Properties

Label 804.2.y.b.793.2
Level 804
Weight 2
Character 804.793
Analytic conductor 6.420
Analytic rank 0
Dimension 120
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.y (of order \(33\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(6\) over \(\Q(\zeta_{33})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

Embedding invariants

Embedding label 793.2
Character \(\chi\) = 804.793
Dual form 804.2.y.b.73.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.415415 - 0.909632i) q^{3} +(-1.98933 + 0.584119i) q^{5} +(1.45645 + 0.280708i) q^{7} +(-0.654861 + 0.755750i) q^{9} +O(q^{10})\) \(q+(-0.415415 - 0.909632i) q^{3} +(-1.98933 + 0.584119i) q^{5} +(1.45645 + 0.280708i) q^{7} +(-0.654861 + 0.755750i) q^{9} +(-0.875823 - 0.835095i) q^{11} +(0.0865958 + 1.81787i) q^{13} +(1.35773 + 1.56690i) q^{15} +(-4.57862 - 3.60066i) q^{17} +(-1.94659 + 0.375175i) q^{19} +(-0.349691 - 1.44145i) q^{21} +(-3.82426 - 0.365173i) q^{23} +(-0.590046 + 0.379199i) q^{25} +(0.959493 + 0.281733i) q^{27} +(1.66371 + 2.88163i) q^{29} +(-0.106537 + 2.23649i) q^{31} +(-0.395799 + 1.14359i) q^{33} +(-3.06133 + 0.292321i) q^{35} +(-3.40770 + 5.90231i) q^{37} +(1.61762 - 0.833941i) q^{39} +(-11.1387 + 4.45926i) q^{41} +(-1.31227 + 9.12705i) q^{43} +(0.861284 - 1.88595i) q^{45} +(1.50381 - 2.11180i) q^{47} +(-4.45612 - 1.78396i) q^{49} +(-1.37325 + 5.66063i) q^{51} +(-0.940432 - 6.54085i) q^{53} +(2.23009 + 1.14969i) q^{55} +(1.14991 + 1.61483i) q^{57} +(5.71618 + 3.67357i) q^{59} +(5.70773 - 5.44231i) q^{61} +(-1.16592 + 0.916889i) q^{63} +(-1.23412 - 3.56575i) q^{65} +(-5.94150 + 5.63015i) q^{67} +(1.25648 + 3.63037i) q^{69} +(-9.08998 + 7.14844i) q^{71} +(8.69359 - 8.28933i) q^{73} +(0.590046 + 0.379199i) q^{75} +(-1.04118 - 1.46213i) q^{77} +(-3.62828 - 1.87051i) q^{79} +(-0.142315 - 0.989821i) q^{81} +(-1.16023 + 4.78254i) q^{83} +(11.2116 + 4.48844i) q^{85} +(1.93009 - 2.71043i) q^{87} +(-0.134913 + 0.295419i) q^{89} +(-0.384169 + 2.67195i) q^{91} +(2.07864 - 0.832163i) q^{93} +(3.65326 - 1.88338i) q^{95} +(-0.558643 + 0.967597i) q^{97} +(1.20466 - 0.115032i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + O(q^{10}) \) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + 11q^{11} + 2q^{13} - 9q^{15} + 48q^{17} - 4q^{19} - q^{21} + 22q^{23} - 42q^{25} + 12q^{27} - q^{29} + 27q^{31} + 17q^{35} - 8q^{37} - 2q^{39} - 58q^{41} - 17q^{43} - 2q^{45} - 84q^{47} + 101q^{49} - 26q^{51} + 28q^{53} - 9q^{55} + 26q^{57} + 34q^{59} + 16q^{61} + 12q^{63} + 144q^{65} + 23q^{67} + 11q^{69} + 173q^{71} - 2q^{73} + 42q^{75} + 128q^{77} + 31q^{79} - 12q^{81} + 47q^{83} - 75q^{85} - 10q^{87} - 67q^{89} + 16q^{91} + 6q^{93} - 79q^{95} + 10q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(e\left(\frac{13}{33}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.415415 0.909632i −0.239840 0.525176i
\(4\) 0 0
\(5\) −1.98933 + 0.584119i −0.889653 + 0.261226i −0.694453 0.719538i \(-0.744354\pi\)
−0.195200 + 0.980763i \(0.562536\pi\)
\(6\) 0 0
\(7\) 1.45645 + 0.280708i 0.550487 + 0.106098i 0.456908 0.889514i \(-0.348957\pi\)
0.0935796 + 0.995612i \(0.470169\pi\)
\(8\) 0 0
\(9\) −0.654861 + 0.755750i −0.218287 + 0.251917i
\(10\) 0 0
\(11\) −0.875823 0.835095i −0.264070 0.251791i 0.546463 0.837483i \(-0.315974\pi\)
−0.810533 + 0.585693i \(0.800823\pi\)
\(12\) 0 0
\(13\) 0.0865958 + 1.81787i 0.0240174 + 0.504187i 0.978541 + 0.206052i \(0.0660615\pi\)
−0.954524 + 0.298135i \(0.903635\pi\)
\(14\) 0 0
\(15\) 1.35773 + 1.56690i 0.350564 + 0.404573i
\(16\) 0 0
\(17\) −4.57862 3.60066i −1.11048 0.873289i −0.117675 0.993052i \(-0.537544\pi\)
−0.992803 + 0.119763i \(0.961787\pi\)
\(18\) 0 0
\(19\) −1.94659 + 0.375175i −0.446578 + 0.0860709i −0.407582 0.913168i \(-0.633628\pi\)
−0.0389960 + 0.999239i \(0.512416\pi\)
\(20\) 0 0
\(21\) −0.349691 1.44145i −0.0763089 0.314549i
\(22\) 0 0
\(23\) −3.82426 0.365173i −0.797414 0.0761438i −0.311608 0.950211i \(-0.600868\pi\)
−0.485806 + 0.874067i \(0.661474\pi\)
\(24\) 0 0
\(25\) −0.590046 + 0.379199i −0.118009 + 0.0758399i
\(26\) 0 0
\(27\) 0.959493 + 0.281733i 0.184655 + 0.0542195i
\(28\) 0 0
\(29\) 1.66371 + 2.88163i 0.308943 + 0.535105i 0.978131 0.207988i \(-0.0666914\pi\)
−0.669188 + 0.743093i \(0.733358\pi\)
\(30\) 0 0
\(31\) −0.106537 + 2.23649i −0.0191347 + 0.401686i 0.968900 + 0.247453i \(0.0795936\pi\)
−0.988035 + 0.154233i \(0.950709\pi\)
\(32\) 0 0
\(33\) −0.395799 + 1.14359i −0.0688998 + 0.199073i
\(34\) 0 0
\(35\) −3.06133 + 0.292321i −0.517459 + 0.0494113i
