 6.50773e9 0.0523850
\(293\) −3.10322e10 −0.245985 −0.122992 0.992408i \(-0.539249\pi\)
−0.122992 + 0.992408i \(0.539249\pi\)
\(294\) 0 0
\(295\) −5.73353e9 −0.0440781
\(296\) −1.05898e10 −0.0801817
\(297\) 0 0
\(298\) 1.92005e11 1.41039
\(299\) −1.48878e10 −0.107723
\(300\) 0 0
\(301\) 3.97535e10 0.279142
\(302\) 2.56997e11 1.77785
\(303\) 0 0
\(304\) 1.02745e11 0.689966
\(305\) 1.51004e10 0.0999168
\(306\) 0 0
\(307\) −2.77619e10 −0.178372 −0.0891860 0.996015i \(-0.528427\pi\)
−0.0891860 + 0.996015i \(0.528427\pi\)
\(308\) 2.55507e10 0.161780
\(309\) 0 0
\(310\) −6.91733e10 −0.425413
\(311\) −2.56530e11 −1.55495 −0.777474 0.628915i \(-0.783499\pi\)
−0.777474 + 0.628915i \(0.783499\pi\)
\(312\) 0 0
\(313\) 1.04794e11 0.617146 0.308573 0.951201i \(-0.400149\pi\)
0.308573 + 0.951201i \(0.400149\pi\)
\(314\) −2.33277e11 −1.35422
\(315\) 0 0
\(316\) −1.38074e11 −0.778970
\(317\) 9.90769e10 0.551069 0.275534 0.961291i \(-0.411145\pi\)
0.275534 + 0.961291i \(0.411145\pi\)
\(318\) 0 0
\(319\) −2.24760e11 −1.21524
\(320\) −1.75208e10 −0.0934070
\(321\) 0 0
\(322\) 5.89494e10 0.305582
\(323\) −1.21414e11 −0.620663
\(324\) 0 0
\(325\) 2.47330e10 0.122971
\(326\) −1.66652e11 −0.817207
\(327\) 0 0
\(328\) 3.84273e10 0.183319
\(329\) 3.80877e10 0.179227
\(330\) 0 0
\(331\) −5.92352e10 −0.271240 −0.135620 0.990761i \(-0.543303\pi\)
−0.135620 + 0.990761i \(0.543303\pi\)
\(332\) −7.97794e10 −0.360387
\(333\) 0 0
\(334\) −1.36780e11 −0.601398
\(335\) −3.58804e10 −0.155652
\(336\) 0 0
\(337\) −3.32234e11 −1.40317 −0.701583 0.712588i \(-0.747523\pi\)
−0.701583 + 0.712588i \(0.747523\pi\)
\(338\) 3.16602e11 1.31944
\(339\) 0 0
\(340\) 3.40566e10 0.138212
\(341\) −3.62076e11 −1.45012
\(342\) 0 0
\(343\) 1.32242e11 0.515877
\(344\) −7.34264e10 −0.282709
\(345\) 0 0
\(346\) −5.27953e11 −1.98040
\(347\) −1.84410e11 −0.682813 −0.341407 0.939916i \(-0.610903\pi\)
−0.341407 + 0.939916i \(0.610903\pi\)
\(348\) 0 0
\(349\) −2.15169e11 −0.776365 −0.388183 0.921582i \(-0.626897\pi\)
−0.388183 + 0.921582i \(0.626897\pi\)
\(350\) −9.79325e10 −0.348836
\(351\) 0 0
\(352\) −2.80761e11 −0.974755
\(353\) −4.55334e11 −1.56079 −0.780395 0.625287i \(-0.784982\pi\)
−0.780395 + 0.625287i \(0.784982\pi\)
\(354\) 0 0
\(355\) −6.96540e10 −0.232766
\(356\) 1.55551e11 0.513274
\(357\) 0 0
\(358\) 2.61127e11 0.840190
\(359\) 7.69706e10 0.244568 0.122284 0.992495i \(-0.460978\pi\)
0.122284 + 0.992495i \(0.460978\pi\)
\(360\) 0 0
\(361\) −2.08767e11 −0.646962
\(362\) 4.52332e11 1.38442
\(363\) 0 0
\(364\) 9.04026e9 0.0269914
\(365\) 3.69128e9 0.0108858
\(366\) 0 0
\(367\) −5.19222e11 −1.49402 −0.747009 0.664813i \(-0.768511\pi\)
−0.747009 + 0.664813i \(0.768511\pi\)
\(368\) −3.48042e11 −0.989273
\(369\) 0 0
\(370\) 2.37216e10 0.0658016
\(371\) 1.05314e11 0.288605
\(372\) 0 0
\(373\) 3.36003e11 0.898779 0.449389 0.893336i \(-0.351642\pi\)
0.449389 + 0.893336i \(0.351642\pi\)
\(374\) 4.01666e11 1.06156
\(375\) 0 0
\(376\) −7.03496e10 −0.181517
\(377\) −7.95239e10 −0.202750
\(378\) 0 0
\(379\) 3.52078e11 0.876522 0.438261 0.898848i \(-0.355595\pi\)
0.438261 + 0.898848i \(0.355595\pi\)
