Properties

Label 8085.2.a.f.1.1
Level $8085$
Weight $2$
Character 8085.1
Self dual yes
Analytic conductor $64.559$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8085 = 3 \cdot 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8085.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(64.5590500342\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1155)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 8085.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} -1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} +3.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} -1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} +3.00000 q^{8} +1.00000 q^{9} +1.00000 q^{10} -1.00000 q^{11} +1.00000 q^{12} +2.00000 q^{13} +1.00000 q^{15} -1.00000 q^{16} -2.00000 q^{17} -1.00000 q^{18} -4.00000 q^{19} +1.00000 q^{20} +1.00000 q^{22} -3.00000 q^{24} +1.00000 q^{25} -2.00000 q^{26} -1.00000 q^{27} +6.00000 q^{29} -1.00000 q^{30} -5.00000 q^{32} +1.00000 q^{33} +2.00000 q^{34} -1.00000 q^{36} +6.00000 q^{37} +4.00000 q^{38} -2.00000 q^{39} -3.00000 q^{40} +6.00000 q^{41} -4.00000 q^{43} +1.00000 q^{44} -1.00000 q^{45} +1.00000 q^{48} -1.00000 q^{50} +2.00000 q^{51} -2.00000 q^{52} -2.00000 q^{53} +1.00000 q^{54} +1.00000 q^{55} +4.00000 q^{57} -6.00000 q^{58} -4.00000 q^{59} -1.00000 q^{60} -6.00000 q^{61} +7.00000 q^{64} -2.00000 q^{65} -1.00000 q^{66} +12.0000 q^{67} +2.00000 q^{68} +3.00000 q^{72} -10.0000 q^{73} -6.00000 q^{74} -1.00000 q^{75} +4.00000 q^{76} +2.00000 q^{78} +8.00000 q^{79} +1.00000 q^{80} +1.00000 q^{81} -6.00000 q^{82} +4.00000 q^{83} +2.00000 q^{85} +4.00000 q^{86} -6.00000 q^{87} -3.00000 q^{88} -10.0000 q^{89} +1.00000 q^{90} +4.00000 q^{95} +5.00000 q^{96} -10.0000 q^{97} -1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.00000 −0.500000
\(5\) −1.00000 −0.447214
\(6\) 1.00000 0.408248
\(7\) 0 0
\(8\) 3.00000 1.06066
\(9\) 1.00000 0.333333
\(10\) 1.00000 0.316228
\(11\) −1.00000 −0.301511
\(12\) 1.00000 0.288675
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) −1.00000 −0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) −1.00000 −0.235702
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −3.00000 −0.612372
\(25\) 1.00000 0.200000
\(26\) −2.00000 −0.392232
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) −1.00000 −0.182574
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −5.00000 −0.883883
\(33\) 1.00000 0.174078
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 4.00000 0.648886
\(39\) −2.00000 −0.320256
\(40\) −3.00000 −0.474342
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 1.00000 0.150756
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 1.00000 0.144338
\(49\) 0 0
\(50\) −1.00000 −0.141421
\(51\) 2.00000 0.280056
\(52\) −2.00000 −0.277350
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 1.00000 0.136083
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) −6.00000 −0.787839
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) −1.00000 −0.129099
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) −2.00000 −0.248069
\(66\) −1.00000 −0.123091
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 2.00000 0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 3.00000 0.353553
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) −6.00000 −0.697486
\(75\) −1.00000 −0.115470
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 1.00000 0.111803
\(81\) 1.00000 0.111111
\(82\) −6.00000 −0.662589
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 4.00000 0.431331
\(87\) −6.00000 −0.643268