\(36\) 0 0
\(37\) −3.40770 + 5.90231i −0.560222 + 0.970334i 0.437254 + 0.899338i \(0.355951\pi\)
−0.997477 + 0.0709956i \(0.977382\pi\)
\(38\) 0 0
\(39\) 1.61762 0.833941i 0.259027 0.133537i
\(40\) 0 0
\(41\) −11.1387 + 4.45926i −1.73957 + 0.696419i −0.739850 + 0.672772i \(0.765103\pi\)
−0.999720 + 0.0236464i \(0.992472\pi\)
\(42\) 0 0
\(43\) −1.31227 + 9.12705i −0.200120 + 1.39186i 0.603806 + 0.797131i \(0.293650\pi\)
−0.803925 + 0.594730i \(0.797259\pi\)
\(44\) 0 0
\(45\) 0.861284 1.88595i 0.128393 0.281141i
\(46\) 0 0
\(47\) 1.50381 2.11180i 0.219353 0.308038i −0.690206 0.723613i \(-0.742480\pi\)
0.909559 + 0.415575i \(0.136420\pi\)
\(48\) 0 0
\(49\) −4.45612 1.78396i −0.636588 0.254851i
\(50\) 0 0
\(51\) −1.37325 + 5.66063i −0.192294 + 0.792646i
\(52\) 0 0
\(53\) −0.940432 6.54085i −0.129178 0.898454i −0.946599 0.322413i \(-0.895506\pi\)
0.817421 0.576041i \(-0.195403\pi\)
\(54\) 0 0
\(55\) 2.23009 + 1.14969i 0.300705 + 0.155024i
\(56\) 0 0
\(57\) 1.14991 + 1.61483i 0.152310 + 0.213889i
\(58\) 0 0
\(59\) 5.71618 + 3.67357i 0.744183 + 0.478258i 0.856973 0.515361i \(-0.172342\pi\)
−0.112790 + 0.993619i \(0.535979\pi\)
\(60\) 0 0
\(61\) 5.70773 5.44231i 0.730800 0.696817i −0.230268 0.973127i \(-0.573960\pi\)
0.961068 + 0.276310i \(0.0891118\pi\)
\(62\) 0 0
\(63\) −1.16592 + 0.916889i −0.146892 + 0.115517i
\(64\) 0 0
\(65\) −1.23412 3.56575i −0.153074 0.442277i
\(66\) 0 0
\(67\) −5.94150 + 5.63015i −0.725870 + 0.687832i
\(68\) 0 0
\(69\) 1.25648 + 3.63037i 0.151263 + 0.437045i
\(70\) 0 0
\(71\) −9.08998 + 7.14844i −1.07878 + 0.848364i −0.989047 0.147602i \(-0.952845\pi\)
−0.0897357 + 0.995966i \(0.528602\pi\)
\(72\) 0 0
\(73\) 8.69359 8.28933i 1.01751 0.970192i 0.0179478 0.999839i \(-0.494287\pi\)
0.999560 + 0.0296468i \(0.00943824\pi\)
\(74\) 0 0
\(75\) 0.590046 + 0.379199i 0.0681326 + 0.0437862i
\(76\) 0 0
\(77\) −1.04118 1.46213i −0.118653 0.166625i
\(78\) 0 0
\(79\) −3.62828 1.87051i −0.408214 0.210449i 0.241875 0.970308i \(-0.422238\pi\)
−0.650088 + 0.759859i \(0.725268\pi\)
\(80\) 0 0
\(81\) −0.142315 0.989821i −0.0158128 0.109980i
\(82\) 0 0
\(83\) −1.16023 + 4.78254i −0.127352 + 0.524952i 0.872019 + 0.489473i \(0.162811\pi\)
−0.999370 + 0.0354788i \(0.988704\pi\)
\(84\) 0 0
\(85\) 11.2116 + 4.48844i 1.21607 + 0.486839i
\(86\) 0 0
\(87\) 1.93009 2.71043i 0.206928 0.290589i
\(88\) 0 0
\(89\) −0.134913 + 0.295419i −0.0143008 + 0.0313144i −0.916648 0.399696i \(-0.869116\pi\)
0.902347 + 0.431011i \(0.141843\pi\)
\(90\) 0 0
\(91\) −0.384169 + 2.67195i −0.0402718 + 0.280097i
\(92\) 0 0
\(93\) 2.07864 0.832163i 0.215545 0.0862912i
\(94\) 0 0
\(95\) 3.65326 1.88338i 0.374816 0.193231i
\(96\) 0 0
\(97\) −0.558643 + 0.967597i −0.0567216 + 0.0982446i −0.892992 0.450073i \(-0.851398\pi\)
0.836270 + 0.548317i \(0.184731\pi\)
\(98\) 0 0
\(99\) 1.20466 0.115032i 0.121073 0.0115611i
\(100\) 0 0
\(101\) 0.820341 2.37022i 0.0816270 0.235846i −0.896801 0.442434i \(-0.854115\pi\)
0.978428 + 0.206589i \(0.0662362\pi\)
\(102\) 0 0
\(103\) 0.397650 8.34771i 0.0391817 0.822524i −0.890684 0.454624i \(-0.849774\pi\)
0.929865 0.367900i \(-0.119923\pi\)
\(104\) 0 0
\(105\) 1.53763 + 2.66325i 0.150057 + 0.259906i
\(106\) 0 0
\(107\) −1.42680 0.418946i −0.137934 0.0405010i 0.212037 0.977262i \(-0.431990\pi\)
−0.349971 + 0.936761i \(0.613808\pi\)
\(108\) 0 0
\(109\) 4.65922 2.99430i 0.446272 0.286802i −0.298140 0.954522i \(-0.596366\pi\)
0.744412 + 0.667721i \(0.232730\pi\)
\(110\) 0 0
\(111\) 6.78454 + 0.647845i 0.643960 + 0.0614907i
\(112\) 0 0
\(113\) −3.33489 13.7466i −0.313720 1.29317i −0.882356 0.470583i \(-0.844044\pi\)
0.568635 0.822590i \(-0.307472\pi\)
\(114\) 0 0
\(115\) 7.82101 1.50738i 0.729313 0.140564i
\(116\) 0 0
\(117\) −1.43056 1.12501i −0.132256 0.104007i
\(118\) 0 0
\(119\) −5.65780 6.52945i −0.518650 0.598554i
\(120\) 0 0
\(121\) −0.453720 9.52475i −0.0412473 0.865886i
\(122\) 0 0
\(123\) 8.68346 + 8.27966i 0.782961 + 0.746552i
\(124\) 0 0
\(125\) 7.74094 8.93352i 0.692371 0.799038i
\(126\) 0 0
\(127\) −19.9697 3.84884i −1.77202 0.341529i −0.804430 0.594047i \(-0.797529\pi\)
−0.967592 + 0.252518i \(0.918741\pi\)
\(128\) 0 0
\(129\) 8.84739 2.59783i 0.778969 0.228726i
\(130\) 0 0
\(131\) 3.70092 + 8.10389i 0.323351 + 0.708040i 0.999590 0.0286426i \(-0.00911846\pi\)
−0.676239 + 0.736683i \(0.736391\pi\)
\(132\) 0 0
\(133\) −2.94043 −0.254968
\(134\) 0 0
\(135\) −2.07331 −0.178442
\(136\) 0 0
\(137\) 0.136365 + 0.298599i 0.0116505 + 0.0255110i 0.915368 0.402619i \(-0.131900\pi\)