\(380\) −3.19549e10 −0.0786160
\(381\) 0 0
\(382\) 8.90723e10 0.214022
\(383\) 5.91054e11 1.40357 0.701783 0.712391i \(-0.252388\pi\)
0.701783 + 0.712391i \(0.252388\pi\)
\(384\) 0 0
\(385\) 1.44927e10 0.0336183
\(386\) 2.86082e11 0.655914
\(387\) 0 0
\(388\) −7.01670e11 −1.57178
\(389\) 3.45521e11 0.765070 0.382535 0.923941i \(-0.375051\pi\)
0.382535 + 0.923941i \(0.375051\pi\)
\(390\) 0 0
\(391\) 4.11282e11 0.889906
\(392\) −1.17597e11 −0.251540
\(393\) 0 0
\(394\) −4.95916e11 −1.03675
\(395\) −7.83177e10 −0.161872
\(396\) 0 0
\(397\) 2.14905e11 0.434199 0.217099 0.976150i \(-0.430340\pi\)
0.217099 + 0.976150i \(0.430340\pi\)
\(398\) 5.84356e11 1.16736
\(399\) 0 0
\(400\) 5.78201e11 1.12930
\(401\) −4.24741e11 −0.820304 −0.410152 0.912017i \(-0.634524\pi\)
−0.410152 + 0.912017i \(0.634524\pi\)
\(402\) 0 0
\(403\) −1.28109e11 −0.241939
\(404\) 1.64603e11 0.307412
\(405\) 0 0
\(406\) 3.14882e11 0.575149
\(407\) 1.24167e11 0.224301
\(408\) 0 0
\(409\) 3.70072e11 0.653930 0.326965 0.945036i \(-0.393974\pi\)
0.326965 + 0.945036i \(0.393974\pi\)
\(410\) −8.60786e10 −0.150442
\(411\) 0 0
\(412\) 6.83265e11 1.16829
\(413\) 4.20448e10 0.0711110
\(414\) 0 0
\(415\) −4.52521e10 −0.0748897
\(416\) −9.93382e10 −0.162628
\(417\) 0 0
\(418\) −3.76879e11 −0.603821
\(419\) 2.04429e11 0.324026 0.162013 0.986789i \(-0.448201\pi\)
0.162013 + 0.986789i \(0.448201\pi\)
\(420\) 0 0
\(421\) −6.16297e11 −0.956139 −0.478069 0.878322i \(-0.658663\pi\)
−0.478069 + 0.878322i \(0.658663\pi\)
\(422\) 1.32060e12 2.02706
\(423\) 0 0
\(424\) −1.94520e11 −0.292292
\(425\) −6.83262e11 −1.01587
\(426\) 0 0
\(427\) −1.10733e11 −0.161195
\(428\) −1.54881e11 −0.223101
\(429\) 0 0
\(430\) 1.64478e11 0.232007
\(431\) 2.91473e11 0.406865 0.203433 0.979089i \(-0.434790\pi\)
0.203433 + 0.979089i \(0.434790\pi\)
\(432\) 0 0
\(433\) 1.01533e12 1.38808 0.694038 0.719939i \(-0.255830\pi\)
0.694038 + 0.719939i \(0.255830\pi\)
\(434\) 5.07258e11 0.686317
\(435\) 0 0
\(436\) 9.94285e11 1.31772
\(437\) −3.85901e11 −0.506185
\(438\) 0 0
\(439\) 5.92099e11 0.760859 0.380429 0.924810i \(-0.375776\pi\)
0.380429 + 0.924810i \(0.375776\pi\)
\(440\) −2.67687e10 −0.0340479
\(441\) 0 0
\(442\) 1.42116e11 0.177110
\(443\) −1.41822e12 −1.74955 −0.874775 0.484528i \(-0.838991\pi\)
−0.874775 + 0.484528i \(0.838991\pi\)
\(444\) 0 0
\(445\) 8.82311e10 0.106660
\(446\) −1.30911e12 −1.56664
\(447\) 0 0
\(448\) 1.28483e11 0.150693
\(449\) 1.36934e11 0.159002 0.0795011 0.996835i \(-0.474667\pi\)
0.0795011 + 0.996835i \(0.474667\pi\)
\(450\) 0 0
\(451\) −4.50564e11 −0.512817
\(452\) −6.77119e11 −0.763031
\(453\) 0 0
\(454\) −1.98850e12 −2.19671
\(455\) 5.12777e9 0.00560889
\(456\) 0 0
\(457\) 1.14631e12 1.22936 0.614680 0.788776i \(-0.289285\pi\)
0.614680 + 0.788776i \(0.289285\pi\)
\(458\) 9.11083e11 0.967528
\(459\) 0 0
\(460\) 1.08245e11 0.112720
\(461\) 1.02462e11 0.105659 0.0528297 0.998604i \(-0.483176\pi\)
0.0528297 + 0.998604i \(0.483176\pi\)
\(462\) 0 0
\(463\) −3.95784e10 −0.0400262 −0.0200131 0.999800i \(-0.506371\pi\)
−0.0200131 + 0.999800i \(0.506371\pi\)
\(464\) −1.85909e12 −1.86195
\(465\) 0 0
\(466\) 1.22279e12 1.20120