\(88\) −3.00000 −0.319801
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 1.00000 0.105409
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 5.00000 0.510310
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) −1.00000 −0.100000
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) −2.00000 −0.198030
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 6.00000 0.588348
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 1.00000 0.0962250
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) −1.00000 −0.0953463
\(111\) −6.00000 −0.569495
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) −4.00000 −0.374634
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 2.00000 0.184900
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 3.00000 0.273861
\(121\) 1.00000 0.0909091
\(122\) 6.00000 0.543214
\(123\) −6.00000 −0.541002
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 3.00000 0.265165
\(129\) 4.00000 0.352180
\(130\) 2.00000 0.175412
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) −1.00000 −0.0870388
\(133\) 0 0
\(134\) −12.0000 −1.03664
\(135\) 1.00000 0.0860663
\(136\) −6.00000 −0.514496
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) −1.00000 −0.0833333
\(145\) −6.00000 −0.498273
\(146\) 10.0000 0.827606
\(147\) 0 0
\(148\) −6.00000 −0.493197
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 1.00000 0.0816497
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) −12.0000 −0.973329
\(153\) −2.00000 −0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) −8.00000 −0.636446
\(159\) 2.00000 0.158610
\(160\) 5.00000 0.395285
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −6.00000 −0.468521
\(165\) −1.00000 −0.0778499
\(166\) −4.00000 −0.310460
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −2.00000 −0.153393
\(171\) −4.00000 −0.305888
\(172\) 4.00000 0.304997
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 6.00000 0.454859
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 4.00000 0.300658
\(178\) 10.0000 0.749532
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 1.00000 0.0745356
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 6.00000 0.443533
\(184\) 0 0
\(185\) −6.00000 −0.441129
\(186\) 0 0
\(187\) 2.00000 0.146254
\(188\) 0 0
\(189\) 0 0
\(190\) −4.00000 −0.290191
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) −7.00000 −0.505181
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 10.0000 0.717958
\(195\) 2.00000 0.143223
\(196\) 0 0
\(197\) −10.0000 −0.712470 −0.356235 0.934396i \(-0.615940\pi\)
−0.356235 + 0.934396i \(0.615940\pi\)
\(198\) 1.00000 0.0710669
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 3.00000 0.212132
\(201\) −12.0000 −0.846415
\(202\) −10.0000 −0.703598
\(203\) 0 0
\(204\) −2.00000 −0.140028
\(205\) −6.00000 −0.419058
\(206\) 8.00000 0.557386
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 2.00000 0.137361
\(213\) 0 0
\(214\) −4.00000 −0.273434
\(215\) 4.00000 0.272798
\(216\) −3.00000 −0.204124
\(217\) 0 0
\(218\) 2.00000 0.135457
\(219\) 10.0000 0.675737
\(220\) −1.00000 −0.0674200
\(221\) −4.00000 −0.269069
\(222\) 6.00000 0.402694
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 6.00000 0.399114
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) −4.00000 −0.264906
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 18.0000 1.18176
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) 4.00000 0.260378
\(237\) −8.00000 −0.519656
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) −1.00000 −0.0645497
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −1.00000 −0.0641500