−0.903717 + 0.428130i \(0.859173\pi\)
\(138\) 0 0
\(139\) 4.41133 1.29528i 0.374164 0.109865i −0.0892431 0.996010i \(-0.528445\pi\)
0.463407 + 0.886145i \(0.346627\pi\)
\(140\) 0 0
\(141\) −2.54566 0.490636i −0.214384 0.0413190i
\(142\) 0 0
\(143\) 1.44225 1.66445i 0.120607 0.139188i
\(144\) 0 0
\(145\) −4.99287 4.76069i −0.414635 0.395354i
\(146\) 0 0
\(147\) 0.228391 + 4.79451i 0.0188373 + 0.395445i
\(148\) 0 0
\(149\) −10.3702 11.9679i −0.849564 0.980449i 0.150403 0.988625i \(-0.451943\pi\)
−0.999967 + 0.00817582i \(0.997398\pi\)
\(150\) 0 0
\(151\) 10.4807 + 8.24210i 0.852906 + 0.670733i 0.945731 0.324950i \(-0.105347\pi\)
−0.0928253 + 0.995682i \(0.529590\pi\)
\(152\) 0 0
\(153\) 5.71956 1.10235i 0.462399 0.0891201i
\(154\) 0 0
\(155\) −1.09444 4.51134i −0.0879075 0.362360i
\(156\) 0 0
\(157\) 10.9904 + 1.04946i 0.877131 + 0.0837558i 0.523899 0.851780i \(-0.324477\pi\)
0.353231 + 0.935536i \(0.385083\pi\)
\(158\) 0 0
\(159\) −5.55909 + 3.57261i −0.440865 + 0.283327i
\(160\) 0 0
\(161\) −5.46735 1.60536i −0.430888 0.126520i
\(162\) 0 0
\(163\) 2.78055 + 4.81606i 0.217790 + 0.377223i 0.954132 0.299386i \(-0.0967820\pi\)
−0.736342 + 0.676609i \(0.763449\pi\)
\(164\) 0 0
\(165\) 0.119383 2.50616i 0.00929397 0.195104i
\(166\) 0 0
\(167\) 0.362187 1.04647i 0.0280269 0.0809784i −0.930120 0.367257i \(-0.880297\pi\)
0.958146 + 0.286278i \(0.0924182\pi\)
\(168\) 0 0
\(169\) 9.64398 0.920888i 0.741845 0.0708376i
\(170\) 0 0
\(171\) 0.991208 1.71682i 0.0757995 0.131289i
\(172\) 0 0
\(173\) −5.65149 + 2.91354i −0.429675 + 0.221513i −0.659477 0.751725i \(-0.729222\pi\)
0.229802 + 0.973237i \(0.426192\pi\)
\(174\) 0 0
\(175\) −0.965818 + 0.386655i −0.0730090 + 0.0292284i
\(176\) 0 0
\(177\) 0.967006 6.72568i 0.0726846 0.505533i
\(178\) 0 0
\(179\) −1.44208 + 3.15772i −0.107786 + 0.236019i −0.955838 0.293895i \(-0.905049\pi\)
0.848051 + 0.529914i \(0.177776\pi\)
\(180\) 0 0
\(181\) −2.97164 + 4.17308i −0.220880 + 0.310183i −0.910115 0.414355i \(-0.864007\pi\)
0.689235 + 0.724538i \(0.257947\pi\)
\(182\) 0 0
\(183\) −7.32158 2.93112i −0.541227 0.216675i
\(184\) 0 0
\(185\) 3.33137 13.7321i 0.244928 1.00961i
\(186\) 0 0
\(187\) 1.00316 + 6.97713i 0.0733583 + 0.510218i
\(188\) 0 0
\(189\) 1.31837 + 0.679668i 0.0958974 + 0.0494386i
\(190\) 0 0
\(191\) 4.84737 + 6.80718i 0.350744 + 0.492550i 0.951827 0.306636i \(-0.0992034\pi\)
−0.601083 + 0.799186i \(0.705264\pi\)
\(192\) 0 0
\(193\) 2.53306 + 1.62790i 0.182334 + 0.117179i 0.628624 0.777710i \(-0.283619\pi\)
−0.446290 + 0.894889i \(0.647255\pi\)
\(194\) 0 0
\(195\) −2.73085 + 2.60386i −0.195560 + 0.186466i
\(196\) 0 0
\(197\) −6.16021 + 4.84444i −0.438897 + 0.345152i −0.813029 0.582223i \(-0.802183\pi\)
0.374132 + 0.927375i \(0.377941\pi\)
\(198\) 0 0
\(199\) −0.740339 2.13907i −0.0524812 0.151635i 0.915714 0.401831i \(-0.131626\pi\)
−0.968195 + 0.250196i \(0.919505\pi\)
\(200\) 0 0
\(201\) 7.58955 + 3.06573i 0.535326 + 0.216240i
\(202\) 0 0
\(203\) 1.61422 + 4.66397i 0.113296 + 0.327347i
\(204\) 0 0
\(205\) 19.5537 15.3772i 1.36569 1.07399i
\(206\) 0 0
\(207\) 2.78034 2.65105i 0.193247 0.184261i
\(208\) 0 0
\(209\) 2.01817 + 1.29700i 0.139600 + 0.0897155i
\(210\) 0 0
\(211\) 7.23403 + 10.1588i 0.498011 + 0.699359i 0.984708 0.174212i \(-0.0557378\pi\)
−0.486697 + 0.873571i \(0.661798\pi\)
\(212\) 0 0
\(213\) 10.2786 + 5.29897i 0.704276 + 0.363079i
\(214\) 0 0
\(215\) −2.72074 18.9232i −0.185553 1.29055i
\(216\) 0 0
\(217\) −0.782968 + 3.22744i −0.0531513 + 0.219093i
\(218\) 0 0
\(219\) −11.1517 4.46446i −0.753561 0.301680i
\(220\) 0 0
\(221\) 6.14905 8.63514i 0.413630 0.580862i
\(222\) 0 0
\(223\) 7.25303 15.8819i 0.485699 1.06353i −0.495158 0.868803i \(-0.664890\pi\)
0.980857 0.194729i \(-0.0623829\pi\)
\(224\) 0 0
\(225\) 0.0998180 0.694250i 0.00665453 0.0462833i
\(226\) 0 0
\(227\) 15.7351 6.29938i 1.04437 0.418105i 0.214892 0.976638i \(-0.431060\pi\)
0.829482 + 0.558533i \(0.188636\pi\)
\(228\) 0 0
\(229\) 11.1681 5.75757i 0.738010 0.380471i −0.0478665 0.998854i \(-0.515242\pi\)
0.785877 + 0.618383i \(0.212212\pi\)
\(230\) 0 0
\(231\) −0.897478 + 1.55448i −0.0590497 + 0.102277i
\(232\) 0 0
\(233\) −15.6855 + 1.49779i −1.02759 + 0.0981233i −0.595213 0.803568i \(-0.702932\pi\)
−0.432381 + 0.901691i \(0.642326\pi\)
\(234\) 0 0
\(235\) −1.75802 + 5.07946i −0.114680 + 0.331347i
\(236\) 0 0
\(237\) −0.194232 + 4.07744i −0.0126167 + 0.264858i
\(238\) 0 0
\(239\) −5.73555 9.93427i −0.371002 0.642594i 0.618718 0.785613i \(-0.287652\pi\)
