Properties

Label 804.2.y.b.73.6
Level 804
Weight 2
Character 804.73
Analytic conductor 6.420
Analytic rank 0
Dimension 120
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.y (of order \(33\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(6\) over \(\Q(\zeta_{33})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

Embedding invariants

Embedding label 73.6
Character \(\chi\) = 804.73
Dual form 804.2.y.b.793.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.415415 + 0.909632i) q^{3} +(3.42078 + 1.00443i) q^{5} +(-0.977853 + 0.188466i) q^{7} +(-0.654861 - 0.755750i) q^{9} +O(q^{10})\) \(q+(-0.415415 + 0.909632i) q^{3} +(3.42078 + 1.00443i) q^{5} +(-0.977853 + 0.188466i) q^{7} +(-0.654861 - 0.755750i) q^{9} +(-4.40572 + 4.20084i) q^{11} +(-0.140835 + 2.95649i) q^{13} +(-2.33471 + 2.69440i) q^{15} +(-0.551007 + 0.433317i) q^{17} +(1.63529 + 0.315176i) q^{19} +(0.234780 - 0.967778i) q^{21} +(-3.43676 + 0.328170i) q^{23} +(6.48659 + 4.16868i) q^{25} +(0.959493 - 0.281733i) q^{27} +(1.50438 - 2.60567i) q^{29} +(0.0616368 + 1.29392i) q^{31} +(-1.99102 - 5.75267i) q^{33} +(-3.53432 - 0.337487i) q^{35} +(0.278348 + 0.482112i) q^{37} +(-2.63081 - 1.35628i) q^{39} +(6.54034 + 2.61836i) q^{41} +(-0.813520 - 5.65815i) q^{43} +(-1.48104 - 3.24302i) q^{45} +(7.03506 + 9.87937i) q^{47} +(-5.57790 + 2.23305i) q^{49} +(-0.165262 - 0.681220i) q^{51} +(0.324604 - 2.25767i) q^{53} +(-19.2904 + 9.94491i) q^{55} +(-0.966018 + 1.35658i) q^{57} +(-2.23296 + 1.43503i) q^{59} +(-3.49530 - 3.33276i) q^{61} +(0.782790 + 0.615593i) q^{63} +(-3.45136 + 9.97204i) q^{65} +(7.01267 - 4.22167i) q^{67} +(1.12917 - 3.26251i) q^{69} +(-2.29320 - 1.80339i) q^{71} +(1.73724 + 1.65645i) q^{73} +(-6.48659 + 4.16868i) q^{75} +(3.51643 - 4.93813i) q^{77} +(-3.94110 + 2.03178i) q^{79} +(-0.142315 + 0.989821i) q^{81} +(3.45986 + 14.2617i) q^{83} +(-2.32011 + 0.928833i) q^{85} +(1.74526 + 2.45087i) q^{87} +(6.77689 + 14.8393i) q^{89} +(-0.419481 - 2.91755i) q^{91} +(-1.20259 - 0.481445i) q^{93} +(5.27739 + 2.72068i) q^{95} +(-0.358421 - 0.620803i) q^{97} +(6.05991 + 0.578652i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + O(q^{10}) \) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + 11q^{11} + 2q^{13} - 9q^{15} + 48q^{17} - 4q^{19} - q^{21} + 22q^{23} - 42q^{25} + 12q^{27} - q^{29} + 27q^{31} + 17q^{35} - 8q^{37} - 2q^{39} - 58q^{41} - 17q^{43} - 2q^{45} - 84q^{47} + 101q^{49} - 26q^{51} + 28q^{53} - 9q^{55} + 26q^{57} + 34q^{59} + 16q^{61} + 12q^{63} + 144q^{65} + 23q^{67} + 11q^{69} + 173q^{71} - 2q^{73} + 42q^{75} + 128q^{77} + 31q^{79} - 12q^{81} + 47q^{83} - 75q^{85} - 10q^{87} - 67q^{89} + 16q^{91} + 6q^{93} - 79q^{95} + 10q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(e\left(\frac{20}{33}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.415415 + 0.909632i −0.239840 + 0.525176i
\(4\) 0 0
\(5\) 3.42078 + 1.00443i 1.52982 + 0.449196i 0.934995 0.354660i \(-0.115403\pi\)
0.594824 + 0.803856i \(0.297222\pi\)