\(244\) 6.00000 0.384111
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) −8.00000 −0.509028
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 1.00000 0.0632456
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −16.0000 −1.00393
\(255\) −2.00000 −0.125245
\(256\) −17.0000 −1.06250
\(257\) 14.0000 0.873296 0.436648 0.899632i \(-0.356166\pi\)
0.436648 + 0.899632i \(0.356166\pi\)
\(258\) −4.00000 −0.249029
\(259\) 0 0
\(260\) 2.00000 0.124035
\(261\) 6.00000 0.371391
\(262\) −12.0000 −0.741362
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 3.00000 0.184637
\(265\) 2.00000 0.122859
\(266\) 0 0
\(267\) 10.0000 0.611990
\(268\) −12.0000 −0.733017
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) −1.00000 −0.0608581
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) −2.00000 −0.120824
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) −4.00000 −0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) −30.0000 −1.78965 −0.894825 0.446417i \(-0.852700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 0 0
\(285\) −4.00000 −0.236940
\(286\) 2.00000 0.118262
\(287\) 0 0
\(288\) −5.00000 −0.294628
\(289\) −13.0000 −0.764706
\(290\) 6.00000 0.352332
\(291\) 10.0000 0.586210
\(292\) 10.0000 0.585206
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) 18.0000 1.04623
\(297\) 1.00000 0.0580259
\(298\) 18.0000 1.04271
\(299\) 0 0
\(300\) 1.00000 0.0577350
\(301\) 0 0
\(302\) 16.0000 0.920697
\(303\) −10.0000 −0.574485
\(304\) 4.00000 0.229416
\(305\) 6.00000 0.343559
\(306\) 2.00000 0.114332
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 32.0000 1.81455 0.907277 0.420534i \(-0.138157\pi\)
0.907277 + 0.420534i \(0.138157\pi\)
\(312\) −6.00000 −0.339683
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 22.0000 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) −2.00000 −0.112154
\(319\) −6.00000 −0.335936
\(320\) −7.00000 −0.391312
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) 8.00000 0.445132
\(324\) −1.00000 −0.0555556
\(325\) 2.00000 0.110940
\(326\) 4.00000 0.221540
\(327\) 2.00000 0.110600
\(328\) 18.0000 0.993884
\(329\) 0 0
\(330\) 1.00000 0.0550482
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) −4.00000 −0.219529
\(333\) 6.00000 0.328798
\(334\) −16.0000 −0.875481
\(335\) −12.0000 −0.655630
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 9.00000 0.489535
\(339\) 6.00000 0.325875
\(340\) −2.00000 −0.108465
\(341\) 0 0
\(342\) 4.00000 0.216295
\(343\) 0 0
\(344\) −12.0000 −0.646997
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 6.00000 0.321634
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 5.00000 0.266501
\(353\) −2.00000 −0.106449 −0.0532246 0.998583i \(-0.516950\pi\)
−0.0532246 + 0.998583i \(0.516950\pi\)
\(354\) −4.00000 −0.212598
\(355\) 0 0
\(356\) 10.0000 0.529999
\(357\) 0 0
\(358\) 4.00000 0.211407
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) −3.00000 −0.158114
\(361\) −3.00000 −0.157895
\(362\) −10.0000 −0.525588
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) 10.0000 0.523424
\(366\) −6.00000 −0.313625
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 6.00000 0.311925
\(371\) 0 0
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) −2.00000 −0.103418
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) −4.00000 −0.205196
\(381\) −16.0000 −0.819705
\(382\) −24.0000 −1.22795
\(383\) 16.0000 0.817562 0.408781 0.912633i \(-0.365954\pi\)
0.408781 + 0.912633i \(0.365954\pi\)
\(384\) −3.00000 −0.153093
\(385\) 0 0
\(386\) −2.00000 −0.101797
\(387\) −4.00000 −0.203331