−0.989720 + 0.143019i \(0.954319\pi\)
\(240\) 0 0
\(241\) −7.44401 2.18576i −0.479511 0.140797i 0.0330399 0.999454i \(-0.489481\pi\)
−0.512551 + 0.858657i \(0.671299\pi\)
\(242\) 0 0
\(243\) −0.841254 + 0.540641i −0.0539664 + 0.0346821i
\(244\) 0 0
\(245\) 9.90671 + 0.945976i 0.632917 + 0.0604362i
\(246\) 0 0
\(247\) −0.850585 3.50616i −0.0541215 0.223092i
\(248\) 0 0
\(249\) 4.83233 0.931354i 0.306236 0.0590222i
\(250\) 0 0
\(251\) 11.4445 + 9.00008i 0.722373 + 0.568080i 0.910223 0.414117i \(-0.135910\pi\)
−0.187851 + 0.982198i \(0.560152\pi\)
\(252\) 0 0
\(253\) 3.04442 + 3.51345i 0.191401 + 0.220889i
\(254\) 0 0
\(255\) −0.574630 12.0630i −0.0359847 0.755413i
\(256\) 0 0
\(257\) 12.7263 + 12.1345i 0.793847 + 0.756932i 0.973961 0.226714i \(-0.0727983\pi\)
−0.180114 + 0.983646i \(0.557647\pi\)
\(258\) 0 0
\(259\) −6.61998 + 7.63986i −0.411346 + 0.474718i
\(260\) 0 0
\(261\) −3.26729 0.629718i −0.202240 0.0389786i
\(262\) 0 0
\(263\) 17.5286 5.14686i 1.08086 0.317369i 0.307638 0.951504i \(-0.400462\pi\)
0.773223 + 0.634134i \(0.218643\pi\)
\(264\) 0 0
\(265\) 5.69146 + 12.4625i 0.349623 + 0.765568i
\(266\) 0 0
\(267\) 0.324768 0.0198755
\(268\) 0 0
\(269\) −13.2788 −0.809625 −0.404813 0.914400i \(-0.632663\pi\)
−0.404813 + 0.914400i \(0.632663\pi\)
\(270\) 0 0
\(271\) 5.20421 + 11.3956i 0.316133 + 0.692235i 0.999276 0.0380496i \(-0.0121145\pi\)
−0.683143 + 0.730285i \(0.739387\pi\)
\(272\) 0 0
\(273\) 2.59008 0.760517i 0.156759 0.0460286i
\(274\) 0 0
\(275\) 0.833443 + 0.160633i 0.0502585 + 0.00968653i
\(276\) 0 0
\(277\) 12.1064 13.9715i 0.727400 0.839465i −0.264776 0.964310i \(-0.585298\pi\)
0.992176 + 0.124845i \(0.0398435\pi\)
\(278\) 0 0
\(279\) −1.62046 1.54511i −0.0970144 0.0925031i
\(280\) 0 0
\(281\) 0.938955 + 19.7111i 0.0560133 + 1.17586i 0.835516 + 0.549466i \(0.185169\pi\)
−0.779503 + 0.626399i \(0.784528\pi\)
\(282\) 0 0
\(283\) −2.91512 3.36422i −0.173286 0.199982i 0.662463 0.749095i \(-0.269511\pi\)
−0.835748 + 0.549113i \(0.814966\pi\)
\(284\) 0 0
\(285\) −3.23080 2.54073i −0.191376 0.150500i
\(286\) 0 0
\(287\) −17.4747 + 3.36798i −1.03150 + 0.198805i
\(288\) 0 0
\(289\) 3.99105 + 16.4513i 0.234768 + 0.967726i
\(290\) 0 0
\(291\) 1.11223 + 0.106205i 0.0651998 + 0.00622583i
\(292\) 0 0
\(293\) −10.5441 + 6.77630i −0.615995 + 0.395876i −0.811101 0.584906i \(-0.801131\pi\)
0.195106 + 0.980782i \(0.437495\pi\)
\(294\) 0 0
\(295\) −13.5171 3.96899i −0.786999 0.231084i
\(296\) 0 0
\(297\) −0.605072 1.04802i −0.0351099 0.0608120i
\(298\) 0 0
\(299\) 0.332672 6.98364i 0.0192389 0.403874i
\(300\) 0 0
\(301\) −4.47330 + 12.9247i −0.257837 + 0.744970i
\(302\) 0 0
\(303\) −2.49681 + 0.238416i −0.143438 + 0.0136967i
\(304\) 0 0
\(305\) −8.17558 + 14.1605i −0.468133 + 0.810829i
\(306\) 0 0
\(307\) −14.9294 + 7.69665i −0.852067 + 0.439271i −0.828192 0.560444i \(-0.810631\pi\)
−0.0238745 + 0.999715i \(0.507600\pi\)
\(308\) 0 0
\(309\) −7.75853 + 3.10605i −0.441368 + 0.176697i
\(310\) 0 0
\(311\) −0.158335 + 1.10125i −0.00897837 + 0.0624459i −0.993818 0.111021i \(-0.964588\pi\)
0.984840 + 0.173467i \(0.0554970\pi\)
\(312\) 0 0
\(313\) −3.92565 + 8.59598i −0.221891 + 0.485873i −0.987537 0.157389i \(-0.949692\pi\)
0.765646 + 0.643262i \(0.222420\pi\)
\(314\) 0 0
\(315\) 1.78382 2.50503i 0.100507 0.141142i
\(316\) 0 0
\(317\) 0.319012 + 0.127713i 0.0179175 + 0.00717308i 0.380604 0.924738i \(-0.375716\pi\)
−0.362686 + 0.931911i \(0.618140\pi\)
\(318\) 0 0
\(319\) 0.949320 3.91315i 0.0531517 0.219094i
\(320\) 0 0
\(321\) 0.211627 + 1.47190i 0.0118119 + 0.0821533i
\(322\) 0 0
\(323\) 10.2636 + 5.29124i 0.571080 + 0.294412i
\(324\) 0 0
\(325\) −0.740431 1.03979i −0.0410717 0.0576771i
\(326\) 0 0
\(327\) −4.65922 2.99430i −0.257655 0.165585i
\(328\) 0 0
\(329\) 2.78302 2.65361i 0.153433 0.146298i
\(330\) 0 0
\(331\) −14.8168 + 11.6521i −0.814405 + 0.640455i −0.935951 0.352131i \(-0.885457\pi\)
0.121546 + 0.992586i \(0.461215\pi\)
\(332\) 0 0
\(333\) −2.22910 6.44056i −0.122154 0.352940i
\(334\) 0 0
\(335\) 8.53091 14.6707i 0.466093 0.801548i
\(336\) 0 0
\(337\) −2.16711 6.26145i −0.118050 0.341083i 0.870460 0.492239i \(-0.163821\pi\)
−0.988510 + 0.151157i \(0.951700\pi\)
\(338\) 0 0
\(339\) −11.1190 + 8.74408i −0.603901 + 0.474913i
\(340\) 0 0
\(341\) 1.96099 1.86980i 0.106194 0.101255i
\(342\) 0 0
\(343\) −14.7239 9.46249i −0.795017 0.510926i
\(344\) 0 0
\(345\) −4.62012 6.48805i −0.248739 0.349305i
\(346\) 0 0
\(347\) 9.21913 + 4.75279i 0.494909 + 0.255143i 0.687565 0.726123i \(-0.258680\pi\)
