Properties

Label 8085.2.a.bk.1.2
Level $8085$
Weight $2$
Character 8085.1
Self dual yes
Analytic conductor $64.559$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8085 = 3 \cdot 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8085.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(64.5590500342\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Defining polynomial: \(x^{3} - x^{2} - 3 x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 8085.1

$q$-expansion

\(f(q)\) \(=\) \(q-0.193937 q^{2} -1.00000 q^{3} -1.96239 q^{4} -1.00000 q^{5} +0.193937 q^{6} +0.768452 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-0.193937 q^{2} -1.00000 q^{3} -1.96239 q^{4} -1.00000 q^{5} +0.193937 q^{6} +0.768452 q^{8} +1.00000 q^{9} +0.193937 q^{10} +1.00000 q^{11} +1.96239 q^{12} -2.96239 q^{13} +1.00000 q^{15} +3.77575 q^{16} +4.57452 q^{17} -0.193937 q^{18} +4.31265 q^{19} +1.96239 q^{20} -0.193937 q^{22} -6.70052 q^{23} -0.768452 q^{24} +1.00000 q^{25} +0.574515 q^{26} -1.00000 q^{27} -3.61213 q^{29} -0.193937 q^{30} -9.92478 q^{31} -2.26916 q^{32} -1.00000 q^{33} -0.887166 q^{34} -1.96239 q^{36} -2.00000 q^{37} -0.836381 q^{38} +2.96239 q^{39} -0.768452 q^{40} +4.38787 q^{41} -9.27504 q^{43} -1.96239 q^{44} -1.00000 q^{45} +1.29948 q^{46} +9.92478 q^{47} -3.77575 q^{48} -0.193937 q^{50} -4.57452 q^{51} +5.81336 q^{52} +4.70052 q^{53} +0.193937 q^{54} -1.00000 q^{55} -4.31265 q^{57} +0.700523 q^{58} -10.7005 q^{59} -1.96239 q^{60} +8.70052 q^{61} +1.92478 q^{62} -7.11142 q^{64} +2.96239 q^{65} +0.193937 q^{66} +5.92478 q^{67} -8.97698 q^{68} +6.70052 q^{69} +9.92478 q^{71} +0.768452 q^{72} +7.73813 q^{73} +0.387873 q^{74} -1.00000 q^{75} -8.46310 q^{76} -0.574515 q^{78} +11.5369 q^{79} -3.77575 q^{80} +1.00000 q^{81} -0.850969 q^{82} -10.8872 q^{83} -4.57452 q^{85} +1.79877 q^{86} +3.61213 q^{87} +0.768452 q^{88} +2.77575 q^{89} +0.193937 q^{90} +13.1490 q^{92} +9.92478 q^{93} -1.92478 q^{94} -4.31265 q^{95} +2.26916 q^{96} -0.0752228 q^{97} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - 3 q^{3} + 5 q^{4} - 3 q^{5} + q^{6} - 9 q^{8} + 3 q^{9} + O(q^{10}) \) \( 3 q - q^{2} - 3 q^{3} + 5 q^{4} - 3 q^{5} + q^{6} - 9 q^{8} + 3 q^{9} + q^{10} + 3 q^{11} - 5 q^{12} + 2 q^{13} + 3 q^{15} + 13 q^{16} + 2 q^{17} - q^{18} - 8 q^{19} - 5 q^{20} - q^{22} + 9 q^{24} + 3 q^{25} - 10 q^{26} - 3 q^{27} - 10 q^{29} - q^{30} - 8 q^{31} - 29 q^{32} - 3 q^{33} + 30 q^{34} + 5 q^{36} - 6 q^{37} - 2 q^{39} + 9 q^{40} + 14 q^{41} + 4 q^{43} + 5 q^{44} - 3 q^{45} + 24 q^{46} + 8 q^{47} - 13 q^{48} - q^{50} - 2 q^{51} + 30 q^{52} - 6 q^{53} + q^{54} - 3 q^{55} + 8 q^{57} - 18 q^{58} - 12 q^{59} + 5 q^{60} + 6 q^{61} - 16 q^{62} + 13 q^{64} - 2 q^{65} + q^{66} - 4 q^{67} - 42 q^{68} + 8 q^{71} - 9 q^{72} + 14 q^{73} + 2 q^{74} - 3 q^{75} - 48 q^{76} + 10 q^{78} + 12 q^{79} - 13 q^{80} + 3 q^{81} - 26 q^{82} - 2 q^{85} - 8 q^{86} + 10 q^{87} - 9 q^{88} + 10 q^{89} + q^{90} + 16 q^{92} + 8 q^{93} + 16 q^{94} + 8 q^{95} + 29 q^{96} - 22 q^{97} + 3 q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.193937 −0.137134 −0.0685669 0.997647i \(-0.521843\pi\)
−0.0685669 + 0.997647i \(0.521843\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.96239 −0.981194
\(5\) −1.00000 −0.447214
\(6\) 0.193937 0.0791743
\(7\) 0 0
\(8\) 0.768452 0.271689
\(9\) 1.00000 0.333333
\(10\) 0.193937 0.0613281
\(11\) 1.00000 0.301511
\(12\) 1.96239 0.566493
\(13\) −2.96239 −0.821619 −0.410809 0.911721i \(-0.634754\pi\)
−0.410809 + 0.911721i \(0.634754\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 3.77575 0.943937
\(17\) 4.57452 1.10948 0.554741 0.832023i \(-0.312817\pi\)
0.554741 + 0.832023i \(0.312817\pi\)
\(18\) −0.193937 −0.0457113
\(19\) 4.31265 0.989390 0.494695 0.869067i \(-0.335280\pi\)
0.494695 + 0.869067i \(0.335280\pi\)
\(20\) 1.96239 0.438803
\(21\) 0 0
\(22\) −0.193937 −0.0413474
\(23\) −6.70052 −1.39716 −0.698578 0.715534i \(-0.746183\pi\)
−0.698578 + 0.715534i \(0.746183\pi\)
\(24\) −0.768452 −0.156860
\(25\) 1.00000 0.200000
\(26\) 0.574515 0.112672
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −3.61213 −0.670755 −0.335378 0.942084i \(-0.608864\pi\)
−0.335378 + 0.942084i \(0.608864\pi\)
\(30\) −0.193937 −0.0354078
\(31\) −9.92478 −1.78254 −0.891271 0.453470i \(-0.850186\pi\)
−0.891271 + 0.453470i \(0.850186\pi\)
\(32\) −2.26916 −0.401134
\(33\) −1.00000 −0.174078
\(34\) −0.887166 −0.152148
\(35\) 0 0
\(36\) −1.96239 −0.327065
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) −0.836381 −0.135679
\(39\) 2.96239 0.474362
\(40\) −0.768452 −0.121503
\(41\) 4.38787 0.685271 0.342635 0.939468i \(-0.388680\pi\)
0.342635 + 0.939468i \(0.388680\pi\)
\(42\) 0 0
\(43\) −9.27504 −1.41443 −0.707215 0.706998i \(-0.750049\pi\)
−0.707215 + 0.706998i \(0.750049\pi\)
\(44\) −1.96239 −0.295841
\(45\) −1.00000 −0.149071
\(46\) 1.29948 0.191597
\(47\) 9.92478 1.44768 0.723839 0.689969i \(-0.242376\pi\)
0.723839 + 0.689969i \(0.242376\pi\)
\(48\) −3.77575 −0.544982
\(49\) 0 0
\(50\) −0.193937 −0.0274268
\(51\) −4.57452 −0.640560