\(388\) 10.0000 0.507673
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) −2.00000 −0.101274
\(391\) 0 0
\(392\) 0 0
\(393\) −12.0000 −0.605320
\(394\) 10.0000 0.503793
\(395\) −8.00000 −0.402524
\(396\) 1.00000 0.0502519
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 8.00000 0.401004
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) 34.0000 1.69788 0.848939 0.528490i \(-0.177242\pi\)
0.848939 + 0.528490i \(0.177242\pi\)
\(402\) 12.0000 0.598506
\(403\) 0 0
\(404\) −10.0000 −0.497519
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −6.00000 −0.297409
\(408\) 6.00000 0.297044
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) 6.00000 0.296319
\(411\) −2.00000 −0.0986527
\(412\) 8.00000 0.394132
\(413\) 0 0
\(414\) 0 0
\(415\) −4.00000 −0.196352
\(416\) −10.0000 −0.490290
\(417\) −4.00000 −0.195881
\(418\) −4.00000 −0.195646
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 20.0000 0.973585
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) −2.00000 −0.0970143
\(426\) 0 0
\(427\) 0 0
\(428\) −4.00000 −0.193347
\(429\) 2.00000 0.0965609
\(430\) −4.00000 −0.192897
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 1.00000 0.0481125
\(433\) 6.00000 0.288342 0.144171 0.989553i \(-0.453949\pi\)
0.144171 + 0.989553i \(0.453949\pi\)
\(434\) 0 0
\(435\) 6.00000 0.287678
\(436\) 2.00000 0.0957826
\(437\) 0 0
\(438\) −10.0000 −0.477818
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 3.00000 0.143019
\(441\) 0 0
\(442\) 4.00000 0.190261
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 6.00000 0.284747
\(445\) 10.0000 0.474045
\(446\) −16.0000 −0.757622
\(447\) 18.0000 0.851371
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) −1.00000 −0.0471405
\(451\) −6.00000 −0.282529
\(452\) 6.00000 0.282216
\(453\) 16.0000 0.751746
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 12.0000 0.561951
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 22.0000 1.02799
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 2.00000 0.0931493 0.0465746 0.998915i \(-0.485169\pi\)
0.0465746 + 0.998915i \(0.485169\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) −2.00000 −0.0924500
\(469\) 0 0
\(470\) 0 0
\(471\) 22.0000 1.01371
\(472\) −12.0000 −0.552345
\(473\) 4.00000 0.183920
\(474\) 8.00000 0.367452
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) −2.00000 −0.0915737
\(478\) 24.0000 1.09773
\(479\) 32.0000 1.46212 0.731059 0.682315i \(-0.239027\pi\)
0.731059 + 0.682315i \(0.239027\pi\)
\(480\) −5.00000 −0.228218
\(481\) 12.0000 0.547153
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) −1.00000 −0.0454545
\(485\) 10.0000 0.454077
\(486\) 1.00000 0.0453609
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) −18.0000 −0.814822
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 6.00000 0.270501
\(493\) −12.0000 −0.540453
\(494\) 8.00000 0.359937
\(495\) 1.00000 0.0449467
\(496\) 0 0
\(497\) 0 0
\(498\) 4.00000 0.179244
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) 1.00000 0.0447214
\(501\) −16.0000 −0.714827
\(502\) −12.0000 −0.535586
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) −16.0000 −0.709885
\(509\) 2.00000 0.0886484 0.0443242 0.999017i \(-0.485887\pi\)
0.0443242 + 0.999017i \(0.485887\pi\)
\(510\) 2.00000 0.0885615
\(511\) 0 0
\(512\) 11.0000 0.486136
\(513\) 4.00000 0.176604
\(514\) −14.0000 −0.617514
\(515\) 8.00000 0.352522
\(516\) −4.00000 −0.176090
\(517\) 0 0
\(518\) 0 0
\(519\) 14.0000 0.614532
\(520\) −6.00000 −0.263117
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) −6.00000 −0.262613