−0.192656 + 0.981266i \(0.561710\pi\)
\(348\) 0 0
\(349\) −3.03558 21.1129i −0.162491 1.13015i −0.893918 0.448230i \(-0.852055\pi\)
0.731428 0.681919i \(-0.238854\pi\)
\(350\) 0 0
\(351\) −0.429065 + 1.76863i −0.0229018 + 0.0944025i
\(352\) 0 0
\(353\) −7.26908 2.91010i −0.386894 0.154889i 0.170057 0.985434i \(-0.445605\pi\)
−0.556951 + 0.830545i \(0.688029\pi\)
\(354\) 0 0
\(355\) 13.9074 19.5302i 0.738128 1.03656i
\(356\) 0 0
\(357\) −3.58906 + 7.85895i −0.189953 + 0.415940i
\(358\) 0 0
\(359\) −2.89114 + 20.1083i −0.152588 + 1.06128i 0.759271 + 0.650774i \(0.225556\pi\)
−0.911860 + 0.410502i \(0.865353\pi\)
\(360\) 0 0
\(361\) −13.9905 + 5.60096i −0.736344 + 0.294788i
\(362\) 0 0
\(363\) −8.47554 + 4.36944i −0.444850 + 0.229336i
\(364\) 0 0
\(365\) −12.4524 + 21.5683i −0.651791 + 1.12893i
\(366\) 0 0
\(367\) −21.4427 + 2.04753i −1.11930 + 0.106880i −0.638263 0.769819i \(-0.720347\pi\)
−0.481039 + 0.876699i \(0.659741\pi\)
\(368\) 0 0
\(369\) 3.92421 11.3382i 0.204286 0.590246i
\(370\) 0 0
\(371\) 0.466375 9.79042i 0.0242130 0.508293i
\(372\) 0 0
\(373\) −6.52602 11.3034i −0.337904 0.585268i 0.646134 0.763224i \(-0.276385\pi\)
−0.984038 + 0.177956i \(0.943051\pi\)
\(374\) 0 0
\(375\) −11.3419 3.33029i −0.585694 0.171975i
\(376\) 0 0
\(377\) −5.09436 + 3.27394i −0.262373 + 0.168617i
\(378\) 0 0
\(379\) −10.9758 1.04806i −0.563788 0.0538352i −0.190729 0.981643i \(-0.561085\pi\)
−0.373059 + 0.927808i \(0.621691\pi\)
\(380\) 0 0
\(381\) 4.79468 + 19.7639i 0.245639 + 1.01254i
\(382\) 0 0
\(383\) 8.93409 1.72190i 0.456511 0.0879852i 0.0441882 0.999023i \(-0.485930\pi\)
0.412322 + 0.911038i \(0.364718\pi\)
\(384\) 0 0
\(385\) 2.92530 + 2.30048i 0.149087 + 0.117243i
\(386\) 0 0
\(387\) −6.03841 6.96869i −0.306949 0.354239i
\(388\) 0 0
\(389\) 0.284617 + 5.97484i 0.0144306 + 0.302936i 0.994532 + 0.104436i \(0.0333039\pi\)
−0.980101 + 0.198500i \(0.936393\pi\)
\(390\) 0 0
\(391\) 16.1950 + 15.4419i 0.819015 + 0.780929i
\(392\) 0 0
\(393\) 5.83414 6.73295i 0.294293 0.339633i
\(394\) 0 0
\(395\) 8.31043 + 1.60170i 0.418143 + 0.0805905i
\(396\) 0 0
\(397\) −35.2096 + 10.3385i −1.76712 + 0.518873i −0.993405 0.114662i \(-0.963422\pi\)
−0.773714 + 0.633535i \(0.781603\pi\)
\(398\) 0 0
\(399\) 1.22150 + 2.67471i 0.0611515 + 0.133903i
\(400\) 0 0
\(401\) −26.3343 −1.31507 −0.657537 0.753422i \(-0.728402\pi\)
−0.657537 + 0.753422i \(0.728402\pi\)
\(402\) 0 0
\(403\) −4.07488 −0.202984
\(404\) 0 0
\(405\) 0.861284 + 1.88595i 0.0427975 + 0.0937135i
\(406\) 0 0
\(407\) 7.91353 2.32362i 0.392259 0.115178i
\(408\) 0 0
\(409\) −17.8356 3.43752i −0.881911 0.169974i −0.271860 0.962337i \(-0.587639\pi\)
−0.610051 + 0.792362i \(0.708851\pi\)
\(410\) 0 0
\(411\) 0.214967 0.248085i 0.0106035 0.0122371i
\(412\) 0 0
\(413\) 7.29415 + 6.95496i 0.358922 + 0.342231i
\(414\) 0 0
\(415\) −0.485492 10.1917i −0.0238319 0.500293i
\(416\) 0 0
\(417\) −3.01077 3.47461i −0.147438 0.170152i
\(418\) 0 0
\(419\) 10.4367 + 8.20751i 0.509866 + 0.400963i 0.839679 0.543083i \(-0.182743\pi\)
−0.329813 + 0.944046i \(0.606986\pi\)
\(420\) 0 0
\(421\) −8.83433 + 1.70268i −0.430559 + 0.0829835i −0.399926 0.916547i \(-0.630964\pi\)
−0.0306326 + 0.999531i \(0.509752\pi\)
\(422\) 0 0
\(423\) 0.611208 + 2.51943i 0.0297180 + 0.122499i
\(424\) 0 0
\(425\) 4.06696 + 0.388348i 0.197277 + 0.0188376i
\(426\) 0 0
\(427\) 9.84075 6.32426i 0.476227 0.306053i
\(428\) 0 0
\(429\) −2.11317 0.620482i −0.102025 0.0299572i
\(430\) 0 0
\(431\) 12.7657 + 22.1109i 0.614904 + 1.06505i 0.990401 + 0.138222i \(0.0441387\pi\)
−0.375497 + 0.926824i \(0.622528\pi\)
\(432\) 0 0
\(433\) 0.966549 20.2904i 0.0464494 0.975093i −0.848575 0.529075i \(-0.822539\pi\)
0.895024 0.446017i \(-0.147158\pi\)
\(434\) 0 0
\(435\) −2.25637 + 6.51934i −0.108184 + 0.312578i
\(436\) 0 0
\(437\) 7.58128 0.723924i 0.362662 0.0346300i
\(438\) 0 0
\(439\) −17.5605 + 30.4157i −0.838117 + 1.45166i 0.0533496 + 0.998576i \(0.483010\pi\)
−0.891467 + 0.453086i \(0.850323\pi\)
\(440\) 0 0
\(441\) 4.26636 2.19946i 0.203160 0.104736i
\(442\) 0 0
\(443\) −3.63720 + 1.45611i −0.172808 + 0.0691821i −0.456453 0.889747i \(-0.650881\pi\)
0.283645 + 0.958929i \(0.408456\pi\)
\(444\) 0 0
\(445\) 0.0958269 0.666491i 0.00454263 0.0315947i
\(446\) 0 0
\(447\) −6.57843 + 14.4048i −0.311149 + 0.681322i
\(448\) 0 0
\(449\) 5.66581 7.95651i 0.267386 0.375491i −0.658952 0.752185i \(-0.729000\pi\)
0.926338 + 0.376694i \(0.122939\pi\)
\(450\) 0 0
