Properties

Label 8092.2.a.k
Level $8092$
Weight $2$
Character orbit 8092.a
Self dual yes
Analytic conductor $64.615$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8092,2,Mod(1,8092)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8092, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8092.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8092 = 2^{2} \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8092.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.6149453156\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 476)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} + ( - \beta + 1) q^{5} - q^{7} + \beta q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{3} + ( - \beta + 1) q^{5} - q^{7} + \beta q^{9} + ( - 2 \beta + 4) q^{13} + 3 q^{15} + ( - 2 \beta + 4) q^{19} + \beta q^{21} + ( - \beta - 1) q^{25} + (2 \beta - 3) q^{27} + (\beta - 3) q^{31} + (\beta - 1) q^{35} - 2 \beta q^{37} + ( - 2 \beta + 6) q^{39} + 3 \beta q^{41} + ( - \beta + 6) q^{43} - 3 q^{45} + ( - 2 \beta + 2) q^{47} + q^{49} + ( - \beta - 5) q^{53} + ( - 2 \beta + 6) q^{57} + ( - 4 \beta + 4) q^{59} + ( - 3 \beta + 4) q^{61} - \beta q^{63} + ( - 4 \beta + 10) q^{65} + ( - \beta - 3) q^{67} - 6 \beta q^{71} + ( - 3 \beta + 4) q^{73} + (2 \beta + 3) q^{75} + (2 \beta - 10) q^{79} + ( - 2 \beta - 6) q^{81} + 6 q^{83} + (2 \beta - 14) q^{89} + (2 \beta - 4) q^{91} + (2 \beta - 3) q^{93} + ( - 4 \beta + 10) q^{95} + ( - \beta + 5) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + q^{5} - 2 q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} + q^{5} - 2 q^{7} + q^{9} + 6 q^{13} + 6 q^{15} + 6 q^{19} + q^{21} - 3 q^{25} - 4 q^{27} - 5 q^{31} - q^{35} - 2 q^{37} + 10 q^{39} + 3 q^{41} + 11 q^{43} - 6 q^{45} + 2 q^{47} + 2 q^{49} - 11 q^{53} + 10 q^{57} + 4 q^{59} + 5 q^{61} - q^{63} + 16 q^{65} - 7 q^{67} - 6 q^{71} + 5 q^{73} + 8 q^{75} - 18 q^{79} - 14 q^{81} + 12 q^{83} - 26 q^{89} - 6 q^{91} - 4 q^{93} + 16 q^{95} + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.30278
−1.30278
0 −2.30278 0 −1.30278 0 −1.00000 0 2.30278 0
1.2 0 1.30278 0 2.30278 0 −1.00000 0 −1.30278 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(1\)
\(17\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8092.2.a.k 2
17.b even 2 1 476.2.a.d 2
51.c odd 2 1 4284.2.a.n 2
68.d odd 2 1 1904.2.a.h 2
119.d odd 2 1 3332.2.a.j 2
136.e odd 2 1 7616.2.a.v 2
136.h even 2 1 7616.2.a.q 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
476.2.a.d 2 17.b even 2 1
1904.2.a.h 2 68.d odd 2 1
3332.2.a.j 2 119.d odd 2 1
4284.2.a.n 2 51.c odd 2 1
7616.2.a.q 2 136.h even 2 1
7616.2.a.v 2 136.e odd 2 1
8092.2.a.k 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8092))\):

\( T_{3}^{2} + T_{3} - 3 \) Copy content Toggle raw display
\( T_{5}^{2} - T_{5} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 3 \) Copy content Toggle raw display
$5$ \( T^{2} - T - 3 \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 6T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 6T - 4 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 5T + 3 \) Copy content Toggle raw display
$37$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$41$ \( T^{2} - 3T - 27 \) Copy content Toggle raw display
$43$ \( T^{2} - 11T + 27 \) Copy content Toggle raw display
$47$ \( T^{2} - 2T - 12 \) Copy content Toggle raw display
$53$ \( T^{2} + 11T + 27 \) Copy content Toggle raw display
$59$ \( T^{2} - 4T - 48 \) Copy content Toggle raw display
$61$ \( T^{2} - 5T - 23 \) Copy content Toggle raw display
$67$ \( T^{2} + 7T + 9 \) Copy content Toggle raw display
$71$ \( T^{2} + 6T - 108 \) Copy content Toggle raw display
$73$ \( T^{2} - 5T - 23 \) Copy content Toggle raw display
$79$ \( T^{2} + 18T + 68 \) Copy content Toggle raw display
$83$ \( (T - 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 26T + 156 \) Copy content Toggle raw display
$97$ \( T^{2} - 9T + 17 \) Copy content Toggle raw display
show more
show less