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −1.00000 −0.0435194
\(529\) −23.0000 −1.00000
\(530\) −2.00000 −0.0868744
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) −10.0000 −0.432742
\(535\) −4.00000 −0.172935
\(536\) 36.0000 1.55496
\(537\) 4.00000 0.172613
\(538\) −18.0000 −0.776035
\(539\) 0 0
\(540\) −1.00000 −0.0430331
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) −16.0000 −0.687259
\(543\) −10.0000 −0.429141
\(544\) 10.0000 0.428746
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) −2.00000 −0.0854358
\(549\) −6.00000 −0.256074
\(550\) 1.00000 0.0426401
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) 0 0
\(554\) 10.0000 0.424859
\(555\) 6.00000 0.254686
\(556\) −4.00000 −0.169638
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) −2.00000 −0.0844401
\(562\) 30.0000 1.26547
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) −20.0000 −0.840663
\(567\) 0 0
\(568\) 0 0
\(569\) 2.00000 0.0838444 0.0419222 0.999121i \(-0.486652\pi\)
0.0419222 + 0.999121i \(0.486652\pi\)
\(570\) 4.00000 0.167542
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 2.00000 0.0836242
\(573\) −24.0000 −1.00261
\(574\) 0 0
\(575\) 0 0
\(576\) 7.00000 0.291667
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) 13.0000 0.540729
\(579\) −2.00000 −0.0831172
\(580\) 6.00000 0.249136
\(581\) 0 0
\(582\) −10.0000 −0.414513
\(583\) 2.00000 0.0828315
\(584\) −30.0000 −1.24141
\(585\) −2.00000 −0.0826898
\(586\) 6.00000 0.247858
\(587\) 36.0000 1.48588 0.742940 0.669359i \(-0.233431\pi\)
0.742940 + 0.669359i \(0.233431\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −4.00000 −0.164677
\(591\) 10.0000 0.411345
\(592\) −6.00000 −0.246598
\(593\) −2.00000 −0.0821302 −0.0410651 0.999156i \(-0.513075\pi\)
−0.0410651 + 0.999156i \(0.513075\pi\)
\(594\) −1.00000 −0.0410305
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) 8.00000 0.327418
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) −3.00000 −0.122474
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) 12.0000 0.488678
\(604\) 16.0000 0.651031
\(605\) −1.00000 −0.0406558
\(606\) 10.0000 0.406222
\(607\) 48.0000 1.94826 0.974130 0.225989i \(-0.0725612\pi\)
0.974130 + 0.225989i \(0.0725612\pi\)
\(608\) 20.0000 0.811107
\(609\) 0 0
\(610\) −6.00000 −0.242933
\(611\) 0 0
\(612\) 2.00000 0.0808452
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) −12.0000 −0.484281
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) 18.0000 0.724653 0.362326 0.932051i \(-0.381983\pi\)
0.362326 + 0.932051i \(0.381983\pi\)
\(618\) −8.00000 −0.321807
\(619\) −12.0000 −0.482321 −0.241160 0.970485i \(-0.577528\pi\)
−0.241160 + 0.970485i \(0.577528\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −32.0000 −1.28308
\(623\) 0 0
\(624\) 2.00000 0.0800641
\(625\) 1.00000 0.0400000
\(626\) −14.0000 −0.559553
\(627\) −4.00000 −0.159745
\(628\) 22.0000 0.877896
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 24.0000 0.955425 0.477712 0.878516i \(-0.341466\pi\)
0.477712 + 0.878516i \(0.341466\pi\)
\(632\) 24.0000 0.954669
\(633\) 20.0000 0.794929
\(634\) −22.0000 −0.873732
\(635\) −16.0000 −0.634941
\(636\) −2.00000 −0.0793052
\(637\) 0 0
\(638\) 6.00000 0.237542
\(639\) 0 0
\(640\) −3.00000 −0.118585
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 4.00000 0.157867
\(643\) −20.0000 −0.788723 −0.394362 0.918955i \(-0.629034\pi\)
−0.394362 + 0.918955i \(0.629034\pi\)
\(644\) 0 0
\(645\) −4.00000 −0.157500
\(646\) −8.00000 −0.314756
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 3.00000 0.117851
\(649\) 4.00000 0.157014