\(451\) 13.4794 + 5.39634i 0.634721 + 0.254104i
\(452\) 0 0
\(453\) 3.14345 12.9575i 0.147692 0.608794i
\(454\) 0 0
\(455\) −0.796500 5.53978i −0.0373405 0.259709i
\(456\) 0 0
\(457\) 19.4058 + 10.0044i 0.907767 + 0.467986i 0.847861 0.530218i \(-0.177890\pi\)
0.0599052 + 0.998204i \(0.480920\pi\)
\(458\) 0 0
\(459\) −3.37873 4.74476i −0.157705 0.221466i
\(460\) 0 0
\(461\) 1.67364 + 1.07558i 0.0779493 + 0.0500950i 0.579035 0.815303i \(-0.303429\pi\)
−0.501086 + 0.865398i \(0.667066\pi\)
\(462\) 0 0
\(463\) 29.2039 27.8459i 1.35722 1.29411i 0.438758 0.898605i \(-0.355418\pi\)
0.918464 0.395504i \(-0.129430\pi\)
\(464\) 0 0
\(465\) −3.64901 + 2.86962i −0.169219 + 0.133075i
\(466\) 0 0
\(467\) −5.41635 15.6495i −0.250639 0.724173i −0.998200 0.0599799i \(-0.980896\pi\)
0.747561 0.664193i \(-0.231225\pi\)
\(468\) 0 0
\(469\) −10.2339 + 6.53222i −0.472560 + 0.301630i
\(470\) 0 0
\(471\) −3.61096 10.4332i −0.166384 0.480736i
\(472\) 0 0
\(473\) 8.77127 6.89780i 0.403304 0.317161i
\(474\) 0 0
\(475\) 1.00631 0.959516i 0.0461727 0.0440256i
\(476\) 0 0
\(477\) 5.55909 + 3.57261i 0.254533 + 0.163579i
\(478\) 0 0
\(479\) 9.58749 + 13.4637i 0.438064 + 0.615174i 0.973302 0.229527i \(-0.0737178\pi\)
−0.535239 + 0.844701i \(0.679778\pi\)
\(480\) 0 0
\(481\) −11.0247 5.68364i −0.502684 0.259152i
\(482\) 0 0
\(483\) 0.810934 + 5.64017i 0.0368988 + 0.256637i
\(484\) 0 0
\(485\) 0.546130 2.25118i 0.0247985 0.102221i
\(486\) 0 0
\(487\) −29.1363 11.6644i −1.32029 0.528566i −0.398828 0.917026i \(-0.630583\pi\)
−0.921466 + 0.388460i \(0.873007\pi\)
\(488\) 0 0
\(489\) 3.22576 4.52994i 0.145874 0.204851i
\(490\) 0 0
\(491\) −16.2252 + 35.5283i −0.732234 + 1.60337i 0.0636877 + 0.997970i \(0.479714\pi\)
−0.795922 + 0.605399i \(0.793013\pi\)
\(492\) 0 0
\(493\) 2.75829 19.1843i 0.124227 0.864019i
\(494\) 0 0
\(495\) −2.32928 + 0.932503i −0.104693 + 0.0419129i
\(496\) 0 0
\(497\) −15.2458 + 7.85974i −0.683866 + 0.352557i
\(498\) 0 0
\(499\) −6.32237 + 10.9507i −0.283028 + 0.490219i −0.972129 0.234446i \(-0.924672\pi\)
0.689101 + 0.724665i \(0.258006\pi\)
\(500\) 0 0
\(501\) −1.10236 + 0.105263i −0.0492499 + 0.00470280i
\(502\) 0 0
\(503\) 10.3218 29.8228i 0.460225 1.32973i −0.441436 0.897293i \(-0.645531\pi\)
0.901662 0.432442i \(-0.142348\pi\)
\(504\) 0 0
\(505\) −0.247436 + 5.19432i −0.0110107 + 0.231144i
\(506\) 0 0
\(507\) −4.84392 8.38992i −0.215126 0.372610i
\(508\) 0 0
\(509\) 26.5837 + 7.80567i 1.17830 + 0.345980i 0.811519 0.584326i \(-0.198641\pi\)
0.366782 + 0.930307i \(0.380459\pi\)
\(510\) 0 0
\(511\) 14.9887 9.63265i 0.663061 0.426123i
\(512\) 0 0
\(513\) −1.97344 0.188441i −0.0871294 0.00831985i
\(514\) 0 0
\(515\) 4.08500 + 16.8386i 0.180006 + 0.741997i
\(516\) 0 0
\(517\) −3.08062 + 0.593741i −0.135486 + 0.0261127i
\(518\) 0 0
\(519\) 4.99797 + 3.93044i 0.219386 + 0.172527i
\(520\) 0 0
\(521\) 25.9289 + 29.9235i 1.13597 + 1.31097i 0.944140 + 0.329545i \(0.106895\pi\)
0.191826 + 0.981429i \(0.438559\pi\)
\(522\) 0 0
\(523\) −0.435015 9.13209i −0.0190219 0.399319i −0.988220 0.153038i \(-0.951094\pi\)
0.969198 0.246281i \(-0.0792086\pi\)
\(524\) 0 0
\(525\) 0.752929 + 0.717917i 0.0328605 + 0.0313325i
\(526\) 0 0
\(527\) 8.54065 9.85644i 0.372037 0.429353i
\(528\) 0 0
\(529\) −8.09273 1.55975i −0.351858 0.0678150i
\(530\) 0 0
\(531\) −6.51960 + 1.91433i −0.282926 + 0.0830747i
\(532\) 0 0
\(533\) −9.07091 19.8625i −0.392905 0.860342i
\(534\) 0 0
\(535\) 3.08308 0.133293
\(536\) 0 0
\(537\) 3.47143 0.149803
\(538\) 0 0
\(539\) 2.41299 + 5.28372i 0.103935 + 0.227586i
\(540\) 0 0
\(541\) −36.6173 + 10.7518i −1.57430 + 0.462257i −0.948250 0.317524i \(-0.897149\pi\)
−0.626052 + 0.779781i \(0.715330\pi\)
\(542\) 0 0
\(543\) 5.03043 + 0.969536i 0.215876 + 0.0416068i
\(544\) 0 0
\(545\) −7.51967 + 8.67817i −0.322107 + 0.371732i
\(546\) 0 0
\(547\) −4.44643 4.23966i −0.190116 0.181275i 0.589043 0.808102i \(-0.299505\pi\)
−0.779159 + 0.626827i \(0.784353\pi\)
\(548\) 0 0
\(549\) 0.375255 + 7.87757i 0.0160155 + 0.336207i
\(550\) 0 0
\(551\) −4.31967 4.98517i −0.184024 0.212375i
\(552\) 0 0
\(553\) −4.75935 3.74280i −0.202388 0.159160i
\(554\) 0 0
\(555\) −13.8751 + 2.67420i −0.588964 + 0.113514i
\(556\) 0 0
\(557\) 1.34425 + 5.54106i 0.0569575 + 0.234782i 0.993174 0.116641i \(-0.0372128\pi\)
−0.936217 + 0.351424i \(0.885698\pi\)
\(558\) 0 0
\(559\) −16.7054 1.59518i −0.706564 0.0674687i
\(560\) 0 0
\(561\) 5.92989 3.81091i 0.250360 0.160897i
\(562\) 0 0
\(563\) −6.26471 1.83948i −0.264026 0.0775250i 0.147040 0.989131i \(-0.453025\pi\)