\(467\) −5.16020e11 −0.502042 −0.251021 0.967982i \(-0.580766\pi\)
−0.251021 + 0.967982i \(0.580766\pi\)
\(468\) 0 0
\(469\) 2.63116e11 0.251113
\(470\) 1.57586e11 0.148963
\(471\) 0 0
\(472\) −7.76586e10 −0.0720196
\(473\) 8.60934e11 0.790851
\(474\) 0 0
\(475\) 6.41097e11 0.577833
\(476\) −2.49742e11 −0.222977
\(477\) 0 0
\(478\) 1.85481e12 1.62508
\(479\) −2.82352e11 −0.245065 −0.122533 0.992464i \(-0.539102\pi\)
−0.122533 + 0.992464i \(0.539102\pi\)
\(480\) 0 0
\(481\) 4.39323e10 0.0374224
\(482\) −5.44753e11 −0.459714
\(483\) 0 0
\(484\) −4.09991e11 −0.339602
\(485\) −3.97998e11 −0.326620
\(486\) 0 0
\(487\) 9.63445e11 0.776151 0.388076 0.921627i \(-0.373140\pi\)
0.388076 + 0.921627i \(0.373140\pi\)
\(488\) 2.04529e11 0.163255
\(489\) 0 0
\(490\) 2.63421e11 0.206428
\(491\) −7.78305e11 −0.604342 −0.302171 0.953254i \(-0.597711\pi\)
−0.302171 + 0.953254i \(0.597711\pi\)
\(492\) 0 0
\(493\) 2.19689e12 1.67493
\(494\) −1.33346e11 −0.100742
\(495\) 0 0
\(496\) −2.99489e12 −2.22184
\(497\) 5.10783e11 0.375520
\(498\) 0 0
\(499\) 4.30792e10 0.0311039 0.0155520 0.999879i \(-0.495049\pi\)
0.0155520 + 0.999879i \(0.495049\pi\)
\(500\) −3.64740e11 −0.260987
\(501\) 0 0
\(502\) −3.45219e12 −2.42621
\(503\) 9.51004e11 0.662409 0.331205 0.943559i \(-0.392545\pi\)
0.331205 + 0.943559i \(0.392545\pi\)
\(504\) 0 0
\(505\) 9.33651e10 0.0638813
\(506\) 1.27666e12 0.865758
\(507\) 0 0
\(508\) 3.22417e11 0.214799
\(509\) 2.49605e12 1.64825 0.824127 0.566405i \(-0.191666\pi\)
0.824127 + 0.566405i \(0.191666\pi\)
\(510\) 0 0
\(511\) −2.70687e10 −0.0175620
\(512\) −1.83310e12 −1.17888
\(513\) 0 0
\(514\) 1.78394e12 1.12732
\(515\) 3.87558e11 0.242775
\(516\) 0 0
\(517\) 8.24858e11 0.507776
\(518\) −1.73954e11 −0.106157
\(519\) 0 0
\(520\) −9.47122e9 −0.00568055
\(521\) −4.54898e11 −0.270486 −0.135243 0.990812i \(-0.543181\pi\)
−0.135243 + 0.990812i \(0.543181\pi\)
\(522\) 0 0
\(523\) −2.02470e12 −1.18332 −0.591660 0.806188i \(-0.701527\pi\)
−0.591660 + 0.806188i \(0.701527\pi\)
\(524\) −2.12870e12 −1.23346
\(525\) 0 0
\(526\) −6.38178e11 −0.363501
\(527\) 3.53907e12 1.99867
\(528\) 0 0
\(529\) −4.93935e11 −0.274233
\(530\) 4.35732e11 0.239871
\(531\) 0 0
\(532\) 2.34330e11 0.126831
\(533\) −1.59417e11 −0.0855585
\(534\) 0 0
\(535\) −8.78510e10 −0.0463612
\(536\) −4.85987e11 −0.254321
\(537\) 0 0
\(538\) −4.43907e12 −2.28440
\(539\) 1.37883e12 0.703659
\(540\) 0 0
\(541\) −2.30600e12 −1.15737 −0.578685 0.815551i \(-0.696434\pi\)
−0.578685 + 0.815551i \(0.696434\pi\)
\(542\) 4.04207e12 2.01190
\(543\) 0 0
\(544\) 2.74427e12 1.34348
\(545\) 5.63973e11 0.273826
\(546\) 0 0
\(547\) −8.29913e11 −0.396360 −0.198180 0.980166i \(-0.563503\pi\)
−0.198180 + 0.980166i \(0.563503\pi\)
\(548\) −2.36622e12 −1.12084
\(549\) 0 0
\(550\) −2.12091e12 −0.988302
\(551\) −2.06132e12 −0.952713
\(552\) 0 0
\(553\) 5.74315e11 0.261148
\(554\) 2.13257e12 0.961856
\(555\) 0 0
\(556\) −2.24717e12 −0.997240
\(557\) 2.17270e12 0.956424 0.478212 0.878244i \(-0.341285\pi\)
0.478212 + 0.878244i \(0.341285\pi\)
\(558\) 0 0
\(559\) 3.04613e11 0.131946
\(560\) 1.19876e11 0.0515092
\(561\) 0 0
