Properties

Label 81.10.a.b
Level $81$
Weight $10$
Character orbit 81.a
Self dual yes
Analytic conductor $41.718$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(1,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7179027293\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1314x^{2} + 10232x + 106624 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 8) q^{2} + (\beta_{3} + 6 \beta_1 + 212) q^{4} + ( - \beta_{3} - \beta_{2} - 6 \beta_1 + 144) q^{5} + (\beta_{3} + 3 \beta_{2} + 12 \beta_1 - 813) q^{7} + (13 \beta_{3} + 4 \beta_{2} + \cdots + 1184) q^{8}+ \cdots + ( - 140336 \beta_{3} + \cdots + 189880696) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 33 q^{2} + 853 q^{4} + 570 q^{5} - 3238 q^{7} + 4791 q^{8} - 9723 q^{10} - 96690 q^{11} - 141118 q^{13} + 3036 q^{14} - 244463 q^{16} + 285156 q^{17} - 465166 q^{19} - 1041711 q^{20} - 2244480 q^{22}+ \cdots + 735501321 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 1314x^{2} + 10232x + 106624 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 11\nu^{2} - 1026\nu - 284 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 10\nu - 660 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 10\beta _1 + 660 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -11\beta_{3} + 4\beta_{2} + 1136\beta _1 - 6976 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−38.3405
−5.97760
15.7163
29.6018
−30.3405 0 408.549 231.735 0 −1699.35 3138.77 0 −7030.96
1.2 2.02240 0 −507.910 −643.210 0 2952.58 −2062.66 0 −1300.83
1.3 23.7163 0 50.4644 2758.02 0 −8237.69 −10945.9 0 65410.1
1.4 37.6018 0 901.897 −1776.55 0 3746.45 14660.8 0 −66801.3
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.10.a.b yes 4
3.b odd 2 1 81.10.a.a 4
9.c even 3 2 81.10.c.i 8
9.d odd 6 2 81.10.c.k 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
81.10.a.a 4 3.b odd 2 1
81.10.a.b yes 4 1.a even 1 1 trivial
81.10.c.i 8 9.c even 3 2
81.10.c.k 8 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 33T_{2}^{3} - 906T_{2}^{2} + 29016T_{2} - 54720 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(81))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 33 T^{3} + \cdots - 54720 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 730328471775 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 154849581483520 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 76\!\cdots\!40 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 27\!\cdots\!51 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 16\!\cdots\!73 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 35\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 24\!\cdots\!52 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 10\!\cdots\!55 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 18\!\cdots\!64 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 39\!\cdots\!35 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 68\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 23\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 11\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 26\!\cdots\!92 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 41\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 16\!\cdots\!45 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 62\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 11\!\cdots\!12 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 57\!\cdots\!23 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 26\!\cdots\!24 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 45\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 13\!\cdots\!45 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 88\!\cdots\!04 \) Copy content Toggle raw display
show more
show less