\(52\) 5.81336 0.806168
\(53\) 4.70052 0.645667 0.322833 0.946456i \(-0.395365\pi\)
0.322833 + 0.946456i \(0.395365\pi\)
\(54\) 0.193937 0.0263914
\(55\) −1.00000 −0.134840
\(56\) 0 0
\(57\) −4.31265 −0.571224
\(58\) 0.700523 0.0919832
\(59\) −10.7005 −1.39309 −0.696545 0.717513i \(-0.745280\pi\)
−0.696545 + 0.717513i \(0.745280\pi\)
\(60\) −1.96239 −0.253343
\(61\) 8.70052 1.11399 0.556994 0.830517i \(-0.311955\pi\)
0.556994 + 0.830517i \(0.311955\pi\)
\(62\) 1.92478 0.244447
\(63\) 0 0
\(64\) −7.11142 −0.888927
\(65\) 2.96239 0.367439
\(66\) 0.193937 0.0238719
\(67\) 5.92478 0.723827 0.361913 0.932212i \(-0.382124\pi\)
0.361913 + 0.932212i \(0.382124\pi\)
\(68\) −8.97698 −1.08862
\(69\) 6.70052 0.806648
\(70\) 0 0
\(71\) 9.92478 1.17785 0.588927 0.808186i \(-0.299550\pi\)
0.588927 + 0.808186i \(0.299550\pi\)
\(72\) 0.768452 0.0905629
\(73\) 7.73813 0.905680 0.452840 0.891592i \(-0.350411\pi\)
0.452840 + 0.891592i \(0.350411\pi\)
\(74\) 0.387873 0.0450893
\(75\) −1.00000 −0.115470
\(76\) −8.46310 −0.970784
\(77\) 0 0
\(78\) −0.574515 −0.0650511
\(79\) 11.5369 1.29800 0.649002 0.760787i \(-0.275187\pi\)
0.649002 + 0.760787i \(0.275187\pi\)
\(80\) −3.77575 −0.422141
\(81\) 1.00000 0.111111
\(82\) −0.850969 −0.0939738
\(83\) −10.8872 −1.19502 −0.597511 0.801861i \(-0.703844\pi\)
−0.597511 + 0.801861i \(0.703844\pi\)
\(84\) 0 0
\(85\) −4.57452 −0.496176
\(86\) 1.79877 0.193966
\(87\) 3.61213 0.387261
\(88\) 0.768452 0.0819173
\(89\) 2.77575 0.294229 0.147114 0.989120i \(-0.453001\pi\)
0.147114 + 0.989120i \(0.453001\pi\)
\(90\) 0.193937 0.0204427
\(91\) 0 0
\(92\) 13.1490 1.37088
\(93\) 9.92478 1.02915
\(94\) −1.92478 −0.198526
\(95\) −4.31265 −0.442469
\(96\) 2.26916 0.231595
\(97\) −0.0752228 −0.00763772 −0.00381886 0.999993i \(-0.501216\pi\)
−0.00381886 + 0.999993i \(0.501216\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) −1.96239 −0.196239
\(101\) 15.0884 1.50135 0.750676 0.660671i \(-0.229728\pi\)
0.750676 + 0.660671i \(0.229728\pi\)
\(102\) 0.887166 0.0878425
\(103\) 3.22425 0.317695 0.158848 0.987303i \(-0.449222\pi\)
0.158848 + 0.987303i \(0.449222\pi\)
\(104\) −2.27645 −0.223225
\(105\) 0 0
\(106\) −0.911603 −0.0885427
\(107\) −0.962389 −0.0930376 −0.0465188 0.998917i \(-0.514813\pi\)
−0.0465188 + 0.998917i \(0.514813\pi\)
\(108\) 1.96239 0.188831
\(109\) 11.4010 1.09202 0.546011 0.837778i \(-0.316146\pi\)
0.546011 + 0.837778i \(0.316146\pi\)
\(110\) 0.193937 0.0184911
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0.836381 0.0783342
\(115\) 6.70052 0.624827
\(116\) 7.08840 0.658141
\(117\) −2.96239 −0.273873
\(118\) 2.07522 0.191040
\(119\) 0 0
\(120\) 0.768452 0.0701498
\(121\) 1.00000 0.0909091
\(122\) −1.68735 −0.152765
\(123\) −4.38787 −0.395641
\(124\) 19.4763 1.74902
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −14.5745 −1.29328 −0.646640 0.762796i \(-0.723826\pi\)
−0.646640 + 0.762796i \(0.723826\pi\)
\(128\) 5.91748 0.523037
\(129\) 9.27504 0.816622
\(130\) −0.574515 −0.0503883
\(131\) 5.92478 0.517650 0.258825 0.965924i \(-0.416665\pi\)
0.258825 + 0.965924i \(0.416665\pi\)
\(132\) 1.96239 0.170804
\(133\) 0 0
\(134\) −1.14903 −0.0992612
\(135\) 1.00000 0.0860663
\(136\) 3.51530 0.301434
\(137\) 13.8496 1.18325 0.591624 0.806214i \(-0.298487\pi\)
0.591624 + 0.806214i \(0.298487\pi\)
\(138\) −1.29948 −0.110619
\(139\) −13.6121 −1.15457 −0.577283 0.816544i \(-0.695887\pi\)
−0.577283 + 0.816544i \(0.695887\pi\)
\(140\) 0 0
\(141\) −9.92478 −0.835817
\(142\) −1.92478 −0.161524
\(143\) −2.96239 −0.247727
\(144\) 3.77575 0.314646
\(145\) 3.61213 0.299971
\(146\) −1.50071 −0.124199
\(147\) 0 0
\(148\) 3.92478 0.322615
\(149\) 1.53690 0.125908 0.0629540 0.998016i \(-0.479948\pi\)
0.0629540 + 0.998016i \(0.479948\pi\)
\(150\) 0.193937 0.0158349
\(151\) −6.76116 −0.550215 −0.275108 0.961413i \(-0.588713\pi\)
−0.275108 + 0.961413i \(0.588713\pi\)
\(152\) 3.31406 0.268806
\(153\) 4.57452 0.369828
\(154\) 0 0
\(155\) 9.92478 0.797177
\(156\) −5.81336 −0.465441
\(157\) 5.47627 0.437054 0.218527 0.975831i \(-0.429875\pi\)
0.218527 + 0.975831i \(0.429875\pi\)
\(158\) −2.23743 −0.178000
\(159\) −4.70052 −0.372776
\(160\) 2.26916 0.179393
\(161\) 0 0
\(162\) −0.193937 −0.0152371
\(163\) 12.6253 0.988890 0.494445 0.869209i \(-0.335371\pi\)
0.494445 + 0.869209i \(0.335371\pi\)
\(164\) −8.61071 −0.672384
\(165\) 1.00000 0.0778499
\(166\) 2.11142 0.163878
\(167\) −18.3634 −1.42101 −0.710503 0.703695i \(-0.751532\pi\)
−0.710503 + 0.703695i \(0.751532\pi\)
\(168\) 0 0
\(169\) −4.22425 −0.324943
\(170\) 0.887166 0.0680425
\(171\) 4.31265 0.329797
\(172\) 18.2012 1.38783
\(173\) 8.57452 0.651908 0.325954 0.945386i \(-0.394314\pi\)
0.325954 + 0.945386i \(0.394314\pi\)
\(174\) −0.700523 −0.0531065
\(175\) 0 0
\(176\) 3.77575 0.284608
\(177\) 10.7005 0.804301
\(178\) −0.538319 −0.0403487
\(179\) 14.1768 1.05962 0.529812 0.848115i \(-0.322263\pi\)
0.529812 + 0.848115i \(0.322263\pi\)
\(180\) 1.96239 0.146268
\(181\) 5.22425 0.388316 0.194158 0.980970i \(-0.437803\pi\)
0.194158 + 0.980970i \(0.437803\pi\)
\(182\) 0 0