\(562\) −6.07396e12 −2.56838
\(563\) 2.40236e12 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(564\) 0 0
\(565\) −3.84072e11 −0.158560
\(566\) −2.56966e12 −1.05245
\(567\) 0 0
\(568\) −9.43439e11 −0.380317
\(569\) 3.14119e12 1.25629 0.628143 0.778098i \(-0.283815\pi\)
0.628143 + 0.778098i \(0.283815\pi\)
\(570\) 0 0
\(571\) 3.18984e12 1.25576 0.627880 0.778310i \(-0.283923\pi\)
0.627880 + 0.778310i \(0.283923\pi\)
\(572\) 1.95783e11 0.0764704
\(573\) 0 0
\(574\) 6.31227e11 0.242707
\(575\) −2.17168e12 −0.828496
\(576\) 0 0
\(577\) 1.32352e12 0.497097 0.248548 0.968620i \(-0.420047\pi\)
0.248548 + 0.968620i \(0.420047\pi\)
\(578\) −3.28015e11 −0.122241
\(579\) 0 0
\(580\) 5.78200e11 0.212154
\(581\) 3.31840e11 0.120819
\(582\) 0 0
\(583\) 2.28077e12 0.817660
\(584\) 4.99971e10 0.0177864
\(585\) 0 0
\(586\) 9.41533e11 0.329835
\(587\) −3.94222e11 −0.137047 −0.0685234 0.997650i \(-0.521829\pi\)
−0.0685234 + 0.997650i \(0.521829\pi\)
\(588\) 0 0
\(589\) −3.32067e12 −1.13686
\(590\) 1.73958e11 0.0591032
\(591\) 0 0
\(592\) 1.02704e12 0.343668
\(593\) −4.59838e12 −1.52707 −0.763535 0.645767i \(-0.776538\pi\)
−0.763535 + 0.645767i \(0.776538\pi\)
\(594\) 0 0
\(595\) −1.41657e11 −0.0463353
\(596\) −2.58543e12 −0.839314
\(597\) 0 0
\(598\) 4.51703e11 0.144443
\(599\) −3.67774e12 −1.16724 −0.583620 0.812027i \(-0.698364\pi\)
−0.583620 + 0.812027i \(0.698364\pi\)
\(600\) 0 0
\(601\) 3.42104e12 1.06960 0.534802 0.844977i \(-0.320386\pi\)
0.534802 + 0.844977i \(0.320386\pi\)
\(602\) −1.20614e12 −0.374295
\(603\) 0 0
\(604\) −3.46057e12 −1.05799
\(605\) −2.32553e11 −0.0705704
\(606\) 0 0
\(607\) −4.81992e12 −1.44109 −0.720544 0.693409i \(-0.756108\pi\)
−0.720544 + 0.693409i \(0.756108\pi\)
\(608\) −2.57491e12 −0.764182
\(609\) 0 0
\(610\) −4.58154e11 −0.133976
\(611\) 2.91849e11 0.0847174
\(612\) 0 0
\(613\) 3.32772e12 0.951862 0.475931 0.879483i \(-0.342111\pi\)
0.475931 + 0.879483i \(0.342111\pi\)
\(614\) 8.42312e11 0.239175
\(615\) 0 0
\(616\) 1.96299e11 0.0549293
\(617\) 9.32994e11 0.259176 0.129588 0.991568i \(-0.458634\pi\)
0.129588 + 0.991568i \(0.458634\pi\)
\(618\) 0 0
\(619\) 6.92588e11 0.189613 0.0948063 0.995496i \(-0.469777\pi\)
0.0948063 + 0.995496i \(0.469777\pi\)
\(620\) 9.31449e11 0.253161
\(621\) 0 0
\(622\) 7.78325e12 2.08499
\(623\) −6.47011e11 −0.172074
\(624\) 0 0
\(625\) 3.50293e12 0.918271
\(626\) −3.17951e12 −0.827516
\(627\) 0 0
\(628\) 3.14118e12 0.805886
\(629\) −1.21365e12 −0.309148
\(630\) 0 0
\(631\) −4.77434e12 −1.19890 −0.599448 0.800414i \(-0.704613\pi\)
−0.599448 + 0.800414i \(0.704613\pi\)
\(632\) −1.06079e12 −0.264485
\(633\) 0 0
\(634\) −3.00605e12 −0.738915
\(635\) 1.82880e11 0.0446359
\(636\) 0 0
\(637\) 4.87855e11 0.117399
\(638\) 6.81934e12 1.62948
\(639\) 0 0
\(640\) −3.73563e11 −0.0880144
\(641\) −5.00673e12 −1.17137 −0.585684 0.810540i \(-0.699174\pi\)
−0.585684 + 0.810540i \(0.699174\pi\)
\(642\) 0 0
\(643\) −5.87210e12 −1.35470 −0.677352 0.735659i \(-0.736872\pi\)
−0.677352 + 0.735659i \(0.736872\pi\)
\(644\) −7.93779e11 −0.181850
\(645\) 0 0
\(646\) 3.68375e12 0.832232