\(650\) −2.00000 −0.0784465
\(651\) 0 0
\(652\) 4.00000 0.156652
\(653\) 38.0000 1.48705 0.743527 0.668705i \(-0.233151\pi\)
0.743527 + 0.668705i \(0.233151\pi\)
\(654\) −2.00000 −0.0782062
\(655\) −12.0000 −0.468879
\(656\) −6.00000 −0.234261
\(657\) −10.0000 −0.390137
\(658\) 0 0
\(659\) −20.0000 −0.779089 −0.389545 0.921008i \(-0.627368\pi\)
−0.389545 + 0.921008i \(0.627368\pi\)
\(660\) 1.00000 0.0389249
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) 4.00000 0.155464
\(663\) 4.00000 0.155347
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) −6.00000 −0.232495
\(667\) 0 0
\(668\) −16.0000 −0.619059
\(669\) −16.0000 −0.618596
\(670\) 12.0000 0.463600
\(671\) 6.00000 0.231627
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) −18.0000 −0.693334
\(675\) −1.00000 −0.0384900
\(676\) 9.00000 0.346154
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) −6.00000 −0.230429
\(679\) 0 0
\(680\) 6.00000 0.230089
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 4.00000 0.152944
\(685\) −2.00000 −0.0764161
\(686\) 0 0
\(687\) 22.0000 0.839352
\(688\) 4.00000 0.152499
\(689\) −4.00000 −0.152388
\(690\) 0 0
\(691\) −36.0000 −1.36950 −0.684752 0.728776i \(-0.740090\pi\)
−0.684752 + 0.728776i \(0.740090\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) −4.00000 −0.151729
\(696\) −18.0000 −0.682288
\(697\) −12.0000 −0.454532
\(698\) −26.0000 −0.984115
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) 22.0000 0.830929 0.415464 0.909610i \(-0.363619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(702\) 2.00000 0.0754851
\(703\) −24.0000 −0.905177
\(704\) −7.00000 −0.263822
\(705\) 0 0
\(706\) 2.00000 0.0752710
\(707\) 0 0
\(708\) −4.00000 −0.150329
\(709\) −26.0000 −0.976450 −0.488225 0.872718i \(-0.662356\pi\)
−0.488225 + 0.872718i \(0.662356\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) −30.0000 −1.12430
\(713\) 0 0
\(714\) 0 0
\(715\) 2.00000 0.0747958
\(716\) 4.00000 0.149487
\(717\) 24.0000 0.896296
\(718\) −16.0000 −0.597115
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 1.00000 0.0372678
\(721\) 0 0
\(722\) 3.00000 0.111648
\(723\) 10.0000 0.371904
\(724\) −10.0000 −0.371647
\(725\) 6.00000 0.222834
\(726\) 1.00000 0.0371135
\(727\) −24.0000 −0.890111 −0.445055 0.895503i \(-0.646816\pi\)
−0.445055 + 0.895503i \(0.646816\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −10.0000 −0.370117
\(731\) 8.00000 0.295891
\(732\) −6.00000 −0.221766
\(733\) 34.0000 1.25582 0.627909 0.778287i \(-0.283911\pi\)
0.627909 + 0.778287i \(0.283911\pi\)
\(734\) −16.0000 −0.590571
\(735\) 0 0
\(736\) 0 0
\(737\) −12.0000 −0.442026
\(738\) −6.00000 −0.220863
\(739\) 12.0000 0.441427 0.220714 0.975339i \(-0.429161\pi\)
0.220714 + 0.975339i \(0.429161\pi\)
\(740\) 6.00000 0.220564
\(741\) 8.00000 0.293887
\(742\) 0 0
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) −22.0000 −0.805477
\(747\) 4.00000 0.146352
\(748\) −2.00000 −0.0731272
\(749\) 0 0
\(750\) −1.00000 −0.0365148
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) −12.0000 −0.437304
\(754\) −12.0000 −0.437014
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 4.00000 0.145287
\(759\) 0 0
\(760\) 12.0000 0.435286
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 16.0000 0.579619
\(763\) 0 0
\(764\) −24.0000 −0.868290
\(765\) 2.00000 0.0723102
\(766\) −16.0000 −0.578103
\(767\) −8.00000 −0.288863
\(768\) 17.0000 0.613435
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) 0 0
\(771\) −14.0000 −0.504198
\(772\) −2.00000 −0.0719816
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) 4.00000 0.143777