\(183\) −8.70052 −0.643161
\(184\) −5.14903 −0.379592
\(185\) 2.00000 0.147043
\(186\) −1.92478 −0.141132
\(187\) 4.57452 0.334522
\(188\) −19.4763 −1.42045
\(189\) 0 0
\(190\) 0.836381 0.0606774
\(191\) −16.6253 −1.20296 −0.601482 0.798886i \(-0.705423\pi\)
−0.601482 + 0.798886i \(0.705423\pi\)
\(192\) 7.11142 0.513222
\(193\) −16.3634 −1.17787 −0.588933 0.808182i \(-0.700452\pi\)
−0.588933 + 0.808182i \(0.700452\pi\)
\(194\) 0.0145884 0.00104739
\(195\) −2.96239 −0.212141
\(196\) 0 0
\(197\) −20.4241 −1.45515 −0.727577 0.686026i \(-0.759354\pi\)
−0.727577 + 0.686026i \(0.759354\pi\)
\(198\) −0.193937 −0.0137825
\(199\) 8.62530 0.611431 0.305716 0.952123i \(-0.401104\pi\)
0.305716 + 0.952123i \(0.401104\pi\)
\(200\) 0.768452 0.0543378
\(201\) −5.92478 −0.417902
\(202\) −2.92619 −0.205886
\(203\) 0 0
\(204\) 8.97698 0.628514
\(205\) −4.38787 −0.306462
\(206\) −0.625301 −0.0435668
\(207\) −6.70052 −0.465719
\(208\) −11.1852 −0.775556
\(209\) 4.31265 0.298312
\(210\) 0 0
\(211\) 9.08840 0.625671 0.312836 0.949807i \(-0.398721\pi\)
0.312836 + 0.949807i \(0.398721\pi\)
\(212\) −9.22425 −0.633524
\(213\) −9.92478 −0.680035
\(214\) 0.186642 0.0127586
\(215\) 9.27504 0.632552
\(216\) −0.768452 −0.0522865
\(217\) 0 0
\(218\) −2.21108 −0.149753
\(219\) −7.73813 −0.522895
\(220\) 1.96239 0.132304
\(221\) −13.5515 −0.911572
\(222\) −0.387873 −0.0260323
\(223\) 6.70052 0.448700 0.224350 0.974509i \(-0.427974\pi\)
0.224350 + 0.974509i \(0.427974\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 1.16362 0.0774028
\(227\) −16.9624 −1.12583 −0.562917 0.826514i \(-0.690321\pi\)
−0.562917 + 0.826514i \(0.690321\pi\)
\(228\) 8.46310 0.560482
\(229\) −25.8496 −1.70819 −0.854093 0.520120i \(-0.825887\pi\)
−0.854093 + 0.520120i \(0.825887\pi\)
\(230\) −1.29948 −0.0856849
\(231\) 0 0
\(232\) −2.77575 −0.182237
\(233\) −19.2750 −1.26275 −0.631375 0.775478i \(-0.717509\pi\)
−0.631375 + 0.775478i \(0.717509\pi\)
\(234\) 0.574515 0.0375573
\(235\) −9.92478 −0.647421
\(236\) 20.9986 1.36689
\(237\) −11.5369 −0.749402
\(238\) 0 0
\(239\) 26.5501 1.71738 0.858691 0.512494i \(-0.171278\pi\)
0.858691 + 0.512494i \(0.171278\pi\)
\(240\) 3.77575 0.243723
\(241\) −28.5501 −1.83907 −0.919536 0.393006i \(-0.871435\pi\)
−0.919536 + 0.393006i \(0.871435\pi\)
\(242\) −0.193937 −0.0124667
\(243\) −1.00000 −0.0641500
\(244\) −17.0738 −1.09304
\(245\) 0 0
\(246\) 0.850969 0.0542558
\(247\) −12.7757 −0.812901
\(248\) −7.62672 −0.484297
\(249\) 10.8872 0.689946
\(250\) 0.193937 0.0122656
\(251\) −29.9248 −1.88884 −0.944418 0.328748i \(-0.893373\pi\)
−0.944418 + 0.328748i \(0.893373\pi\)
\(252\) 0 0
\(253\) −6.70052 −0.421258
\(254\) 2.82653 0.177352
\(255\) 4.57452 0.286467
\(256\) 13.0752 0.817201
\(257\) −8.70052 −0.542724 −0.271362 0.962477i \(-0.587474\pi\)
−0.271362 + 0.962477i \(0.587474\pi\)
\(258\) −1.79877 −0.111986
\(259\) 0 0
\(260\) −5.81336 −0.360529
\(261\) −3.61213 −0.223585
\(262\) −1.14903 −0.0709874
\(263\) 12.2882 0.757724 0.378862 0.925453i \(-0.376316\pi\)
0.378862 + 0.925453i \(0.376316\pi\)
\(264\) −0.768452 −0.0472950
\(265\) −4.70052 −0.288751
\(266\) 0 0
\(267\) −2.77575 −0.169873
\(268\) −11.6267 −0.710215
\(269\) 5.84955 0.356654 0.178327 0.983971i \(-0.442932\pi\)
0.178327 + 0.983971i \(0.442932\pi\)
\(270\) −0.193937 −0.0118026
\(271\) 5.08840 0.309098 0.154549 0.987985i \(-0.450608\pi\)
0.154549 + 0.987985i \(0.450608\pi\)
\(272\) 17.2722 1.04728
\(273\) 0 0
\(274\) −2.68594 −0.162263
\(275\) 1.00000 0.0603023
\(276\) −13.1490 −0.791479
\(277\) 1.41090 0.0847725 0.0423863 0.999101i \(-0.486504\pi\)
0.0423863 + 0.999101i \(0.486504\pi\)
\(278\) 2.63989 0.158330
\(279\) −9.92478 −0.594181
\(280\) 0 0
\(281\) −4.38787 −0.261759 −0.130879 0.991398i \(-0.541780\pi\)
−0.130879 + 0.991398i \(0.541780\pi\)
\(282\) 1.92478 0.114619
\(283\) −26.5745 −1.57969 −0.789845 0.613306i \(-0.789839\pi\)
−0.789845 + 0.613306i \(0.789839\pi\)
\(284\) −19.4763 −1.15570
\(285\) 4.31265 0.255459
\(286\) 0.574515 0.0339718
\(287\) 0 0
\(288\) −2.26916 −0.133711
\(289\) 3.92619 0.230952
\(290\) −0.700523 −0.0411362
\(291\) 0.0752228 0.00440964
\(292\) −15.1852 −0.888648
\(293\) 3.42548 0.200119 0.100059 0.994981i \(-0.468097\pi\)
0.100059 + 0.994981i \(0.468097\pi\)
\(294\) 0 0
\(295\) 10.7005 0.623009
\(296\) −1.53690 −0.0893307
\(297\) −1.00000 −0.0580259
\(298\) −0.298062 −0.0172663
\(299\) 19.8496 1.14793
\(300\) 1.96239 0.113299
\(301\) 0 0
\(302\) 1.31124 0.0754531
\(303\) −15.0884 −0.866806
\(304\) 16.2835 0.933921
\(305\) −8.70052 −0.498191
\(306\) −0.887166 −0.0507159
\(307\) 16.6497 0.950251 0.475125 0.879918i \(-0.342403\pi\)
0.475125 + 0.879918i \(0.342403\pi\)
\(308\) 0 0
\(309\) −3.22425 −0.183421
\(310\) −1.92478 −0.109320
\(311\) −32.9986 −1.87118 −0.935589 0.353091i \(-0.885131\pi\)
−0.935589 + 0.353091i \(0.885131\pi\)
\(312\) 2.27645 0.128879
\(313\) −15.4010 −0.870519 −0.435259 0.900305i \(-0.643343\pi\)
−0.435259 + 0.900305i \(0.643343\pi\)
\(314\) −1.06205 −0.0599349
\(315\) 0 0
\(316\) −22.6399 −1.27359