\(647\) 5.86641e12 1.31614 0.658071 0.752956i \(-0.271372\pi\)
0.658071 + 0.752956i \(0.271372\pi\)
\(648\) 0 0
\(649\) 9.10556e11 0.201468
\(650\) −7.50413e11 −0.164889
\(651\) 0 0
\(652\) 2.24405e12 0.486315
\(653\) −7.14975e12 −1.53880 −0.769399 0.638769i \(-0.779444\pi\)
−0.769399 + 0.638769i \(0.779444\pi\)
\(654\) 0 0
\(655\) −1.20743e12 −0.256317
\(656\) −3.72681e12 −0.785725
\(657\) 0 0
\(658\) −1.15560e12 −0.240321
\(659\) −2.66321e12 −0.550074 −0.275037 0.961434i \(-0.588690\pi\)
−0.275037 + 0.961434i \(0.588690\pi\)
\(660\) 0 0
\(661\) 7.12379e12 1.45146 0.725729 0.687981i \(-0.241503\pi\)
0.725729 + 0.687981i \(0.241503\pi\)
\(662\) 1.79723e12 0.363699
\(663\) 0 0
\(664\) −6.12923e11 −0.122363
\(665\) 1.32915e11 0.0263559
\(666\) 0 0
\(667\) 6.98259e12 1.36600
\(668\) 1.84180e12 0.357888
\(669\) 0 0
\(670\) 1.08863e12 0.208710
\(671\) −2.39813e12 −0.456690
\(672\) 0 0
\(673\) −6.42882e12 −1.20799 −0.603995 0.796988i \(-0.706425\pi\)
−0.603995 + 0.796988i \(0.706425\pi\)
\(674\) 1.00801e13 1.88147
\(675\) 0 0
\(676\) −4.26318e12 −0.785188
\(677\) 7.94372e12 1.45337 0.726683 0.686973i \(-0.241061\pi\)
0.726683 + 0.686973i \(0.241061\pi\)
\(678\) 0 0
\(679\) 2.91858e12 0.526935
\(680\) 2.61647e11 0.0469273
\(681\) 0 0
\(682\) 1.09856e13 1.94444
\(683\) 7.51902e12 1.32211 0.661056 0.750336i \(-0.270108\pi\)
0.661056 + 0.750336i \(0.270108\pi\)
\(684\) 0 0
\(685\) −1.34215e12 −0.232914
\(686\) −4.01230e12 −0.691727
\(687\) 0 0
\(688\) 7.12116e12 1.21172
\(689\) 8.06975e11 0.136419
\(690\) 0 0
\(691\) −8.50242e12 −1.41870 −0.709351 0.704855i \(-0.751012\pi\)
−0.709351 + 0.704855i \(0.751012\pi\)
\(692\) 7.10912e12 1.17852
\(693\) 0 0
\(694\) 5.59510e12 0.915568
\(695\) −1.27463e12 −0.207230
\(696\) 0 0
\(697\) 4.40398e12 0.706803
\(698\) 6.52836e12 1.04101
\(699\) 0 0
\(700\) 1.31870e12 0.207590
\(701\) −8.88313e12 −1.38942 −0.694712 0.719288i \(-0.744468\pi\)
−0.694712 + 0.719288i \(0.744468\pi\)
\(702\) 0 0
\(703\) 1.13876e12 0.175846
\(704\) 2.78253e12 0.426935
\(705\) 0 0
\(706\) 1.38151e13 2.09282
\(707\) −6.84660e11 −0.103059
\(708\) 0 0
\(709\) −1.22025e12 −0.181359 −0.0906797 0.995880i \(-0.528904\pi\)
−0.0906797 + 0.995880i \(0.528904\pi\)
\(710\) 2.11334e12 0.312110
\(711\) 0 0
\(712\) 1.19506e12 0.174273
\(713\) 1.12486e13 1.63003
\(714\) 0 0
\(715\) 1.11051e11 0.0158908
\(716\) −3.51618e12 −0.499992
\(717\) 0 0
\(718\) −2.33533e12 −0.327935
\(719\) −2.93448e12 −0.409497 −0.204749 0.978815i \(-0.565638\pi\)
−0.204749 + 0.978815i \(0.565638\pi\)
\(720\) 0 0
\(721\) −2.84202e12 −0.391668
\(722\) 6.33410e12 0.867496
\(723\) 0 0
\(724\) −6.09085e12 −0.823861
\(725\) −1.16002e13 −1.55935
\(726\) 0 0
\(727\) −8.52049e12 −1.13125 −0.565627 0.824661i \(-0.691366\pi\)
−0.565627 + 0.824661i \(0.691366\pi\)
\(728\) 6.94538e10 0.00916442
\(729\) 0 0
\(730\) −1.11996e11 −0.0145965
\(731\) −8.41509e12 −1.09001
\(732\) 0 0
\(733\) −7.03067e12 −0.899557 −0.449778 0.893140i \(-0.648497\pi\)
−0.449778 + 0.893140i \(0.648497\pi\)
\(734\) 1.57535e13 2.00329
\(735\) 0 0
\(736\) 8.72238e12 1.09568
\(737\) 5.69825e12 0.711439
\(738\) 0 0
\(739\) 1.29746e12 0.160027 0.0800136 0.996794i \(-0.474504\pi\)