\(6\) 0 0
\(7\) −0.977853 + 0.188466i −0.369594 + 0.0712333i −0.370666 0.928766i \(-0.620871\pi\)
0.00107274 + 0.999999i \(0.499659\pi\)
\(8\) 0 0
\(9\) −0.654861 0.755750i −0.218287 0.251917i
\(10\) 0 0
\(11\) −4.40572 + 4.20084i −1.32837 + 1.26660i −0.390071 + 0.920785i \(0.627550\pi\)
−0.938302 + 0.345816i \(0.887602\pi\)
\(12\) 0 0
\(13\) −0.140835 + 2.95649i −0.0390606 + 0.819982i 0.891317 + 0.453380i \(0.149782\pi\)
−0.930378 + 0.366602i \(0.880521\pi\)
\(14\) 0 0
\(15\) −2.33471 + 2.69440i −0.602819 + 0.695690i
\(16\) 0 0
\(17\) −0.551007 + 0.433317i −0.133639 + 0.105095i −0.682741 0.730661i \(-0.739212\pi\)
0.549102 + 0.835755i \(0.314970\pi\)
\(18\) 0 0
\(19\) 1.63529 + 0.315176i 0.375161 + 0.0723063i 0.373346 0.927692i \(-0.378210\pi\)
0.00181451 + 0.999998i \(0.499422\pi\)
\(20\) 0 0
\(21\) 0.234780 0.967778i 0.0512333 0.211186i
\(22\) 0 0
\(23\) −3.43676 + 0.328170i −0.716613 + 0.0684282i −0.446992 0.894538i \(-0.647505\pi\)
−0.269621 + 0.962966i \(0.586899\pi\)
\(24\) 0 0
\(25\) 6.48659 + 4.16868i 1.29732 + 0.833735i
\(26\) 0 0
\(27\) 0.959493 0.281733i 0.184655 0.0542195i
\(28\) 0 0
\(29\) 1.50438 2.60567i 0.279357 0.483861i −0.691868 0.722024i \(-0.743212\pi\)
0.971225 + 0.238163i \(0.0765453\pi\)
\(30\) 0 0
\(31\) 0.0616368 + 1.29392i 0.0110703 + 0.232394i 0.997621 + 0.0689382i \(0.0219611\pi\)
−0.986551 + 0.163456i \(0.947736\pi\)
\(32\) 0 0
\(33\) −1.99102 5.75267i −0.346592 1.00141i
\(34\) 0 0
\(35\) −3.53432 0.337487i −0.597409 0.0570457i
\(36\) 0 0
\(37\) 0.278348 + 0.482112i 0.0457601 + 0.0792588i 0.887998 0.459847i \(-0.152096\pi\)
−0.842238 + 0.539106i \(0.818762\pi\)
\(38\) 0 0
\(39\) −2.63081 1.35628i −0.421267 0.217178i
\(40\) 0 0
\(41\) 6.54034 + 2.61836i 1.02143 + 0.408919i 0.821085 0.570806i \(-0.193369\pi\)
0.200345 + 0.979725i \(0.435794\pi\)
\(42\) 0 0
\(43\) −0.813520 5.65815i −0.124061 0.862861i −0.952881 0.303345i \(-0.901896\pi\)
0.828820 0.559515i \(-0.189013\pi\)
\(44\) 0 0
\(45\) −1.48104 3.24302i −0.220780 0.483440i
\(46\) 0 0
\(47\) 7.03506 + 9.87937i 1.02617 + 1.44105i 0.893052 + 0.449953i \(0.148559\pi\)
0.133118 + 0.991100i \(0.457501\pi\)
\(48\) 0 0
\(49\) −5.57790 + 2.23305i −0.796843 + 0.319008i
\(50\) 0 0
\(51\) −0.165262 0.681220i −0.0231413 0.0953899i
\(52\) 0 0
\(53\) 0.324604 2.25767i 0.0445878 0.310115i −0.955307 0.295615i \(-0.904475\pi\)
0.999895 0.0144996i \(-0.00461554\pi\)
\(54\) 0 0
\(55\) −19.2904 + 9.94491i −2.60112 + 1.34097i
\(56\) 0 0
\(57\) −0.966018 + 1.35658i −0.127952 + 0.179684i
\(58\) 0 0
\(59\) −2.23296 + 1.43503i −0.290706 + 0.186826i −0.677863 0.735188i \(-0.737094\pi\)
0.387157 + 0.922014i \(0.373457\pi\)
\(60\) 0 0
\(61\) −3.49530 3.33276i −0.447527 0.426716i 0.432504 0.901632i \(-0.357630\pi\)
−0.880031 + 0.474916i \(0.842479\pi\)
\(62\) 0 0
\(63\) 0.782790 + 0.615593i 0.0986223 + 0.0775574i
\(64\) 0 0
\(65\) −3.45136 + 9.97204i −0.428088 + 1.23688i
\(66\) 0 0
\(67\) 7.01267 4.22167i 0.856734 0.515759i
\(68\) 0 0