\(317\) 2.15045 0.120781 0.0603905 0.998175i \(-0.480765\pi\)
0.0603905 + 0.998175i \(0.480765\pi\)
\(318\) 0.911603 0.0511202
\(319\) −3.61213 −0.202240
\(320\) 7.11142 0.397540
\(321\) 0.962389 0.0537153
\(322\) 0 0
\(323\) 19.7283 1.09771
\(324\) −1.96239 −0.109022
\(325\) −2.96239 −0.164324
\(326\) −2.44851 −0.135610
\(327\) −11.4010 −0.630479
\(328\) 3.37187 0.186180
\(329\) 0 0
\(330\) −0.193937 −0.0106759
\(331\) −14.5501 −0.799745 −0.399872 0.916571i \(-0.630946\pi\)
−0.399872 + 0.916571i \(0.630946\pi\)
\(332\) 21.3649 1.17255
\(333\) −2.00000 −0.109599
\(334\) 3.56134 0.194868
\(335\) −5.92478 −0.323705
\(336\) 0 0
\(337\) 16.2619 0.885840 0.442920 0.896561i \(-0.353943\pi\)
0.442920 + 0.896561i \(0.353943\pi\)
\(338\) 0.819237 0.0445606
\(339\) 6.00000 0.325875
\(340\) 8.97698 0.486845
\(341\) −9.92478 −0.537457
\(342\) −0.836381 −0.0452263
\(343\) 0 0
\(344\) −7.12742 −0.384285
\(345\) −6.70052 −0.360744
\(346\) −1.66291 −0.0893987
\(347\) −0.962389 −0.0516637 −0.0258319 0.999666i \(-0.508223\pi\)
−0.0258319 + 0.999666i \(0.508223\pi\)
\(348\) −7.08840 −0.379978
\(349\) −20.7005 −1.10807 −0.554037 0.832492i \(-0.686913\pi\)
−0.554037 + 0.832492i \(0.686913\pi\)
\(350\) 0 0
\(351\) 2.96239 0.158121
\(352\) −2.26916 −0.120947
\(353\) −20.5501 −1.09377 −0.546885 0.837208i \(-0.684187\pi\)
−0.546885 + 0.837208i \(0.684187\pi\)
\(354\) −2.07522 −0.110297
\(355\) −9.92478 −0.526752
\(356\) −5.44709 −0.288695
\(357\) 0 0
\(358\) −2.74940 −0.145310
\(359\) 17.9248 0.946034 0.473017 0.881053i \(-0.343165\pi\)
0.473017 + 0.881053i \(0.343165\pi\)
\(360\) −0.768452 −0.0405010
\(361\) −0.401047 −0.0211077
\(362\) −1.01317 −0.0532512
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) −7.73813 −0.405032
\(366\) 1.68735 0.0881992
\(367\) 29.6531 1.54788 0.773939 0.633261i \(-0.218284\pi\)
0.773939 + 0.633261i \(0.218284\pi\)
\(368\) −25.2995 −1.31883
\(369\) 4.38787 0.228424
\(370\) −0.387873 −0.0201646
\(371\) 0 0
\(372\) −19.4763 −1.00980
\(373\) −9.13918 −0.473209 −0.236604 0.971606i \(-0.576035\pi\)
−0.236604 + 0.971606i \(0.576035\pi\)
\(374\) −0.887166 −0.0458743
\(375\) 1.00000 0.0516398
\(376\) 7.62672 0.393318
\(377\) 10.7005 0.551105
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 8.46310 0.434148
\(381\) 14.5745 0.746675
\(382\) 3.22425 0.164967
\(383\) 34.9234 1.78450 0.892250 0.451541i \(-0.149126\pi\)
0.892250 + 0.451541i \(0.149126\pi\)
\(384\) −5.91748 −0.301975
\(385\) 0 0
\(386\) 3.17347 0.161525
\(387\) −9.27504 −0.471477
\(388\) 0.147616 0.00749408
\(389\) 2.77575 0.140736 0.0703680 0.997521i \(-0.477583\pi\)
0.0703680 + 0.997521i \(0.477583\pi\)
\(390\) 0.574515 0.0290917
\(391\) −30.6516 −1.55012
\(392\) 0 0
\(393\) −5.92478 −0.298865
\(394\) 3.96097 0.199551
\(395\) −11.5369 −0.580485
\(396\) −1.96239 −0.0986137
\(397\) 19.9248 0.999996 0.499998 0.866027i \(-0.333334\pi\)
0.499998 + 0.866027i \(0.333334\pi\)
\(398\) −1.67276 −0.0838479
\(399\) 0 0
\(400\) 3.77575 0.188787
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 1.14903 0.0573085
\(403\) 29.4010 1.46457
\(404\) −29.6093 −1.47312
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −2.00000 −0.0991363
\(408\) −3.51530 −0.174033
\(409\) 13.0738 0.646458 0.323229 0.946321i \(-0.395232\pi\)
0.323229 + 0.946321i \(0.395232\pi\)
\(410\) 0.850969 0.0420264
\(411\) −13.8496 −0.683148
\(412\) −6.32724 −0.311721
\(413\) 0 0
\(414\) 1.29948 0.0638658
\(415\) 10.8872 0.534430
\(416\) 6.72213 0.329580
\(417\) 13.6121 0.666589
\(418\) −0.836381 −0.0409087
\(419\) −7.22425 −0.352928 −0.176464 0.984307i \(-0.556466\pi\)
−0.176464 + 0.984307i \(0.556466\pi\)
\(420\) 0 0
\(421\) 30.6253 1.49259 0.746293 0.665618i \(-0.231832\pi\)
0.746293 + 0.665618i \(0.231832\pi\)
\(422\) −1.76257 −0.0858007
\(423\) 9.92478 0.482559
\(424\) 3.61213 0.175420
\(425\) 4.57452 0.221897
\(426\) 1.92478 0.0932558
\(427\) 0 0
\(428\) 1.88858 0.0912880
\(429\) 2.96239 0.143025
\(430\) −1.79877 −0.0867444
\(431\) −33.8759 −1.63174 −0.815872 0.578232i \(-0.803743\pi\)
−0.815872 + 0.578232i \(0.803743\pi\)
\(432\) −3.77575 −0.181661
\(433\) 9.47627 0.455400 0.227700 0.973731i \(-0.426879\pi\)
0.227700 + 0.973731i \(0.426879\pi\)
\(434\) 0 0
\(435\) −3.61213 −0.173188
\(436\) −22.3733 −1.07149
\(437\) −28.8970 −1.38233
\(438\) 1.50071 0.0717066
\(439\) 29.4617 1.40613 0.703065 0.711126i \(-0.251814\pi\)
0.703065 + 0.711126i \(0.251814\pi\)
\(440\) −0.768452 −0.0366345
\(441\) 0 0
\(442\) 2.62813 0.125007
\(443\) −19.0738 −0.906224 −0.453112 0.891454i \(-0.649686\pi\)
−0.453112 + 0.891454i \(0.649686\pi\)
\(444\) −3.92478 −0.186262
\(445\) −2.77575 −0.131583
\(446\) −1.29948 −0.0615320
\(447\) −1.53690 −0.0726931
\(448\) 0 0
\(449\) 35.8759 1.69309 0.846544 0.532318i \(-0.178679\pi\)
0.846544 + 0.532318i \(0.178679\pi\)
\(450\) −0.193937 −0.00914226
\(451\) 4.38787 0.206617
\(452\) 11.7743 0.553818
\(453\) 6.76116 0.317667
\(454\) 3.28963 0.154390
\(455\) 0 0
\(456\) −3.31406 −0.155195
\(457\) 5.28963 0.247438 0.123719 0.992317i \(-0.460518\pi\)
0.123719 + 0.992317i \(0.460518\pi\)