\(775\) 0 0
\(776\) −30.0000 −1.07694
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) −24.0000 −0.859889
\(780\) −2.00000 −0.0716115
\(781\) 0 0
\(782\) 0 0
\(783\) −6.00000 −0.214423
\(784\) 0 0
\(785\) 22.0000 0.785214
\(786\) 12.0000 0.428026
\(787\) −20.0000 −0.712923 −0.356462 0.934310i \(-0.616017\pi\)
−0.356462 + 0.934310i \(0.616017\pi\)
\(788\) 10.0000 0.356235
\(789\) 0 0
\(790\) 8.00000 0.284627
\(791\) 0 0
\(792\) −3.00000 −0.106600
\(793\) −12.0000 −0.426132
\(794\) 22.0000 0.780751
\(795\) −2.00000 −0.0709327
\(796\) 8.00000 0.283552
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −5.00000 −0.176777
\(801\) −10.0000 −0.353333
\(802\) −34.0000 −1.20058
\(803\) 10.0000 0.352892
\(804\) 12.0000 0.423207
\(805\) 0 0
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) 30.0000 1.05540
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) 1.00000 0.0351364
\(811\) 36.0000 1.26413 0.632065 0.774915i \(-0.282207\pi\)
0.632065 + 0.774915i \(0.282207\pi\)
\(812\) 0 0
\(813\) −16.0000 −0.561144
\(814\) 6.00000 0.210300
\(815\) 4.00000 0.140114
\(816\) −2.00000 −0.0700140
\(817\) 16.0000 0.559769
\(818\) −14.0000 −0.489499
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) 14.0000 0.488603 0.244302 0.969699i \(-0.421441\pi\)
0.244302 + 0.969699i \(0.421441\pi\)
\(822\) 2.00000 0.0697580
\(823\) 16.0000 0.557725 0.278862 0.960331i \(-0.410043\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(824\) −24.0000 −0.836080
\(825\) 1.00000 0.0348155
\(826\) 0 0
\(827\) −28.0000 −0.973655 −0.486828 0.873498i \(-0.661846\pi\)
−0.486828 + 0.873498i \(0.661846\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 4.00000 0.138842
\(831\) 10.0000 0.346896
\(832\) 14.0000 0.485363
\(833\) 0 0
\(834\) 4.00000 0.138509
\(835\) −16.0000 −0.553703
\(836\) −4.00000 −0.138343
\(837\) 0 0
\(838\) 12.0000 0.414533
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −6.00000 −0.206774
\(843\) 30.0000 1.03325
\(844\) 20.0000 0.688428
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) 0 0
\(848\) 2.00000 0.0686803
\(849\) −20.0000 −0.686398
\(850\) 2.00000 0.0685994
\(851\) 0 0
\(852\) 0 0
\(853\) −22.0000 −0.753266 −0.376633 0.926363i \(-0.622918\pi\)
−0.376633 + 0.926363i \(0.622918\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 12.0000 0.410152
\(857\) −10.0000 −0.341593 −0.170797 0.985306i \(-0.554634\pi\)
−0.170797 + 0.985306i \(0.554634\pi\)
\(858\) −2.00000 −0.0682789
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) −4.00000 −0.136399
\(861\) 0 0
\(862\) −8.00000 −0.272481
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 5.00000 0.170103
\(865\) 14.0000 0.476014
\(866\) −6.00000 −0.203888
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) −8.00000 −0.271381
\(870\) −6.00000 −0.203419
\(871\) 24.0000 0.813209
\(872\) −6.00000 −0.203186
\(873\) −10.0000 −0.338449
\(874\) 0 0
\(875\) 0 0
\(876\) −10.0000 −0.337869
\(877\) −18.0000 −0.607817 −0.303908 0.952701i \(-0.598292\pi\)
−0.303908 + 0.952701i \(0.598292\pi\)
\(878\) 24.0000 0.809961
\(879\) 6.00000 0.202375
\(880\) −1.00000 −0.0337100
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) −36.0000 −1.21150 −0.605748 0.795656i \(-0.707126\pi\)
−0.605748 + 0.795656i \(0.707126\pi\)
\(884\) 4.00000 0.134535
\(885\) −4.00000 −0.134459
\(886\) −36.0000 −1.20944
\(887\) 48.0000 1.61168 0.805841 0.592132i \(-0.201714\pi\)
0.805841 + 0.592132i \(0.201714\pi\)
\(888\) −18.0000 −0.604040
\(889\) 0 0
\(890\) −10.0000 −0.335201
\(891\) −1.00000 −0.0335013
\(892\) −16.0000 −0.535720
\(893\) 0 0