\(69\) 1.12917 3.26251i 0.135936 0.392760i
\(70\) 0 0
\(71\) −2.29320 1.80339i −0.272153 0.214023i 0.472750 0.881197i \(-0.343262\pi\)
−0.744902 + 0.667174i \(0.767504\pi\)
\(72\) 0 0
\(73\) 1.73724 + 1.65645i 0.203328 + 0.193873i 0.784901 0.619621i \(-0.212714\pi\)
−0.581573 + 0.813495i \(0.697562\pi\)
\(74\) 0 0
\(75\) −6.48659 + 4.16868i −0.749007 + 0.481357i
\(76\) 0 0
\(77\) 3.51643 4.93813i 0.400734 0.562752i
\(78\) 0 0
\(79\) −3.94110 + 2.03178i −0.443408 + 0.228593i −0.665447 0.746445i \(-0.731759\pi\)
0.222039 + 0.975038i \(0.428729\pi\)
\(80\) 0 0
\(81\) −0.142315 + 0.989821i −0.0158128 + 0.109980i
\(82\) 0 0
\(83\) 3.45986 + 14.2617i 0.379769 + 1.56543i 0.765884 + 0.642979i \(0.222302\pi\)
−0.386115 + 0.922451i \(0.626183\pi\)
\(84\) 0 0
\(85\) −2.32011 + 0.928833i −0.251651 + 0.100746i
\(86\) 0 0
\(87\) 1.74526 + 2.45087i 0.187111 + 0.262761i
\(88\) 0 0
\(89\) 6.77689 + 14.8393i 0.718349 + 1.57296i 0.816204 + 0.577764i \(0.196075\pi\)
−0.0978548 + 0.995201i \(0.531198\pi\)
\(90\) 0 0
\(91\) −0.419481 2.91755i −0.0439735 0.305843i
\(92\) 0 0
\(93\) −1.20259 0.481445i −0.124703 0.0499235i
\(94\) 0 0
\(95\) 5.27739 + 2.72068i 0.541449 + 0.279136i
\(96\) 0 0
\(97\) −0.358421 0.620803i −0.0363921 0.0630330i 0.847256 0.531185i \(-0.178253\pi\)
−0.883648 + 0.468152i \(0.844920\pi\)
\(98\) 0 0
\(99\) 6.05991 + 0.578652i 0.609044 + 0.0581567i
\(100\) 0 0
\(101\) 1.52188 + 4.39718i 0.151433 + 0.437536i 0.995046 0.0994151i \(-0.0316972\pi\)
−0.843613 + 0.536951i \(0.819576\pi\)
\(102\) 0 0
\(103\) −0.819338 17.2000i −0.0807318 1.69477i −0.569209 0.822193i \(-0.692751\pi\)
0.488477 0.872577i \(-0.337553\pi\)
\(104\) 0 0
\(105\) 1.77520 3.07473i 0.173242 0.300063i
\(106\) 0 0
\(107\) 16.9460 4.97580i 1.63823 0.481029i 0.672399 0.740189i \(-0.265264\pi\)
0.965834 + 0.259160i \(0.0834459\pi\)
\(108\) 0 0
\(109\) −0.0961584 0.0617972i −0.00921030 0.00591910i 0.536028 0.844200i \(-0.319924\pi\)
−0.545238 + 0.838281i \(0.683561\pi\)
\(110\) 0 0
\(111\) −0.554175 + 0.0529173i −0.0525999 + 0.00502269i
\(112\) 0 0
\(113\) 1.99456 8.22171i 0.187633 0.773433i −0.797737 0.603005i \(-0.793970\pi\)
0.985370 0.170428i \(-0.0545150\pi\)
\(114\) 0 0
\(115\) −12.0860 2.32939i −1.12703 0.217216i
\(116\) 0 0
\(117\) 2.32659 1.82965i 0.215094 0.169151i
\(118\) 0 0
\(119\) 0.457139 0.527566i 0.0419058 0.0483619i
\(120\) 0 0
\(121\) 1.23986 26.0279i 0.112715 2.36617i
\(122\) 0 0
\(123\) −5.09870 + 4.86160i −0.459734 + 0.438356i
\(124\) 0 0
\(125\) 6.32851 + 7.30349i 0.566039 + 0.653244i
\(126\) 0 0
\(127\) −9.74210 + 1.87764i −0.864471 + 0.166613i −0.602165 0.798372i \(-0.705695\pi\)
−0.262306 + 0.964985i \(0.584483\pi\)
\(128\) 0 0
\(129\) 5.48479 + 1.61048i 0.482909 + 0.141795i
\(130\) 0 0
\(131\) 7.64449 16.7391i 0.667903 1.46250i −0.207068 0.978327i \(-0.566392\pi\)
0.874971 0.484176i \(-0.160881\pi\)
\(132\) 0 0
\(133\) −1.65847 −0.143808
\(134\) 0 0
\(135\) 3.56520 0.306843
\(136\) 0 0