\(458\) 5.01317 0.234250
\(459\) −4.57452 −0.213520
\(460\) −13.1490 −0.613077
\(461\) −36.3390 −1.69248 −0.846238 0.532805i \(-0.821138\pi\)
−0.846238 + 0.532805i \(0.821138\pi\)
\(462\) 0 0
\(463\) 10.5501 0.490304 0.245152 0.969485i \(-0.421162\pi\)
0.245152 + 0.969485i \(0.421162\pi\)
\(464\) −13.6385 −0.633150
\(465\) −9.92478 −0.460251
\(466\) 3.73813 0.173166
\(467\) −18.7005 −0.865357 −0.432679 0.901548i \(-0.642431\pi\)
−0.432679 + 0.901548i \(0.642431\pi\)
\(468\) 5.81336 0.268723
\(469\) 0 0
\(470\) 1.92478 0.0887834
\(471\) −5.47627 −0.252333
\(472\) −8.22284 −0.378487
\(473\) −9.27504 −0.426467
\(474\) 2.23743 0.102768
\(475\) 4.31265 0.197878
\(476\) 0 0
\(477\) 4.70052 0.215222
\(478\) −5.14903 −0.235511
\(479\) 9.29948 0.424904 0.212452 0.977172i \(-0.431855\pi\)
0.212452 + 0.977172i \(0.431855\pi\)
\(480\) −2.26916 −0.103572
\(481\) 5.92478 0.270147
\(482\) 5.53690 0.252199
\(483\) 0 0
\(484\) −1.96239 −0.0891995
\(485\) 0.0752228 0.00341569
\(486\) 0.193937 0.00879714
\(487\) −35.4763 −1.60758 −0.803792 0.594911i \(-0.797187\pi\)
−0.803792 + 0.594911i \(0.797187\pi\)
\(488\) 6.68594 0.302658
\(489\) −12.6253 −0.570936
\(490\) 0 0
\(491\) 24.7757 1.11811 0.559057 0.829129i \(-0.311163\pi\)
0.559057 + 0.829129i \(0.311163\pi\)
\(492\) 8.61071 0.388201
\(493\) −16.5237 −0.744191
\(494\) 2.47768 0.111476
\(495\) −1.00000 −0.0449467
\(496\) −37.4734 −1.68261
\(497\) 0 0
\(498\) −2.11142 −0.0946150
\(499\) 14.1768 0.634640 0.317320 0.948318i \(-0.397217\pi\)
0.317320 + 0.948318i \(0.397217\pi\)
\(500\) 1.96239 0.0877607
\(501\) 18.3634 0.820418
\(502\) 5.80351 0.259023
\(503\) 8.43866 0.376261 0.188131 0.982144i \(-0.439757\pi\)
0.188131 + 0.982144i \(0.439757\pi\)
\(504\) 0 0
\(505\) −15.0884 −0.671425
\(506\) 1.29948 0.0577688
\(507\) 4.22425 0.187606
\(508\) 28.6009 1.26896
\(509\) −1.10299 −0.0488890 −0.0244445 0.999701i \(-0.507782\pi\)
−0.0244445 + 0.999701i \(0.507782\pi\)
\(510\) −0.887166 −0.0392844
\(511\) 0 0
\(512\) −14.3707 −0.635103
\(513\) −4.31265 −0.190408
\(514\) 1.68735 0.0744258
\(515\) −3.22425 −0.142078
\(516\) −18.2012 −0.801265
\(517\) 9.92478 0.436491
\(518\) 0 0
\(519\) −8.57452 −0.376379
\(520\) 2.27645 0.0998291
\(521\) 12.4485 0.545379 0.272690 0.962102i \(-0.412087\pi\)
0.272690 + 0.962102i \(0.412087\pi\)
\(522\) 0.700523 0.0306611
\(523\) −30.0508 −1.31403 −0.657015 0.753878i \(-0.728181\pi\)
−0.657015 + 0.753878i \(0.728181\pi\)
\(524\) −11.6267 −0.507915
\(525\) 0 0
\(526\) −2.38313 −0.103910
\(527\) −45.4010 −1.97770
\(528\) −3.77575 −0.164318
\(529\) 21.8970 0.952044
\(530\) 0.911603 0.0395975
\(531\) −10.7005 −0.464363
\(532\) 0 0
\(533\) −12.9986 −0.563031
\(534\) 0.538319 0.0232953
\(535\) 0.962389 0.0416077
\(536\) 4.55291 0.196656
\(537\) −14.1768 −0.611774
\(538\) −1.13444 −0.0489093
\(539\) 0 0
\(540\) −1.96239 −0.0844478
\(541\) −18.0000 −0.773880 −0.386940 0.922105i \(-0.626468\pi\)
−0.386940 + 0.922105i \(0.626468\pi\)
\(542\) −0.986826 −0.0423878
\(543\) −5.22425 −0.224194
\(544\) −10.3803 −0.445052
\(545\) −11.4010 −0.488367
\(546\) 0 0
\(547\) −14.3028 −0.611544 −0.305772 0.952105i \(-0.598914\pi\)
−0.305772 + 0.952105i \(0.598914\pi\)
\(548\) −27.1782 −1.16100
\(549\) 8.70052 0.371329
\(550\) −0.193937 −0.00826948
\(551\) −15.5778 −0.663638
\(552\) 5.14903 0.219157
\(553\) 0 0
\(554\) −0.273624 −0.0116252
\(555\) −2.00000 −0.0848953
\(556\) 26.7123 1.13285
\(557\) −11.7988 −0.499930 −0.249965 0.968255i \(-0.580419\pi\)
−0.249965 + 0.968255i \(0.580419\pi\)
\(558\) 1.92478 0.0814823
\(559\) 27.4763 1.16212
\(560\) 0 0
\(561\) −4.57452 −0.193136
\(562\) 0.850969 0.0358960
\(563\) −30.4847 −1.28478 −0.642389 0.766379i \(-0.722056\pi\)
−0.642389 + 0.766379i \(0.722056\pi\)
\(564\) 19.4763 0.820099
\(565\) 6.00000 0.252422
\(566\) 5.15377 0.216629
\(567\) 0 0
\(568\) 7.62672 0.320010
\(569\) −27.0884 −1.13560 −0.567802 0.823165i \(-0.692206\pi\)
−0.567802 + 0.823165i \(0.692206\pi\)
\(570\) −0.836381 −0.0350321
\(571\) 7.28489 0.304863 0.152432 0.988314i \(-0.451290\pi\)
0.152432 + 0.988314i \(0.451290\pi\)
\(572\) 5.81336 0.243069
\(573\) 16.6253 0.694532
\(574\) 0 0
\(575\) −6.70052 −0.279431
\(576\) −7.11142 −0.296309
\(577\) 31.6239 1.31652 0.658260 0.752791i \(-0.271293\pi\)
0.658260 + 0.752791i \(0.271293\pi\)
\(578\) −0.761432 −0.0316714
\(579\) 16.3634 0.680041
\(580\) −7.08840 −0.294330
\(581\) 0 0
\(582\) −0.0145884 −0.000604711 0
\(583\) 4.70052 0.194676
\(584\) 5.94639 0.246063
\(585\) 2.96239 0.122480
\(586\) −0.664327 −0.0274431
\(587\) −33.1490 −1.36821 −0.684103 0.729385i \(-0.739806\pi\)
−0.684103 + 0.729385i \(0.739806\pi\)
\(588\) 0 0
\(589\) −42.8021 −1.76363
\(590\) −2.07522 −0.0854356
\(591\) 20.4241 0.840134
\(592\) −7.55149 −0.310364
\(593\) −34.4993 −1.41672 −0.708358 0.705853i \(-0.750564\pi\)
−0.708358 + 0.705853i \(0.750564\pi\)
\(594\) 0.193937 0.00795731
\(595\) 0 0
\(596\) −3.01600 −0.123540
\(597\) −8.62530 −0.353010
\(598\) −3.84955 −0.157420
\(599\) −14.4485 −0.590350 −0.295175 0.955443i \(-0.595378\pi\)
−0.295175 + 0.955443i \(0.595378\pi\)