\(894\) −18.0000 −0.602010
\(895\) 4.00000 0.133705
\(896\) 0 0
\(897\) 0 0
\(898\) −2.00000 −0.0667409
\(899\) 0 0
\(900\) −1.00000 −0.0333333
\(901\) 4.00000 0.133259
\(902\) 6.00000 0.199778
\(903\) 0 0
\(904\) −18.0000 −0.598671
\(905\) −10.0000 −0.332411
\(906\) −16.0000 −0.531564
\(907\) 36.0000 1.19536 0.597680 0.801735i \(-0.296089\pi\)
0.597680 + 0.801735i \(0.296089\pi\)
\(908\) 12.0000 0.398234
\(909\) 10.0000 0.331679
\(910\) 0 0
\(911\) −40.0000 −1.32526 −0.662630 0.748947i \(-0.730560\pi\)
−0.662630 + 0.748947i \(0.730560\pi\)
\(912\) −4.00000 −0.132453
\(913\) −4.00000 −0.132381
\(914\) 22.0000 0.727695
\(915\) −6.00000 −0.198354
\(916\) 22.0000 0.726900
\(917\) 0 0
\(918\) −2.00000 −0.0660098
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) −12.0000 −0.395413
\(922\) −2.00000 −0.0658665
\(923\) 0 0
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) −24.0000 −0.788689
\(927\) −8.00000 −0.262754
\(928\) −30.0000 −0.984798
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6.00000 0.196537
\(933\) −32.0000 −1.04763
\(934\) −12.0000 −0.392652
\(935\) −2.00000 −0.0654070
\(936\) 6.00000 0.196116
\(937\) −26.0000 −0.849383 −0.424691 0.905338i \(-0.639617\pi\)
−0.424691 + 0.905338i \(0.639617\pi\)
\(938\) 0 0
\(939\) −14.0000 −0.456873
\(940\) 0 0
\(941\) 50.0000 1.62995 0.814977 0.579494i \(-0.196750\pi\)
0.814977 + 0.579494i \(0.196750\pi\)
\(942\) −22.0000 −0.716799
\(943\) 0 0
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) −4.00000 −0.130051
\(947\) −36.0000 −1.16984 −0.584921 0.811090i \(-0.698875\pi\)
−0.584921 + 0.811090i \(0.698875\pi\)
\(948\) 8.00000 0.259828
\(949\) −20.0000 −0.649227
\(950\) 4.00000 0.129777
\(951\) −22.0000 −0.713399
\(952\) 0 0
\(953\) 42.0000 1.36051 0.680257 0.732974i \(-0.261868\pi\)
0.680257 + 0.732974i \(0.261868\pi\)
\(954\) 2.00000 0.0647524
\(955\) −24.0000 −0.776622
\(956\) 24.0000 0.776215
\(957\) 6.00000 0.193952
\(958\) −32.0000 −1.03387
\(959\) 0 0
\(960\) 7.00000 0.225924
\(961\) −31.0000 −1.00000
\(962\) −12.0000 −0.386896
\(963\) 4.00000 0.128898
\(964\) 10.0000 0.322078
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) −40.0000 −1.28631 −0.643157 0.765735i \(-0.722376\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(968\) 3.00000 0.0964237
\(969\) −8.00000 −0.256997
\(970\) −10.0000 −0.321081
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 1.00000 0.0320750
\(973\) 0 0
\(974\) −16.0000 −0.512673
\(975\) −2.00000 −0.0640513
\(976\) 6.00000 0.192055
\(977\) −38.0000 −1.21573 −0.607864 0.794041i \(-0.707973\pi\)
−0.607864 + 0.794041i \(0.707973\pi\)
\(978\) −4.00000 −0.127906
\(979\) 10.0000 0.319601
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) −20.0000 −0.638226
\(983\) 56.0000 1.78612 0.893061 0.449935i \(-0.148553\pi\)
0.893061 + 0.449935i \(0.148553\pi\)
\(984\) −18.0000 −0.573819
\(985\) 10.0000 0.318626
\(986\) 12.0000 0.382158
\(987\) 0 0
\(988\) 8.00000 0.254514
\(989\) 0 0
\(990\) −1.00000 −0.0317821
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 4.00000 0.126936
\(994\) 0 0
\(995\) 8.00000 0.253617
\(996\) 4.00000 0.126745
\(997\) −6.00000 −0.190022 −0.0950110 0.995476i \(-0.530289\pi\)
−0.0950110 + 0.995476i \(0.530289\pi\)
\(998\) 28.0000 0.886325
\(999\) −6.00000 −0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8085.2.a.f.1.1 1
7.6 odd 2 1155.2.a.f.1.1 1
21.20 even 2 3465.2.a.n.1.1 1
35.34 odd 2 5775.2.a.q.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1155.2.a.f.1.1 1 7.6 odd 2
3465.2.a.n.1.1 1 21.20 even 2
5775.2.a.q.1.1 1 35.34 odd 2
8085.2.a.f.1.1 1 1.1 even 1 trivial