0.0800136 + 0.996794i \(0.474504\pi\)
\(740\) −3.19422e11 −0.0391581
\(741\) 0 0
\(742\) −3.19529e12 −0.386983
\(743\) −3.91322e12 −0.471069 −0.235535 0.971866i \(-0.575684\pi\)
−0.235535 + 0.971866i \(0.575684\pi\)
\(744\) 0 0
\(745\) −1.46649e12 −0.174412
\(746\) −1.01945e13 −1.20515
\(747\) 0 0
\(748\) −5.40861e12 −0.631726
\(749\) 6.44224e11 0.0747943
\(750\) 0 0
\(751\) 3.30065e12 0.378634 0.189317 0.981916i \(-0.439373\pi\)
0.189317 + 0.981916i \(0.439373\pi\)
\(752\) 6.82276e12 0.778001
\(753\) 0 0
\(754\) 2.41280e12 0.271863
\(755\) −1.96289e12 −0.219854
\(756\) 0 0
\(757\) 1.36242e13 1.50792 0.753960 0.656920i \(-0.228141\pi\)
0.753960 + 0.656920i \(0.228141\pi\)
\(758\) −1.06822e13 −1.17531
\(759\) 0 0
\(760\) −2.45500e11 −0.0266926
\(761\) 2.23239e12 0.241290 0.120645 0.992696i \(-0.461504\pi\)
0.120645 + 0.992696i \(0.461504\pi\)
\(762\) 0 0
\(763\) −4.13570e12 −0.441762
\(764\) −1.19940e12 −0.127363
\(765\) 0 0
\(766\) −1.79329e13 −1.88201
\(767\) 3.22170e11 0.0336129
\(768\) 0 0
\(769\) −1.16863e13 −1.20505 −0.602527 0.798098i \(-0.705840\pi\)
−0.602527 + 0.798098i \(0.705840\pi\)
\(770\) −4.39717e11 −0.0450780
\(771\) 0 0
\(772\) −3.85221e12 −0.390330
\(773\) −9.53346e12 −0.960379 −0.480190 0.877165i \(-0.659432\pi\)
−0.480190 + 0.877165i \(0.659432\pi\)
\(774\) 0 0
\(775\) −1.86873e13 −1.86075
\(776\) −5.39074e12 −0.533667
\(777\) 0 0
\(778\) −1.04833e13 −1.02586
\(779\) −4.13221e12 −0.402035
\(780\) 0 0
\(781\) 1.10619e13 1.06390
\(782\) −1.24785e13 −1.19325
\(783\) 0 0
\(784\) 1.14049e13 1.07813
\(785\) 1.78172e12 0.167466
\(786\) 0 0
\(787\) −1.86618e13 −1.73407 −0.867034 0.498248i \(-0.833977\pi\)
−0.867034 + 0.498248i \(0.833977\pi\)
\(788\) 6.67773e12 0.616965
\(789\) 0 0
\(790\) 2.37620e12 0.217051
\(791\) 2.81645e12 0.255805
\(792\) 0 0
\(793\) −8.48499e11 −0.0761942
\(794\) −6.52032e12 −0.582206
\(795\) 0 0
\(796\) −7.86861e12 −0.694687
\(797\) 1.78187e12 0.156428 0.0782139 0.996937i \(-0.475078\pi\)
0.0782139 + 0.996937i \(0.475078\pi\)
\(798\) 0 0
\(799\) −8.06247e12 −0.699855
\(800\) −1.44905e13 −1.25077
\(801\) 0 0
\(802\) 1.28869e13 1.09993
\(803\) −5.86222e11 −0.0497556
\(804\) 0 0
\(805\) −4.50243e11 −0.0377890
\(806\) 3.88689e12 0.324410
\(807\) 0 0
\(808\) 1.26460e12 0.104376
\(809\) −1.10802e12 −0.0909451 −0.0454726 0.998966i \(-0.514479\pi\)
−0.0454726 + 0.998966i \(0.514479\pi\)
\(810\) 0 0
\(811\) −1.53607e13 −1.24685 −0.623427 0.781881i \(-0.714260\pi\)
−0.623427 + 0.781881i \(0.714260\pi\)
\(812\) −4.24002e12 −0.342268
\(813\) 0 0
\(814\) −3.76729e12 −0.300759
\(815\) 1.27286e12 0.101058
\(816\) 0 0
\(817\) 7.89578e12 0.620006
\(818\) −1.12282e13 −0.876839
\(819\) 0 0
\(820\) 1.15909e12 0.0895269
\(821\) 1.39731e13 1.07337 0.536685 0.843783i \(-0.319676\pi\)
0.536685 + 0.843783i \(0.319676\pi\)
\(822\) 0 0
\(823\) −8.54103e12 −0.648950 −0.324475 0.945894i \(-0.605188\pi\)
−0.324475 + 0.945894i \(0.605188\pi\)
\(824\) 5.24933e12 0.396672
\(825\) 0 0
\(826\) −1.27566e12 −0.0953510
\(827\) −1.41887e13 −1.05480 −0.527398 0.849618i \(-0.676832\pi\)
−0.527398 + 0.849618i \(0.676832\pi\)