\(137\) −3.99872 + 8.75597i −0.341633 + 0.748073i −0.999989 0.00463413i \(-0.998525\pi\)
0.658356 + 0.752707i \(0.271252\pi\)
\(138\) 0 0
\(139\) −0.320422 0.0940843i −0.0271778 0.00798013i 0.268115 0.963387i \(-0.413599\pi\)
−0.295293 + 0.955407i \(0.595417\pi\)
\(140\) 0 0
\(141\) −11.9091 + 2.29528i −1.00292 + 0.193298i
\(142\) 0 0
\(143\) −11.7993 13.6171i −0.986704 1.13872i
\(144\) 0 0
\(145\) 7.76339 7.40237i 0.644714 0.614734i
\(146\) 0 0
\(147\) 0.285886 6.00148i 0.0235795 0.494994i
\(148\) 0 0
\(149\) 12.8007 14.7728i 1.04867 1.21023i 0.0715786 0.997435i \(-0.477196\pi\)
0.977096 0.212800i \(-0.0682582\pi\)
\(150\) 0 0
\(151\) 9.91058 7.79377i 0.806512 0.634248i −0.127360 0.991857i \(-0.540650\pi\)
0.933871 + 0.357609i \(0.116408\pi\)
\(152\) 0 0
\(153\) 0.688312 + 0.132661i 0.0556467 + 0.0107250i
\(154\) 0 0
\(155\) −1.08880 + 4.48811i −0.0874549 + 0.360494i
\(156\) 0 0
\(157\) −4.45408 + 0.425313i −0.355474 + 0.0339437i −0.271266 0.962504i \(-0.587442\pi\)
−0.0842086 + 0.996448i \(0.526836\pi\)
\(158\) 0 0
\(159\) 1.91880 + 1.23314i 0.152171 + 0.0977944i
\(160\) 0 0
\(161\) 3.29879 0.968613i 0.259981 0.0763374i
\(162\) 0 0
\(163\) 6.20504 10.7474i 0.486016 0.841805i −0.513855 0.857877i \(-0.671783\pi\)
0.999871 + 0.0160726i \(0.00511629\pi\)
\(164\) 0 0
\(165\) −1.03267 21.6785i −0.0803935 1.68767i
\(166\) 0 0
\(167\) 7.03400 + 20.3234i 0.544307 + 1.57267i 0.796274 + 0.604937i \(0.206802\pi\)
−0.251966 + 0.967736i \(0.581077\pi\)
\(168\) 0 0
\(169\) 4.22015 + 0.402975i 0.324627 + 0.0309981i
\(170\) 0 0
\(171\) −0.832692 1.44226i −0.0636776 0.110293i
\(172\) 0 0
\(173\) 12.1009 + 6.23844i 0.920013 + 0.474300i 0.852093 0.523391i \(-0.175333\pi\)
0.0679207 + 0.997691i \(0.478364\pi\)
\(174\) 0 0
\(175\) −7.12858 2.85385i −0.538870 0.215731i
\(176\) 0 0
\(177\) −0.377749 2.62730i −0.0283934 0.197480i
\(178\) 0 0
\(179\) −8.91766 19.5270i −0.666537 1.45951i −0.876303 0.481761i \(-0.839997\pi\)
0.209765 0.977752i \(-0.432730\pi\)
\(180\) 0 0
\(181\) −0.337106 0.473399i −0.0250569 0.0351875i 0.801857 0.597515i \(-0.203845\pi\)
−0.826914 + 0.562328i \(0.809906\pi\)
\(182\) 0 0
\(183\) 4.48358 1.79496i 0.331436 0.132687i
\(184\) 0 0
\(185\) 0.467918 + 1.92878i 0.0344020 + 0.141807i
\(186\) 0 0
\(187\) 0.607286 4.22376i 0.0444091 0.308872i
\(188\) 0 0
\(189\) −0.885146 + 0.456324i −0.0643849 + 0.0331927i
\(190\) 0 0
\(191\) 0.413610 0.580835i 0.0299278 0.0420277i −0.799341 0.600878i \(-0.794818\pi\)
0.829269 + 0.558850i \(0.188757\pi\)
\(192\) 0 0
\(193\) 19.3684 12.4473i 1.39417 0.895979i 0.394434 0.918924i \(-0.370941\pi\)
0.999737 + 0.0229451i \(0.00730428\pi\)
\(194\) 0 0
\(195\) −7.63714 7.28200i −0.546907 0.521475i
\(196\) 0 0
\(197\) −15.0701 11.8512i −1.07370 0.844366i −0.0853159 0.996354i \(-0.527190\pi\)
−0.988382 + 0.151988i \(0.951432\pi\)
\(198\) 0 0
\(199\) −1.46068 + 4.22036i −0.103545 + 0.299174i −0.984859 0.173358i \(-0.944538\pi\)
0.881314 + 0.472531i \(0.156660\pi\)
\(200\) 0 0