\(600\) −0.768452 −0.0313719
\(601\) 15.9248 0.649585 0.324793 0.945785i \(-0.394705\pi\)
0.324793 + 0.945785i \(0.394705\pi\)
\(602\) 0 0
\(603\) 5.92478 0.241276
\(604\) 13.2680 0.539868
\(605\) −1.00000 −0.0406558
\(606\) 2.92619 0.118868
\(607\) 14.5745 0.591561 0.295781 0.955256i \(-0.404420\pi\)
0.295781 + 0.955256i \(0.404420\pi\)
\(608\) −9.78609 −0.396878
\(609\) 0 0
\(610\) 1.68735 0.0683188
\(611\) −29.4010 −1.18944
\(612\) −8.97698 −0.362873
\(613\) 16.4123 0.662887 0.331443 0.943475i \(-0.392464\pi\)
0.331443 + 0.943475i \(0.392464\pi\)
\(614\) −3.22899 −0.130312
\(615\) 4.38787 0.176936
\(616\) 0 0
\(617\) −17.8496 −0.718596 −0.359298 0.933223i \(-0.616984\pi\)
−0.359298 + 0.933223i \(0.616984\pi\)
\(618\) 0.625301 0.0251533
\(619\) 0.402462 0.0161763 0.00808815 0.999967i \(-0.497425\pi\)
0.00808815 + 0.999967i \(0.497425\pi\)
\(620\) −19.4763 −0.782186
\(621\) 6.70052 0.268883
\(622\) 6.39963 0.256602
\(623\) 0 0
\(624\) 11.1852 0.447767
\(625\) 1.00000 0.0400000
\(626\) 2.98683 0.119378
\(627\) −4.31265 −0.172231
\(628\) −10.7466 −0.428835
\(629\) −9.14903 −0.364796
\(630\) 0 0
\(631\) −38.0263 −1.51380 −0.756902 0.653528i \(-0.773288\pi\)
−0.756902 + 0.653528i \(0.773288\pi\)
\(632\) 8.86556 0.352653
\(633\) −9.08840 −0.361231
\(634\) −0.417050 −0.0165632
\(635\) 14.5745 0.578372
\(636\) 9.22425 0.365765
\(637\) 0 0
\(638\) 0.700523 0.0277340
\(639\) 9.92478 0.392618
\(640\) −5.91748 −0.233909
\(641\) −28.0263 −1.10697 −0.553487 0.832858i \(-0.686703\pi\)
−0.553487 + 0.832858i \(0.686703\pi\)
\(642\) −0.186642 −0.00736619
\(643\) 4.62530 0.182404 0.0912020 0.995832i \(-0.470929\pi\)
0.0912020 + 0.995832i \(0.470929\pi\)
\(644\) 0 0
\(645\) −9.27504 −0.365204
\(646\) −3.82604 −0.150533
\(647\) −23.5778 −0.926941 −0.463470 0.886112i \(-0.653396\pi\)
−0.463470 + 0.886112i \(0.653396\pi\)
\(648\) 0.768452 0.0301876
\(649\) −10.7005 −0.420032
\(650\) 0.574515 0.0225344
\(651\) 0 0
\(652\) −24.7757 −0.970293
\(653\) −2.25202 −0.0881282 −0.0440641 0.999029i \(-0.514031\pi\)
−0.0440641 + 0.999029i \(0.514031\pi\)
\(654\) 2.21108 0.0864601
\(655\) −5.92478 −0.231500
\(656\) 16.5675 0.646852
\(657\) 7.73813 0.301893
\(658\) 0 0
\(659\) −41.4010 −1.61276 −0.806378 0.591401i \(-0.798575\pi\)
−0.806378 + 0.591401i \(0.798575\pi\)
\(660\) −1.96239 −0.0763859
\(661\) −3.40105 −0.132285 −0.0661427 0.997810i \(-0.521069\pi\)
−0.0661427 + 0.997810i \(0.521069\pi\)
\(662\) 2.82179 0.109672
\(663\) 13.5515 0.526296
\(664\) −8.36626 −0.324674
\(665\) 0 0
\(666\) 0.387873 0.0150298
\(667\) 24.2031 0.937149
\(668\) 36.0362 1.39428
\(669\) −6.70052 −0.259057
\(670\) 1.14903 0.0443909
\(671\) 8.70052 0.335880
\(672\) 0 0
\(673\) 0.887166 0.0341977 0.0170989 0.999854i \(-0.494557\pi\)
0.0170989 + 0.999854i \(0.494557\pi\)
\(674\) −3.15377 −0.121479
\(675\) −1.00000 −0.0384900
\(676\) 8.28963 0.318832
\(677\) −18.9018 −0.726453 −0.363227 0.931701i \(-0.618325\pi\)
−0.363227 + 0.931701i \(0.618325\pi\)
\(678\) −1.16362 −0.0446885
\(679\) 0 0
\(680\) −3.51530 −0.134805
\(681\) 16.9624 0.650000
\(682\) 1.92478 0.0737035
\(683\) −20.8773 −0.798848 −0.399424 0.916766i \(-0.630790\pi\)
−0.399424 + 0.916766i \(0.630790\pi\)
\(684\) −8.46310 −0.323595
\(685\) −13.8496 −0.529164
\(686\) 0 0
\(687\) 25.8496 0.986222
\(688\) −35.0202 −1.33513
\(689\) −13.9248 −0.530492
\(690\) 1.29948 0.0494702
\(691\) 2.44851 0.0931456 0.0465728 0.998915i \(-0.485170\pi\)
0.0465728 + 0.998915i \(0.485170\pi\)
\(692\) −16.8265 −0.639649
\(693\) 0 0
\(694\) 0.186642 0.00708485
\(695\) 13.6121 0.516337
\(696\) 2.77575 0.105214
\(697\) 20.0724 0.760296
\(698\) 4.01459 0.151954
\(699\) 19.2750 0.729049
\(700\) 0 0
\(701\) −2.98683 −0.112811 −0.0564054 0.998408i \(-0.517964\pi\)
−0.0564054 + 0.998408i \(0.517964\pi\)
\(702\) −0.574515 −0.0216837
\(703\) −8.62530 −0.325309
\(704\) −7.11142 −0.268022
\(705\) 9.92478 0.373789
\(706\) 3.98541 0.149993
\(707\) 0 0
\(708\) −20.9986 −0.789175
\(709\) 24.1768 0.907979 0.453989 0.891007i \(-0.350000\pi\)
0.453989 + 0.891007i \(0.350000\pi\)
\(710\) 1.92478 0.0722356
\(711\) 11.5369 0.432668
\(712\) 2.13303 0.0799386
\(713\) 66.5012 2.49049
\(714\) 0 0
\(715\) 2.96239 0.110787
\(716\) −27.8204 −1.03970
\(717\) −26.5501 −0.991531
\(718\) −3.47627 −0.129733
\(719\) 30.0263 1.11979 0.559897 0.828562i \(-0.310841\pi\)
0.559897 + 0.828562i \(0.310841\pi\)
\(720\) −3.77575 −0.140714
\(721\) 0 0
\(722\) 0.0777777 0.00289459
\(723\) 28.5501 1.06179
\(724\) −10.2520 −0.381013
\(725\) −3.61213 −0.134151
\(726\) 0.193937 0.00719766
\(727\) −14.9525 −0.554559 −0.277279 0.960789i \(-0.589433\pi\)
−0.277279 + 0.960789i \(0.589433\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 1.50071 0.0555437
\(731\) −42.4288 −1.56929
\(732\) 17.0738 0.631066
\(733\) 19.1128 0.705949 0.352974 0.935633i \(-0.385170\pi\)
0.352974 + 0.935633i \(0.385170\pi\)
\(734\) −5.75081 −0.212266
\(735\) 0 0
\(736\) 15.2046 0.560447
\(737\) 5.92478 0.218242
\(738\) −0.850969 −0.0313246
\(739\) −3.31406 −0.121910 −0.0609549 0.998141i \(-0.519415\pi\)