\(828\) 0 0
\(829\) 2.47597e12 0.182075 0.0910373 0.995847i \(-0.470982\pi\)
0.0910373 + 0.995847i \(0.470982\pi\)
\(830\) 1.37297e12 0.100418
\(831\) 0 0
\(832\) 9.84505e11 0.0712300
\(833\) −1.34772e13 −0.969836
\(834\) 0 0
\(835\) 1.04469e12 0.0743704
\(836\) 5.07484e12 0.359330
\(837\) 0 0
\(838\) −6.20250e12 −0.434479
\(839\) −1.76017e12 −0.122638 −0.0613192 0.998118i \(-0.519531\pi\)
−0.0613192 + 0.998118i \(0.519531\pi\)
\(840\) 0 0
\(841\) 2.27908e13 1.57101
\(842\) 1.86988e13 1.28206
\(843\) 0 0
\(844\) −1.77825e13 −1.20629
\(845\) −2.41814e12 −0.163165
\(846\) 0 0
\(847\) 1.70534e12 0.113851
\(848\) 1.88652e13 1.25280
\(849\) 0 0
\(850\) 2.07305e13 1.36215
\(851\) −3.85747e12 −0.252127
\(852\) 0 0
\(853\) −3.65983e12 −0.236696 −0.118348 0.992972i \(-0.537760\pi\)
−0.118348 + 0.992972i \(0.537760\pi\)
\(854\) 3.35971e12 0.216143
\(855\) 0 0
\(856\) −1.18991e12 −0.0757499
\(857\) 2.33292e13 1.47736 0.738681 0.674055i \(-0.235449\pi\)
0.738681 + 0.674055i \(0.235449\pi\)
\(858\) 0 0
\(859\) −1.05637e12 −0.0661982 −0.0330991 0.999452i \(-0.510538\pi\)
−0.0330991 + 0.999452i \(0.510538\pi\)
\(860\) −2.21477e12 −0.138066
\(861\) 0 0
\(862\) −8.84345e12 −0.545556
\(863\) 3.03140e13 1.86035 0.930176 0.367113i \(-0.119654\pi\)
0.930176 + 0.367113i \(0.119654\pi\)
\(864\) 0 0
\(865\) 4.03240e12 0.244901
\(866\) −3.08058e13 −1.86124
\(867\) 0 0
\(868\) −6.83045e12 −0.408423
\(869\) 1.24378e13 0.739871
\(870\) 0 0
\(871\) 2.01614e12 0.118697
\(872\) 7.63882e12 0.447406
\(873\) 0 0
\(874\) 1.17084e13 0.678731
\(875\) 1.51713e12 0.0874954
\(876\) 0 0
\(877\) 3.79827e12 0.216814 0.108407 0.994107i \(-0.465425\pi\)
0.108407 + 0.994107i \(0.465425\pi\)
\(878\) −1.79646e13 −1.02022
\(879\) 0 0
\(880\) 2.59612e12 0.145933
\(881\) −1.93222e13 −1.08060 −0.540299 0.841473i \(-0.681689\pi\)
−0.540299 + 0.841473i \(0.681689\pi\)
\(882\) 0 0
\(883\) −1.55128e13 −0.858751 −0.429376 0.903126i \(-0.641266\pi\)
−0.429376 + 0.903126i \(0.641266\pi\)
\(884\) −1.91366e12 −0.105397
\(885\) 0 0
\(886\) 4.30295e13 2.34593
\(887\) 2.28162e13 1.23762 0.618808 0.785542i \(-0.287616\pi\)
0.618808 + 0.785542i \(0.287616\pi\)
\(888\) 0 0
\(889\) −1.34108e12 −0.0720109
\(890\) −2.67698e12 −0.143018
\(891\) 0 0
\(892\) 1.76277e13 0.932298
\(893\) 7.56493e12 0.398082
\(894\) 0 0
\(895\) −1.99443e12 −0.103900
\(896\) 2.73939e12 0.141993
\(897\) 0 0
\(898\) −4.15466e12 −0.213202
\(899\) 6.00850e13 3.06795
\(900\) 0 0
\(901\) −2.22931e13 −1.12696
\(902\) 1.36704e13 0.687624
\(903\) 0 0
\(904\) −5.20212e12 −0.259073
\(905\) −3.45482e12 −0.171201
\(906\) 0 0
\(907\) −7.83380e11 −0.0384361 −0.0192181 0.999815i \(-0.506118\pi\)
−0.0192181 + 0.999815i \(0.506118\pi\)
\(908\) 2.67760e13 1.30725
\(909\) 0 0
\(910\) −1.55579e11 −0.00752083
\(911\) −3.53016e13 −1.69809 −0.849047 0.528317i \(-0.822823\pi\)
−0.849047 + 0.528317i \(0.822823\pi\)
\(912\) 0 0
\(913\) 7.18660e12 0.342298
\(914\) −3.47797e13 −1.64842
\(915\) 0 0
\(916\) −1.22681e13 −0.575770
\(917\) 8.85427e12 0.413515
\(918\) 0 0
\(919\) −1.06193e13 −0.491106 −0.245553 0.969383i \(-0.578970\pi\)
−0.245553 + 0.969383i \(0.578970\pi\)