\(201\) 0.926998 + 8.13269i 0.0653854 + 0.573636i
\(202\) 0 0
\(203\) −0.979987 + 2.83149i −0.0687816 + 0.198731i
\(204\) 0 0
\(205\) 19.7431 + 15.5262i 1.37892 + 1.08439i
\(206\) 0 0
\(207\) 2.49861 + 2.38242i 0.173665 + 0.165590i
\(208\) 0 0
\(209\) −8.52862 + 5.48101i −0.589937 + 0.379129i
\(210\) 0 0
\(211\) −13.3928 + 18.8076i −0.922000 + 1.29477i 0.0333967 + 0.999442i \(0.489368\pi\)
−0.955397 + 0.295326i \(0.904572\pi\)
\(212\) 0 0
\(213\) 2.59305 1.33681i 0.177673 0.0915968i
\(214\) 0 0
\(215\) 2.90036 20.1724i 0.197803 1.37575i
\(216\) 0 0
\(217\) −0.304130 1.25364i −0.0206457 0.0851028i
\(218\) 0 0
\(219\) −2.22844 + 0.892132i −0.150584 + 0.0602847i
\(220\) 0 0
\(221\) −1.20350 1.69007i −0.0809558 0.113687i
\(222\) 0 0
\(223\) 8.17921 + 17.9100i 0.547720 + 1.19934i 0.957838 + 0.287308i \(0.0927602\pi\)
−0.410118 + 0.912032i \(0.634512\pi\)
\(224\) 0 0
\(225\) −1.09734 7.63214i −0.0731557 0.508809i
\(226\) 0 0
\(227\) 8.38429 + 3.35656i 0.556485 + 0.222783i 0.632820 0.774299i \(-0.281897\pi\)
−0.0763346 + 0.997082i \(0.524322\pi\)
\(228\) 0 0
\(229\) −12.7300 6.56279i −0.841224 0.433681i −0.0169392 0.999857i \(-0.505392\pi\)
−0.824285 + 0.566175i \(0.808422\pi\)
\(230\) 0 0
\(231\) 3.03110 + 5.25003i 0.199432 + 0.345426i
\(232\) 0 0
\(233\) −0.259237 0.0247542i −0.0169832 0.00162170i 0.0865610 0.996247i \(-0.472412\pi\)
−0.103544 + 0.994625i \(0.533018\pi\)
\(234\) 0 0
\(235\) 14.1423 + 40.8614i 0.922539 + 2.66550i
\(236\) 0 0
\(237\) −0.210978 4.42898i −0.0137045 0.287693i
\(238\) 0 0
\(239\) 12.7373 22.0617i 0.823909 1.42705i −0.0788405 0.996887i \(-0.525122\pi\)
0.902750 0.430166i \(-0.141545\pi\)
\(240\) 0 0
\(241\) −8.21683 + 2.41268i −0.529293 + 0.155414i −0.535450 0.844567i \(-0.679858\pi\)
0.00615776 + 0.999981i \(0.498040\pi\)
\(242\) 0 0
\(243\) −0.841254 0.540641i −0.0539664 0.0346821i
\(244\) 0 0
\(245\) −21.3237 + 2.03617i −1.36232 + 0.130086i
\(246\) 0 0
\(247\) −1.16212 + 4.79032i −0.0739439 + 0.304801i
\(248\) 0 0
\(249\) −14.4102 2.77734i −0.913210 0.176007i
\(250\) 0 0
\(251\) −10.5376 + 8.28684i −0.665126 + 0.523061i −0.892672 0.450707i \(-0.851172\pi\)
0.227546 + 0.973767i \(0.426930\pi\)
\(252\) 0 0
\(253\) 13.7628 15.8831i 0.865258 0.998561i
\(254\) 0 0
\(255\) 0.118913 2.49630i 0.00744664 0.156324i
\(256\) 0 0
\(257\) −6.73956 + 6.42616i −0.420402 + 0.400853i −0.870533 0.492110i \(-0.836226\pi\)
0.450131 + 0.892963i \(0.351377\pi\)
\(258\) 0 0
\(259\) −0.363045 0.418976i −0.0225585 0.0260339i
\(260\) 0 0
\(261\) −2.95440 + 0.569413i −0.182873 + 0.0352458i
\(262\) 0 0
\(263\) 9.36499 + 2.74981i 0.577470 + 0.169560i 0.557409 0.830238i \(-0.311796\pi\)
0.0200613 + 0.999799i \(0.493614\pi\)
\(264\) 0 0
\(265\) 3.37808 7.39695i 0.207514 0.454391i
\(266\) 0 0
\(267\) −16.3135 −0.998373
\(268\) 0 0
\(269\) 23.9821 1.46222 0.731108 0.682262i \(-0.239004\pi\)
0.731108 + 0.682262i \(0.239004\pi\)
\(270\) 0 0
\(271\) 0.379180 0.830288i 0.0230335 0.0504364i −0.897766 0.440474i \(-0.854811\pi\)