−0.411066 + 0.911606i \(0.634843\pi\)
\(564\) 0 0
\(565\) 14.6638 + 25.3985i 0.616913 + 1.06852i
\(566\) 0 0
\(567\) 0.0705762 1.48158i 0.00296392 0.0622204i
\(568\) 0 0
\(569\) −8.23913 + 23.8054i −0.345402 + 0.997975i 0.629819 + 0.776742i \(0.283129\pi\)
−0.975221 + 0.221233i \(0.928992\pi\)
\(570\) 0 0
\(571\) −10.7299 + 1.02458i −0.449032 + 0.0428773i −0.317123 0.948385i \(-0.602717\pi\)
−0.131909 + 0.991262i \(0.542111\pi\)
\(572\) 0 0
\(573\) 4.17836 7.23713i 0.174553 0.302336i
\(574\) 0 0
\(575\) 2.39496 1.23469i 0.0998769 0.0514901i
\(576\) 0 0
\(577\) −27.6391 + 11.0650i −1.15063 + 0.460643i −0.867009 0.498293i \(-0.833960\pi\)
−0.283622 + 0.958936i \(0.591536\pi\)
\(578\) 0 0
\(579\) 0.428518 2.98041i 0.0178086 0.123862i
\(580\) 0 0
\(581\) −3.03232 + 6.63985i −0.125802 + 0.275468i
\(582\) 0 0
\(583\) −4.63858 + 6.51397i −0.192110 + 0.269781i
\(584\) 0 0
\(585\) 3.50299 + 1.40239i 0.144831 + 0.0579816i
\(586\) 0 0
\(587\) −1.65795 + 6.83416i −0.0684309 + 0.282076i −0.995738 0.0922249i \(-0.970602\pi\)
0.927307 + 0.374301i \(0.122117\pi\)
\(588\) 0 0
\(589\) −0.631690 4.39350i −0.0260283 0.181031i
\(590\) 0 0
\(591\) 6.96570 + 3.59107i 0.286531 + 0.147717i
\(592\) 0 0
\(593\) −15.4682 21.7220i −0.635202 0.892017i 0.364022 0.931390i \(-0.381403\pi\)
−0.999225 + 0.0393733i \(0.987464\pi\)
\(594\) 0 0
\(595\) 15.0692 + 9.68438i 0.617777 + 0.397021i
\(596\) 0 0
\(597\) −1.63822 + 1.56204i −0.0670478 + 0.0639299i
\(598\) 0 0
\(599\) 5.55558 4.36895i 0.226995 0.178511i −0.498184 0.867071i \(-0.666000\pi\)
0.725179 + 0.688561i \(0.241757\pi\)
\(600\) 0 0
\(601\) 5.88377 + 17.0000i 0.240004 + 0.693446i 0.999098 + 0.0424652i \(0.0135212\pi\)
−0.759094 + 0.650981i \(0.774358\pi\)
\(602\) 0 0
\(603\) −0.364127 8.17725i −0.0148284 0.333003i
\(604\) 0 0
\(605\) 6.46618 + 18.6828i 0.262888 + 0.759564i
\(606\) 0 0
\(607\) 29.5713 23.2552i 1.20026 0.943898i 0.200902 0.979611i \(-0.435613\pi\)
0.999362 + 0.0357135i \(0.0113704\pi\)
\(608\) 0 0
\(609\) 3.57193 3.40583i 0.144742 0.138011i
\(610\) 0 0
\(611\) 3.96920 + 2.55085i 0.160577 + 0.103196i
\(612\) 0 0
\(613\) 25.8155 + 36.2527i 1.04268 + 1.46423i 0.878464 + 0.477809i \(0.158569\pi\)
0.164213 + 0.986425i \(0.447492\pi\)
\(614\) 0 0
\(615\) −22.1105 11.3988i −0.891583 0.459643i
\(616\) 0 0
\(617\) 6.29218 + 43.7631i 0.253314 + 1.76184i 0.578022 + 0.816021i \(0.303825\pi\)
−0.324709 + 0.945814i \(0.605266\pi\)
\(618\) 0 0
\(619\) 9.55701 39.3945i 0.384129 1.58340i −0.371522 0.928424i \(-0.621164\pi\)
0.755650 0.654975i \(-0.227321\pi\)
\(620\) 0 0
\(621\) −3.56647 1.42780i −0.143118 0.0572956i
\(622\) 0 0
\(623\) −0.279422 + 0.392393i −0.0111948 + 0.0157209i
\(624\) 0 0
\(625\) −8.72418 + 19.1033i −0.348967 + 0.764131i
\(626\) 0 0
\(627\) 0.341415 2.37459i 0.0136348 0.0948320i
\(628\) 0 0
\(629\) 36.8548 14.7544i 1.46950 0.588298i
\(630\) 0 0
\(631\) −27.1838 + 14.0142i −1.08217 + 0.557897i −0.904622 0.426215i \(-0.859847\pi\)
−0.177547 + 0.984112i \(0.556816\pi\)
\(632\) 0 0
\(633\) 6.23562 10.8004i 0.247844 0.429278i
\(634\) 0 0
\(635\) 41.9744 4.00807i 1.66570 0.159055i
\(636\) 0 0
\(637\) 2.85713 8.25513i 0.113204 0.327080i
\(638\) 0 0
\(639\) 0.550241 11.5510i 0.0217672 0.456950i
\(640\) 0 0
\(641\) −16.3079 28.2461i −0.644123 1.11565i −0.984503 0.175366i \(-0.943889\pi\)
0.340380 0.940288i \(-0.389444\pi\)
\(642\) 0 0
\(643\) 29.2917 + 8.60083i 1.15515 + 0.339184i 0.802548 0.596588i \(-0.203477\pi\)
0.352606 + 0.935772i \(0.385296\pi\)
\(644\) 0 0
\(645\) −16.0829 + 10.3359i −0.633264 + 0.406974i
\(646\) 0 0
\(647\) 5.51082 + 0.526219i 0.216653 + 0.0206878i 0.202818 0.979216i \(-0.434990\pi\)
0.0138347 + 0.999904i \(0.495596\pi\)
\(648\) 0 0
\(649\) −1.93858 7.99095i −0.0760961 0.313672i
\(650\) 0 0
\(651\) 3.26104 0.628514i 0.127810 0.0246334i
\(652\) 0 0
\(653\) −30.2122 23.7591i −1.18229 0.929766i −0.183711 0.982980i \(-0.558811\pi\)
−0.998583 + 0.0532138i \(0.983054\pi\)
\(654\) 0 0
\(655\) −12.0960 13.9595i −0.472629 0.545443i
\(656\) 0 0
\(657\) 0.571561 + 11.9985i 0.0222987 + 0.468107i
\(658\) 0 0
\(659\) 18.3826 + 17.5278i 0.716086 + 0.682787i 0.957759 0.287571i \(-0.0928477\pi\)
−0.241673 + 0.970358i \(0.577696\pi\)
\(660\) 0 0
\(661\) 21.3585 24.6490i 0.830750 0.958736i −0.168888 0.985635i \(-0.554018\pi\)
0.999638 + 0.0268988i \(0.00856317\pi\)
\(662\) 0 0
\(663\) −10.4092 2.00621i −0.404260 0.0779147i
\(664\) 0 0
\(665\) 5.84948 1.71756i 0.226833 0.0666042i
\(666\) 0 0