−0.0609549 + 0.998141i \(0.519415\pi\)
\(740\) −3.92478 −0.144278
\(741\) 12.7757 0.469329
\(742\) 0 0
\(743\) −34.9887 −1.28361 −0.641806 0.766867i \(-0.721815\pi\)
−0.641806 + 0.766867i \(0.721815\pi\)
\(744\) 7.62672 0.279609
\(745\) −1.53690 −0.0563078
\(746\) 1.77242 0.0648930
\(747\) −10.8872 −0.398341
\(748\) −8.97698 −0.328231
\(749\) 0 0
\(750\) −0.193937 −0.00708156
\(751\) −26.9234 −0.982447 −0.491224 0.871033i \(-0.663450\pi\)
−0.491224 + 0.871033i \(0.663450\pi\)
\(752\) 37.4734 1.36652
\(753\) 29.9248 1.09052
\(754\) −2.07522 −0.0755752
\(755\) 6.76116 0.246064
\(756\) 0 0
\(757\) 15.9248 0.578796 0.289398 0.957209i \(-0.406545\pi\)
0.289398 + 0.957209i \(0.406545\pi\)
\(758\) 3.87873 0.140882
\(759\) 6.70052 0.243214
\(760\) −3.31406 −0.120214
\(761\) 30.9380 1.12150 0.560750 0.827985i \(-0.310513\pi\)
0.560750 + 0.827985i \(0.310513\pi\)
\(762\) −2.82653 −0.102394
\(763\) 0 0
\(764\) 32.6253 1.18034
\(765\) −4.57452 −0.165392
\(766\) −6.77292 −0.244715
\(767\) 31.6991 1.14459
\(768\) −13.0752 −0.471811
\(769\) −9.32582 −0.336298 −0.168149 0.985762i \(-0.553779\pi\)
−0.168149 + 0.985762i \(0.553779\pi\)
\(770\) 0 0
\(771\) 8.70052 0.313342
\(772\) 32.1114 1.15572
\(773\) −44.7005 −1.60777 −0.803883 0.594787i \(-0.797236\pi\)
−0.803883 + 0.594787i \(0.797236\pi\)
\(774\) 1.79877 0.0646554
\(775\) −9.92478 −0.356509
\(776\) −0.0578051 −0.00207508
\(777\) 0 0
\(778\) −0.538319 −0.0192997
\(779\) 18.9234 0.678000
\(780\) 5.81336 0.208152
\(781\) 9.92478 0.355136
\(782\) 5.94448 0.212574
\(783\) 3.61213 0.129087
\(784\) 0 0
\(785\) −5.47627 −0.195456
\(786\) 1.14903 0.0409846
\(787\) −21.6775 −0.772719 −0.386360 0.922348i \(-0.626268\pi\)
−0.386360 + 0.922348i \(0.626268\pi\)
\(788\) 40.0800 1.42779
\(789\) −12.2882 −0.437472
\(790\) 2.23743 0.0796041
\(791\) 0 0
\(792\) 0.768452 0.0273058
\(793\) −25.7743 −0.915273
\(794\) −3.86414 −0.137133
\(795\) 4.70052 0.166710
\(796\) −16.9262 −0.599933
\(797\) −22.7466 −0.805725 −0.402862 0.915261i \(-0.631985\pi\)
−0.402862 + 0.915261i \(0.631985\pi\)
\(798\) 0 0
\(799\) 45.4010 1.60617
\(800\) −2.26916 −0.0802269
\(801\) 2.77575 0.0980762
\(802\) −0.387873 −0.0136963
\(803\) 7.73813 0.273073
\(804\) 11.6267 0.410043
\(805\) 0 0
\(806\) −5.70194 −0.200842
\(807\) −5.84955 −0.205914
\(808\) 11.5947 0.407900
\(809\) −23.6121 −0.830158 −0.415079 0.909785i \(-0.636246\pi\)
−0.415079 + 0.909785i \(0.636246\pi\)
\(810\) 0.193937 0.00681424
\(811\) 26.0870 0.916038 0.458019 0.888942i \(-0.348559\pi\)
0.458019 + 0.888942i \(0.348559\pi\)
\(812\) 0 0
\(813\) −5.08840 −0.178458
\(814\) 0.387873 0.0135949
\(815\) −12.6253 −0.442245
\(816\) −17.2722 −0.604648
\(817\) −40.0000 −1.39942
\(818\) −2.53549 −0.0886513
\(819\) 0 0
\(820\) 8.61071 0.300699
\(821\) −54.4142 −1.89907 −0.949535 0.313662i \(-0.898444\pi\)
−0.949535 + 0.313662i \(0.898444\pi\)
\(822\) 2.68594 0.0936827
\(823\) 0.121269 0.00422716 0.00211358 0.999998i \(-0.499327\pi\)
0.00211358 + 0.999998i \(0.499327\pi\)
\(824\) 2.47768 0.0863142
\(825\) −1.00000 −0.0348155
\(826\) 0 0
\(827\) −18.2130 −0.633328 −0.316664 0.948538i \(-0.602563\pi\)
−0.316664 + 0.948538i \(0.602563\pi\)
\(828\) 13.1490 0.456960
\(829\) −13.0738 −0.454072 −0.227036 0.973886i \(-0.572904\pi\)
−0.227036 + 0.973886i \(0.572904\pi\)
\(830\) −2.11142 −0.0732884
\(831\) −1.41090 −0.0489434
\(832\) 21.0668 0.730359
\(833\) 0 0
\(834\) −2.63989 −0.0914119
\(835\) 18.3634 0.635493
\(836\) −8.46310 −0.292702
\(837\) 9.92478 0.343050
\(838\) 1.40105 0.0483984
\(839\) 26.5501 0.916610 0.458305 0.888795i \(-0.348457\pi\)
0.458305 + 0.888795i \(0.348457\pi\)
\(840\) 0 0
\(841\) −15.9525 −0.550088
\(842\) −5.93937 −0.204684
\(843\) 4.38787 0.151126
\(844\) −17.8350 −0.613905
\(845\) 4.22425 0.145319
\(846\) −1.92478 −0.0661752
\(847\) 0 0
\(848\) 17.7480 0.609468
\(849\) 26.5745 0.912035
\(850\) −0.887166 −0.0304295
\(851\) 13.4010 0.459382
\(852\) 19.4763 0.667246
\(853\) −40.6155 −1.39065 −0.695323 0.718697i \(-0.744739\pi\)
−0.695323 + 0.718697i \(0.744739\pi\)
\(854\) 0 0
\(855\) −4.31265 −0.147490
\(856\) −0.739549 −0.0252773
\(857\) −20.1721 −0.689064 −0.344532 0.938775i \(-0.611962\pi\)
−0.344532 + 0.938775i \(0.611962\pi\)
\(858\) −0.574515 −0.0196136
\(859\) −21.8035 −0.743926 −0.371963 0.928248i \(-0.621315\pi\)
−0.371963 + 0.928248i \(0.621315\pi\)
\(860\) −18.2012 −0.620657
\(861\) 0 0
\(862\) 6.56978 0.223767
\(863\) 35.4274 1.20596 0.602981 0.797755i \(-0.293979\pi\)
0.602981 + 0.797755i \(0.293979\pi\)
\(864\) 2.26916 0.0771984
\(865\) −8.57452 −0.291542
\(866\) −1.83780 −0.0624508
\(867\) −3.92619 −0.133340
\(868\) 0 0
\(869\) 11.5369 0.391363
\(870\) 0.700523 0.0237500
\(871\) −17.5515 −0.594710
\(872\) 8.76116 0.296690
\(873\) −0.0752228 −0.00254591
\(874\) 5.60419 0.189564
\(875\) 0 0
\(876\) 15.1852 0.513061
\(877\) −14.0362 −0.473969 −0.236984 0.971513i \(-0.576159\pi\)
−0.236984 + 0.971513i \(0.576159\pi\)
\(878\) −5.71370 −0.192828
\(879\) −3.42548 −0.115539
\(880\) −3.77575 −0.127280
\(881\) 21.0738 0.709995 0.354997 0.934867i \(-0.384482\pi\)