0.920799 + 0.390037i \(0.127538\pi\)
\(272\) 0 0
\(273\) 2.82816 + 0.830422i 0.171168 + 0.0502594i
\(274\) 0 0
\(275\) −46.0900 + 8.88312i −2.77933 + 0.535672i
\(276\) 0 0
\(277\) −7.58298 8.75123i −0.455617 0.525810i 0.480738 0.876864i \(-0.340369\pi\)
−0.936355 + 0.351054i \(0.885823\pi\)
\(278\) 0 0
\(279\) 0.937513 0.893917i 0.0561274 0.0535174i
\(280\) 0 0
\(281\) −1.05250 + 22.0947i −0.0627870 + 1.31806i 0.719216 + 0.694786i \(0.244501\pi\)
−0.782003 + 0.623274i \(0.785802\pi\)
\(282\) 0 0
\(283\) 9.55858 11.0312i 0.568199 0.655736i −0.396826 0.917894i \(-0.629889\pi\)
0.965025 + 0.262157i \(0.0844340\pi\)
\(284\) 0 0
\(285\) −4.66713 + 3.67027i −0.276457 + 0.217408i
\(286\) 0 0
\(287\) −6.88896 1.32774i −0.406643 0.0783739i
\(288\) 0 0
\(289\) −3.89206 + 16.0433i −0.228944 + 0.943722i
\(290\) 0 0
\(291\) 0.713596 0.0681401i 0.0418317 0.00399445i
\(292\) 0 0
\(293\) 14.1046 + 9.06449i 0.824000 + 0.529553i 0.883366 0.468683i \(-0.155271\pi\)
−0.0593658 + 0.998236i \(0.518908\pi\)
\(294\) 0 0
\(295\) −9.07985 + 2.66608i −0.528649 + 0.155225i
\(296\) 0 0
\(297\) −3.04374 + 5.27191i −0.176616 + 0.305907i
\(298\) 0 0
\(299\) −0.486217 10.2069i −0.0281186 0.590283i
\(300\) 0 0
\(301\) 1.86187 + 5.37952i 0.107316 + 0.310070i
\(302\) 0 0
\(303\) −4.63203 0.442305i −0.266103 0.0254098i
\(304\) 0 0
\(305\) −8.60911 14.9114i −0.492956 0.853826i
\(306\) 0 0
\(307\) 8.41826 + 4.33992i 0.480456 + 0.247692i 0.681401 0.731910i \(-0.261371\pi\)
−0.200945 + 0.979602i \(0.564401\pi\)
\(308\) 0 0
\(309\) 15.9861 + 6.39985i 0.909415 + 0.364075i
\(310\) 0 0
\(311\) 0.881308 + 6.12963i 0.0499744 + 0.347579i 0.999432 + 0.0336856i \(0.0107245\pi\)
−0.949458 + 0.313894i \(0.898366\pi\)
\(312\) 0 0
\(313\) −13.4435 29.4372i −0.759872 1.66389i −0.747767 0.663961i \(-0.768874\pi\)
−0.0121049 0.999927i \(-0.503853\pi\)
\(314\) 0 0
\(315\) 2.05943 + 2.89207i 0.116036 + 0.162950i
\(316\) 0 0
\(317\) 12.6397 5.06016i 0.709914 0.284207i 0.0115339 0.999933i \(-0.496329\pi\)
0.698381 + 0.715727i \(0.253904\pi\)
\(318\) 0 0
\(319\) 4.31812 + 17.7995i 0.241768 + 0.996582i
\(320\) 0 0
\(321\) −2.51348 + 17.4817i −0.140289 + 0.975731i
\(322\) 0 0
\(323\) −1.03763 + 0.534934i −0.0577351 + 0.0297645i
\(324\) 0 0
\(325\) −13.2382 + 18.5904i −0.734322 + 1.03121i
\(326\) 0 0
\(327\) 0.0961584 0.0617972i 0.00531757 0.00341739i
\(328\) 0 0
\(329\) −8.74118 8.33470i −0.481917 0.459507i
\(330\) 0 0
\(331\) −7.40487 5.82325i −0.407008 0.320075i 0.393579 0.919291i \(-0.371237\pi\)
−0.800588 + 0.599216i \(0.795479\pi\)
\(332\) 0 0
\(333\) 0.182077 0.526078i 0.00997777 0.0288289i
\(334\) 0 0
\(335\) 28.2292 7.39766i 1.54232 0.404177i
\(336\) 0 0
\(337\) 10.0728 29.1035i 0.548702 1.58537i −0.240116 0.970744i \(-0.577185\pi\)
0.788818 0.614627i \(-0.210693\pi\)
\(338\) 0 0
\(339\) 6.65016 + 5.22974i 0.361187 + 0.284041i
\(340\) 0 0
\(341\) −5.70709 5.44170i −0.309056 0.294684i
\(342\) 0 0
\(343\) 10.8978 7.00362i 0.588428 0.378160i