\(667\) −5.31017 11.6276i −0.205610 0.450224i
\(668\) 0 0
\(669\) −17.4597 −0.675032
\(670\) 0 0
\(671\) −9.54381 −0.368435
\(672\) 0 0
\(673\) −18.7354 41.0248i −0.722196 1.58139i −0.810801 0.585322i \(-0.800968\pi\)
0.0886051 0.996067i \(-0.471759\pi\)
\(674\) 0 0
\(675\) −0.672977 + 0.197604i −0.0259029 + 0.00760578i
\(676\) 0 0
\(677\) 18.5643 + 3.57797i 0.713483 + 0.137513i 0.533061 0.846077i \(-0.321041\pi\)
0.180422 + 0.983589i \(0.442254\pi\)
\(678\) 0 0
\(679\) −1.08525 + 1.25244i −0.0416480 + 0.0480644i
\(680\) 0 0
\(681\) −12.2667 11.6963i −0.470061 0.448203i
\(682\) 0 0
\(683\) −0.338595 7.10799i −0.0129560 0.271980i −0.996045 0.0888509i \(-0.971681\pi\)
0.983089 0.183129i \(-0.0586225\pi\)
\(684\) 0 0
\(685\) −0.445692 0.514356i −0.0170290 0.0196525i
\(686\) 0 0
\(687\) −9.87667 7.76710i −0.376819 0.296333i
\(688\) 0 0
\(689\) 11.8090 2.27599i 0.449886 0.0867084i
\(690\) 0 0
\(691\) 0.121847 + 0.502261i 0.00463528 + 0.0191069i 0.974082 0.226194i \(-0.0726284\pi\)
−0.969447 + 0.245301i \(0.921113\pi\)
\(692\) 0 0
\(693\) 1.78683 + 0.170621i 0.0678760 + 0.00648137i
\(694\) 0 0
\(695\) −8.01898 + 5.15348i −0.304177 + 0.195483i
\(696\) 0 0
\(697\) 67.0561 + 19.6894i 2.53993 + 0.745790i
\(698\) 0 0
\(699\) 7.87845 + 13.6459i 0.297990 + 0.516134i
\(700\) 0 0
\(701\) 0.118521 2.48806i 0.00447647 0.0939727i −0.995523 0.0945156i \(-0.969870\pi\)
1.00000 0.000542904i \(0.000172812\pi\)
\(702\) 0 0
\(703\) 4.41900 12.7679i 0.166666 0.481549i
\(704\) 0 0
\(705\) 5.35074 0.510934i 0.201521 0.0192429i
\(706\) 0 0
\(707\) 1.86013 3.22184i 0.0699573 0.121170i
\(708\) 0 0
\(709\) −30.3153 + 15.6286i −1.13851 + 0.586945i −0.921174 0.389151i \(-0.872768\pi\)
−0.217340 + 0.976096i \(0.569738\pi\)
\(710\) 0 0
\(711\) 3.78966 1.51715i 0.142123 0.0568976i
\(712\) 0 0
\(713\) 1.22413 8.51403i 0.0458441 0.318853i
\(714\) 0 0
\(715\) −1.89687 + 4.15358i −0.0709391 + 0.155335i
\(716\) 0 0
\(717\) −6.65389 + 9.34409i −0.248494 + 0.348961i
\(718\) 0 0
\(719\) 14.4303 + 5.77702i 0.538159 + 0.215446i 0.624788 0.780794i \(-0.285185\pi\)
−0.0866292 + 0.996241i \(0.527610\pi\)
\(720\) 0 0
\(721\) 2.92243 12.0464i 0.108837 0.448632i
\(722\) 0 0
\(723\) 1.10412 + 7.67931i 0.0410626 + 0.285596i
\(724\) 0 0
\(725\) −2.07438 1.06941i −0.0770404 0.0397171i
\(726\) 0 0
\(727\) 15.6240 + 21.9408i 0.579461 + 0.813740i 0.995415 0.0956459i \(-0.0304916\pi\)
−0.415954 + 0.909386i \(0.636552\pi\)
\(728\) 0 0
\(729\) 0.841254 + 0.540641i 0.0311575 + 0.0200237i
\(730\) 0 0
\(731\) 38.8718 37.0642i 1.43773 1.37087i
\(732\) 0 0
\(733\) 2.46056 1.93501i 0.0908829 0.0714711i −0.571684 0.820474i \(-0.693710\pi\)
0.662567 + 0.749003i \(0.269467\pi\)
\(734\) 0 0
\(735\) −3.25491 9.40444i −0.120059 0.346888i
\(736\) 0 0
\(737\) 9.90541 + 0.0307075i 0.364871 + 0.00113113i
\(738\) 0 0
\(739\) 10.2594 + 29.6426i 0.377398 + 1.09042i 0.960562 + 0.278066i \(0.0896934\pi\)
−0.583164 + 0.812355i \(0.698185\pi\)
\(740\) 0 0
\(741\) −2.83597 + 2.23023i −0.104182 + 0.0819296i
\(742\) 0 0
\(743\) 25.8736 24.6704i 0.949211 0.905070i −0.0463755 0.998924i \(-0.514767\pi\)
0.995586 + 0.0938537i \(0.0299186\pi\)
\(744\) 0 0
\(745\) 27.6205 + 17.7506i 1.01194 + 0.650332i
\(746\) 0 0
\(747\) −2.85461 4.00874i −0.104445 0.146672i
\(748\) 0 0
\(749\) −1.96046 1.01069i −0.0716337 0.0369298i
\(750\) 0 0
\(751\) −6.87031 47.7841i −0.250701 1.74367i −0.594024 0.804448i \(-0.702461\pi\)
0.343322 0.939218i \(-0.388448\pi\)
\(752\) 0 0
\(753\) 3.43253 14.1491i 0.125088 0.515621i
\(754\) 0 0
\(755\) −25.6639 10.2743i −0.934003 0.373919i
\(756\) 0 0
\(757\) 24.1544 33.9200i 0.877905 1.23284i −0.0935487 0.995615i \(-0.529821\pi\)
0.971453 0.237230i \(-0.0762395\pi\)
\(758\) 0 0
\(759\) 1.93125 4.22884i 0.0700999 0.153497i
\(760\) 0 0
\(761\) −4.89234 + 34.0269i −0.177347 + 1.23348i 0.685523 + 0.728051i \(0.259573\pi\)
−0.862870 + 0.505425i \(0.831336\pi\)
\(762\) 0 0
\(763\) 7.62645 3.05317i 0.276096 0.110532i
\(764\) 0 0
\(765\) −10.7342 + 5.53384i −0.388094 + 0.200076i
\(766\) 0 0
\(767\) −6.18307 + 10.7094i −0.223258 + 0.386694i
\(768\) 0 0
\(769\) 13.2626 1.26643i 0.478262 0.0456685i 0.146858 0.989158i \(-0.453084\pi\)
0.331404 + 0.943489i \(0.392478\pi\)
\(770\) 0 0
\(771\) 5.75125 16.6172i 0.207126 0.598452i
\(772\) 0 0
\(773\) 2.22124 46.6295i 0.0798923 1.67715i −0.502761 0.864425i \(-0.667682\pi\)
0.582653 0.812721i \(-0.302014\pi\)
\(774\) 0 0
\(775\) −0.785214 1.36003i −0.0282057 0.0488538i
\(776\) 0 0
\(777\) 9.69950 + 2.84803i 0.347968 + 0.102173i