\(920\) 8.31619e11 0.0382718
\(921\) 0 0
\(922\) −3.10875e12 −0.141676
\(923\) 3.91390e12 0.177502
\(924\) 0 0
\(925\) 6.40842e12 0.287815
\(926\) 1.20083e12 0.0536701
\(927\) 0 0
\(928\) 4.65912e13 2.06223
\(929\) 2.30491e13 1.01527 0.507637 0.861571i \(-0.330519\pi\)
0.507637 + 0.861571i \(0.330519\pi\)
\(930\) 0 0
\(931\) 1.26455e13 0.551650
\(932\) −1.64654e13 −0.714828
\(933\) 0 0
\(934\) 1.56563e13 0.673176
\(935\) −3.06784e12 −0.131275
\(936\) 0 0
\(937\) 2.83663e13 1.20220 0.601098 0.799176i \(-0.294730\pi\)
0.601098 + 0.799176i \(0.294730\pi\)
\(938\) −7.98308e12 −0.336711
\(939\) 0 0
\(940\) −2.12197e12 −0.0886468
\(941\) −1.81784e13 −0.755790 −0.377895 0.925848i \(-0.623352\pi\)
−0.377895 + 0.925848i \(0.623352\pi\)
\(942\) 0 0
\(943\) 1.39976e13 0.576437
\(944\) 7.53161e12 0.308684
\(945\) 0 0
\(946\) −2.61212e13 −1.06043
\(947\) −2.75665e12 −0.111380 −0.0556899 0.998448i \(-0.517736\pi\)
−0.0556899 + 0.998448i \(0.517736\pi\)
\(948\) 0 0
\(949\) −2.07415e11 −0.00830124
\(950\) −1.94512e13 −0.774802
\(951\) 0 0
\(952\) −1.91870e12 −0.0757077
\(953\) −1.37564e13 −0.540240 −0.270120 0.962827i \(-0.587063\pi\)
−0.270120 + 0.962827i \(0.587063\pi\)
\(954\) 0 0
\(955\) −6.80316e11 −0.0264665
\(956\) −2.49758e13 −0.967073
\(957\) 0 0
\(958\) 8.56672e12 0.328602
\(959\) 9.84221e12 0.375758
\(960\) 0 0
\(961\) 7.03542e13 2.66094
\(962\) −1.33293e12 −0.0501788
\(963\) 0 0
\(964\) 7.33534e12 0.273573
\(965\) −2.18503e12 −0.0811120
\(966\) 0 0
\(967\) −3.31021e13 −1.21741 −0.608704 0.793397i \(-0.708310\pi\)
−0.608704 + 0.793397i \(0.708310\pi\)
\(968\) −3.14984e12 −0.115306
\(969\) 0 0
\(970\) 1.20755e13 0.437957
\(971\) −1.64424e13 −0.593579 −0.296790 0.954943i \(-0.595916\pi\)
−0.296790 + 0.954943i \(0.595916\pi\)
\(972\) 0 0
\(973\) 9.34704e12 0.334323
\(974\) −2.92314e13 −1.04072
\(975\) 0 0
\(976\) −1.98360e13 −0.699728
\(977\) −1.10850e13 −0.389235 −0.194617 0.980879i \(-0.562347\pi\)
−0.194617 + 0.980879i \(0.562347\pi\)
\(978\) 0 0
\(979\) −1.40122e13 −0.487511
\(980\) −3.54708e12 −0.122844
\(981\) 0 0
\(982\) 2.36142e13 0.810348
\(983\) −1.04408e13 −0.356652 −0.178326 0.983971i \(-0.557068\pi\)
−0.178326 + 0.983971i \(0.557068\pi\)
\(984\) 0 0
\(985\) 3.78771e12 0.128207
\(986\) −6.66548e13 −2.24587
\(987\) 0 0
\(988\) 1.79556e12 0.0599508
\(989\) −2.67465e13 −0.888964
\(990\) 0 0
\(991\) 8.23938e12 0.271371 0.135685 0.990752i \(-0.456676\pi\)
0.135685 + 0.990752i \(0.456676\pi\)
\(992\) 7.50559e13 2.46083
\(993\) 0 0
\(994\) −1.54974e13 −0.503525
\(995\) −4.46320e12 −0.144358
\(996\) 0 0
\(997\) 4.09580e13 1.31284 0.656419 0.754397i \(-0.272070\pi\)
0.656419 + 0.754397i \(0.272070\pi\)
\(998\) −1.30705e12 −0.0417065
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.a.b.1.1 yes 4
3.2 odd 2 81.10.a.a.1.4 4
9.2 odd 6 81.10.c.k.28.1 8
9.4 even 3 81.10.c.i.55.4 8
9.5 odd 6 81.10.c.k.55.1 8
9.7 even 3 81.10.c.i.28.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.10.a.a.1.4 4 3.2 odd 2
81.10.a.b.1.1 yes 4 1.1 even 1 trivial
81.10.c.i.28.4 8 9.7 even 3
81.10.c.i.55.4 8 9.4 even 3
81.10.c.k.28.1 8 9.2 odd 6
81.10.c.k.55.1 8 9.5 odd 6