\(344\) 0 0
\(345\) 7.13959 10.0262i 0.384383 0.539790i
\(346\) 0 0
\(347\) −25.1251 + 12.9529i −1.34878 + 0.695347i −0.972880 0.231311i \(-0.925698\pi\)
−0.375905 + 0.926658i \(0.622668\pi\)
\(348\) 0 0
\(349\) −1.89710 + 13.1946i −0.101549 + 0.706290i 0.873906 + 0.486094i \(0.161579\pi\)
−0.975456 + 0.220196i \(0.929330\pi\)
\(350\) 0 0
\(351\) 0.697809 + 2.87641i 0.0372463 + 0.153531i
\(352\) 0 0
\(353\) 9.31018 3.72724i 0.495531 0.198381i −0.110416 0.993885i \(-0.535218\pi\)
0.605947 + 0.795505i \(0.292794\pi\)
\(354\) 0 0
\(355\) −6.03315 8.47237i −0.320206 0.449667i
\(356\) 0 0
\(357\) 0.289989 + 0.634987i 0.0153478 + 0.0336071i
\(358\) 0 0
\(359\) −0.341539 2.37545i −0.0180257 0.125372i 0.978822 0.204715i \(-0.0656267\pi\)
−0.996847 + 0.0793433i \(0.974718\pi\)
\(360\) 0 0
\(361\) −15.0642 6.03078i −0.792850 0.317409i
\(362\) 0 0
\(363\) 23.1607 + 11.9402i 1.21562 + 0.626697i
\(364\) 0 0
\(365\) 4.27892 + 7.41130i 0.223969 + 0.387925i
\(366\) 0 0
\(367\) 28.3777 + 2.70975i 1.48131 + 0.141448i 0.804165 0.594406i \(-0.202613\pi\)
0.677141 + 0.735853i \(0.263219\pi\)
\(368\) 0 0
\(369\) −2.30419 6.65752i −0.119951 0.346577i
\(370\) 0 0
\(371\) 0.108078 + 2.26885i 0.00561115 + 0.117793i
\(372\) 0 0
\(373\) 11.1311 19.2796i 0.576344 0.998258i −0.419550 0.907732i \(-0.637812\pi\)
0.995894 0.0905253i \(-0.0288546\pi\)
\(374\) 0 0
\(375\) −9.27244 + 2.72263i −0.478827 + 0.140596i
\(376\) 0 0
\(377\) 7.49176 + 4.81466i 0.385845 + 0.247968i
\(378\) 0 0
\(379\) −17.1609 + 1.63867i −0.881497 + 0.0841728i −0.525980 0.850497i \(-0.676301\pi\)
−0.355517 + 0.934670i \(0.615695\pi\)
\(380\) 0 0
\(381\) 2.33906 9.64172i 0.119833 0.493960i
\(382\) 0 0
\(383\) 0.260914 + 0.0502870i 0.0133321 + 0.00256954i 0.195913 0.980621i \(-0.437233\pi\)
−0.182581 + 0.983191i \(0.558445\pi\)
\(384\) 0 0
\(385\) 16.9889 13.3602i 0.865836 0.680901i
\(386\) 0 0
\(387\) −3.74341 + 4.32012i −0.190288 + 0.219604i
\(388\) 0 0
\(389\) 0.246827 5.18155i 0.0125147 0.262715i −0.983935 0.178526i \(-0.942867\pi\)
0.996450 0.0841887i \(-0.0268299\pi\)
\(390\) 0 0
\(391\) 1.75147 1.67003i 0.0885759 0.0844569i
\(392\) 0 0
\(393\) 12.0508 + 13.9074i 0.607882 + 0.701533i
\(394\) 0 0
\(395\) −15.5224 + 2.99170i −0.781017 + 0.150529i
\(396\) 0 0
\(397\) 15.6967 + 4.60897i 0.787795 + 0.231318i 0.650795 0.759254i \(-0.274436\pi\)
0.137000 + 0.990571i \(0.456254\pi\)
\(398\) 0 0
\(399\) 0.688954 1.50860i 0.0344908 0.0755244i
\(400\) 0 0
\(401\) −16.3535 −0.816653 −0.408326 0.912836i \(-0.633887\pi\)
−0.408326 + 0.912836i \(0.633887\pi\)
\(402\) 0 0
\(403\) −3.83413 −0.190992
\(404\) 0 0
\(405\) −1.48104 + 3.24302i −0.0735933 + 0.161147i
\(406\) 0 0
\(407\) −3.25160 0.954756i −0.161176 0.0473255i
\(408\) 0 0
\(409\) 9.70363 1.87022i 0.479813 0.0924765i 0.0563909 0.998409i \(-0.482041\pi\)
0.423423 + 0.905932i \(0.360829\pi\)
\(410\) 0 0
\(411\) −6.30358 7.27472i −0.310933 0.358835i
\(412\) 0 0
\(413\) 1.91305 1.82409i 0.0941350 0.0897575i
\(414\) 0 0