0.354997 + 0.934867i \(0.384482\pi\)
\(882\) 0 0
\(883\) −42.1476 −1.41838 −0.709190 0.705017i \(-0.750939\pi\)
−0.709190 + 0.705017i \(0.750939\pi\)
\(884\) 26.5933 0.894429
\(885\) −10.7005 −0.359694
\(886\) 3.69911 0.124274
\(887\) −6.93604 −0.232889 −0.116445 0.993197i \(-0.537150\pi\)
−0.116445 + 0.993197i \(0.537150\pi\)
\(888\) 1.53690 0.0515751
\(889\) 0 0
\(890\) 0.538319 0.0180445
\(891\) 1.00000 0.0335013
\(892\) −13.1490 −0.440262
\(893\) 42.8021 1.43232
\(894\) 0.298062 0.00996868
\(895\) −14.1768 −0.473878
\(896\) 0 0
\(897\) −19.8496 −0.662757
\(898\) −6.95765 −0.232180
\(899\) 35.8496 1.19565
\(900\) −1.96239 −0.0654130
\(901\) 21.5026 0.716356
\(902\) −0.850969 −0.0283342
\(903\) 0 0
\(904\) −4.61071 −0.153350
\(905\) −5.22425 −0.173660
\(906\) −1.31124 −0.0435629
\(907\) 53.2017 1.76653 0.883267 0.468870i \(-0.155339\pi\)
0.883267 + 0.468870i \(0.155339\pi\)
\(908\) 33.2868 1.10466
\(909\) 15.0884 0.500451
\(910\) 0 0
\(911\) 36.4749 1.20847 0.604233 0.796808i \(-0.293480\pi\)
0.604233 + 0.796808i \(0.293480\pi\)
\(912\) −16.2835 −0.539200
\(913\) −10.8872 −0.360313
\(914\) −1.02585 −0.0339322
\(915\) 8.70052 0.287630
\(916\) 50.7269 1.67606
\(917\) 0 0
\(918\) 0.887166 0.0292808
\(919\) 9.73340 0.321075 0.160538 0.987030i \(-0.448677\pi\)
0.160538 + 0.987030i \(0.448677\pi\)
\(920\) 5.14903 0.169759
\(921\) −16.6497 −0.548628
\(922\) 7.04746 0.232096
\(923\) −29.4010 −0.967747
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) −2.04605 −0.0672372
\(927\) 3.22425 0.105898
\(928\) 8.19649 0.269063
\(929\) 24.1768 0.793215 0.396607 0.917988i \(-0.370187\pi\)
0.396607 + 0.917988i \(0.370187\pi\)
\(930\) 1.92478 0.0631159
\(931\) 0 0
\(932\) 37.8251 1.23900
\(933\) 32.9986 1.08033
\(934\) 3.62672 0.118670
\(935\) −4.57452 −0.149603
\(936\) −2.27645 −0.0744082
\(937\) 7.48612 0.244561 0.122280 0.992496i \(-0.460979\pi\)
0.122280 + 0.992496i \(0.460979\pi\)
\(938\) 0 0
\(939\) 15.4010 0.502594
\(940\) 19.4763 0.635246
\(941\) 21.2360 0.692274 0.346137 0.938184i \(-0.387493\pi\)
0.346137 + 0.938184i \(0.387493\pi\)
\(942\) 1.06205 0.0346034
\(943\) −29.4010 −0.957430
\(944\) −40.4025 −1.31499
\(945\) 0 0
\(946\) 1.79877 0.0584830
\(947\) −15.4763 −0.502911 −0.251456 0.967869i \(-0.580909\pi\)
−0.251456 + 0.967869i \(0.580909\pi\)
\(948\) 22.6399 0.735309
\(949\) −22.9234 −0.744124
\(950\) −0.836381 −0.0271358
\(951\) −2.15045 −0.0697330
\(952\) 0 0
\(953\) −32.0508 −1.03823 −0.519113 0.854705i \(-0.673738\pi\)
−0.519113 + 0.854705i \(0.673738\pi\)
\(954\) −0.911603 −0.0295142
\(955\) 16.6253 0.537982
\(956\) −52.1016 −1.68509
\(957\) 3.61213 0.116763
\(958\) −1.80351 −0.0582687
\(959\) 0 0
\(960\) −7.11142 −0.229520
\(961\) 67.5012 2.17746
\(962\) −1.14903 −0.0370462
\(963\) −0.962389 −0.0310125
\(964\) 56.0263 1.80449
\(965\) 16.3634 0.526758
\(966\) 0 0
\(967\) −17.3766 −0.558794 −0.279397 0.960176i \(-0.590135\pi\)
−0.279397 + 0.960176i \(0.590135\pi\)
\(968\) 0.768452 0.0246990
\(969\) −19.7283 −0.633764
\(970\) −0.0145884 −0.000468407 0
\(971\) −36.2031 −1.16181 −0.580907 0.813970i \(-0.697302\pi\)
−0.580907 + 0.813970i \(0.697302\pi\)
\(972\) 1.96239 0.0629436
\(973\) 0 0
\(974\) 6.88015 0.220454
\(975\) 2.96239 0.0948724
\(976\) 32.8510 1.05153
\(977\) −28.1476 −0.900522 −0.450261 0.892897i \(-0.648669\pi\)
−0.450261 + 0.892897i \(0.648669\pi\)
\(978\) 2.44851 0.0782946
\(979\) 2.77575 0.0887132
\(980\) 0 0
\(981\) 11.4010 0.364007
\(982\) −4.80492 −0.153331
\(983\) −7.07381 −0.225619 −0.112810 0.993617i \(-0.535985\pi\)
−0.112810 + 0.993617i \(0.535985\pi\)
\(984\) −3.37187 −0.107491
\(985\) 20.4241 0.650765
\(986\) 3.20456 0.102054
\(987\) 0 0
\(988\) 25.0710 0.797614
\(989\) 62.1476 1.97618
\(990\) 0.193937 0.00616371
\(991\) 44.4260 1.41124 0.705619 0.708592i \(-0.250669\pi\)
0.705619 + 0.708592i \(0.250669\pi\)
\(992\) 22.5209 0.715039
\(993\) 14.5501 0.461733
\(994\) 0 0
\(995\) −8.62530 −0.273440
\(996\) −21.3649 −0.676971
\(997\) 28.4847 0.902120 0.451060 0.892494i \(-0.351046\pi\)
0.451060 + 0.892494i \(0.351046\pi\)
\(998\) −2.74940 −0.0870307
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8085.2.a.bk.1.2 3
7.6 odd 2 165.2.a.c.1.2 3
21.20 even 2 495.2.a.e.1.2 3
28.27 even 2 2640.2.a.be.1.1 3
35.13 even 4 825.2.c.g.199.4 6
35.27 even 4 825.2.c.g.199.3 6
35.34 odd 2 825.2.a.k.1.2 3
77.76 even 2 1815.2.a.m.1.2 3
84.83 odd 2 7920.2.a.cj.1.1 3
105.62 odd 4 2475.2.c.r.199.4 6
105.83 odd 4 2475.2.c.r.199.3 6
105.104 even 2 2475.2.a.bb.1.2 3
231.230 odd 2 5445.2.a.z.1.2 3
385.384 even 2 9075.2.a.cf.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.2.a.c.1.2 3 7.6 odd 2
495.2.a.e.1.2 3 21.20 even 2
825.2.a.k.1.2 3 35.34 odd 2
825.2.c.g.199.3 6 35.27 even 4
825.2.c.g.199.4 6 35.13 even 4
1815.2.a.m.1.2 3 77.76 even 2
2475.2.a.bb.1.2 3 105.104 even 2
2475.2.c.r.199.3 6 105.83 odd 4
2475.2.c.r.199.4 6 105.62 odd 4
2640.2.a.be.1.1 3 28.27 even 2
5445.2.a.z.1.2 3 231.230 odd 2
7920.2.a.cj.1.1 3 84.83 odd 2
8085.2.a.bk.1.2 3 1.1 even 1 trivial
9075.2.a.cf.1.2 3 385.384 even 2