\(415\) −2.48952 + 52.2615i −0.122206 + 2.56542i
\(416\) 0 0
\(417\) 0.218690 0.252382i 0.0107093 0.0123592i
\(418\) 0 0
\(419\) −31.1583 + 24.5032i −1.52218 + 1.19706i −0.606551 + 0.795045i \(0.707447\pi\)
−0.915634 + 0.402014i \(0.868310\pi\)
\(420\) 0 0
\(421\) −38.9298 7.50310i −1.89732 0.365679i −0.899816 0.436269i \(-0.856300\pi\)
−0.997505 + 0.0705900i \(0.977512\pi\)
\(422\) 0 0
\(423\) 2.85934 11.7864i 0.139026 0.573072i
\(424\) 0 0
\(425\) −5.38051 + 0.513777i −0.260993 + 0.0249218i
\(426\) 0 0
\(427\) 4.04600 + 2.60020i 0.195799 + 0.125833i
\(428\) 0 0
\(429\) 17.2881 5.07625i 0.834678 0.245084i
\(430\) 0 0
\(431\) 2.04057 3.53437i 0.0982908 0.170245i −0.812686 0.582701i \(-0.801996\pi\)
0.910977 + 0.412457i \(0.135329\pi\)
\(432\) 0 0
\(433\) 1.13320 + 23.7887i 0.0544579 + 1.14321i 0.846377 + 0.532585i \(0.178779\pi\)
−0.791919 + 0.610627i \(0.790918\pi\)
\(434\) 0 0
\(435\) 3.50841 + 10.1369i 0.168215 + 0.486026i
\(436\) 0 0
\(437\) −5.72352 0.546530i −0.273793 0.0261441i
\(438\) 0 0
\(439\) 2.47183 + 4.28133i 0.117974 + 0.204337i 0.918965 0.394340i \(-0.129027\pi\)
−0.800991 + 0.598677i \(0.795693\pi\)
\(440\) 0 0
\(441\) 5.34038 + 2.75316i 0.254304 + 0.131103i
\(442\) 0 0
\(443\) −12.7828 5.11748i −0.607331 0.243139i 0.0475522 0.998869i \(-0.484858\pi\)
−0.654883 + 0.755730i \(0.727282\pi\)
\(444\) 0 0
\(445\) 8.27717 + 57.5690i 0.392375 + 2.72903i
\(446\) 0 0
\(447\) 8.12021 + 17.7808i 0.384073 + 0.841002i
\(448\) 0 0
\(449\) 19.4935 + 27.3748i 0.919956 + 1.29190i 0.956248 + 0.292557i \(0.0945060\pi\)
−0.0362918 + 0.999341i \(0.511555\pi\)
\(450\) 0 0
\(451\) −39.8142 + 15.9392i −1.87478 + 0.750548i
\(452\) 0 0
\(453\) 2.97246 + 12.2526i 0.139658 + 0.575679i
\(454\) 0 0
\(455\) 1.49553 10.4016i 0.0701116 0.487637i
\(456\) 0 0
\(457\) −29.8631 + 15.3955i −1.39694 + 0.720172i −0.981859 0.189613i \(-0.939277\pi\)
−0.415080 + 0.909785i \(0.636246\pi\)
\(458\) 0 0
\(459\) −0.406608 + 0.571001i −0.0189788 + 0.0266520i
\(460\) 0 0
\(461\) −15.4882 + 9.95367i −0.721358 + 0.463588i −0.849109 0.528218i \(-0.822860\pi\)
0.127751 + 0.991806i \(0.459224\pi\)
\(462\) 0 0
\(463\) −3.62976 3.46097i −0.168689 0.160845i 0.601032 0.799225i \(-0.294756\pi\)
−0.769721 + 0.638380i \(0.779605\pi\)
\(464\) 0 0
\(465\) −3.63022 2.85484i −0.168348 0.132390i
\(466\) 0 0
\(467\) 7.24686 20.9384i 0.335345 0.968915i −0.643701 0.765277i \(-0.722602\pi\)
0.979046 0.203638i \(-0.0652766\pi\)
\(468\) 0 0
\(469\) −6.06172 + 5.44982i −0.279904 + 0.251649i
\(470\) 0 0
\(471\) 1.46341 4.22826i 0.0674306 0.194828i
\(472\) 0 0
\(473\) 27.3531 + 21.5108i 1.25770 + 0.989065i
\(474\) 0 0
\(475\) 9.29358 + 8.86141i 0.426418 + 0.406589i
\(476\) 0 0
\(477\) −1.91880 + 1.23314i −0.0878560 + 0.0564616i
\(478\) 0 0
\(479\) 5.46495 7.67445i 0.249700 0.350655i −0.670634 0.741789i \(-0.733978\pi\)
0.920334 + 0.391134i \(0.127917\pi\)
\(480\) 0 0
\(481\) −1.46456 + 0.755034i −0.0667782 + 0.0344266i
\(482\) 0 0
\(483\) −0.489287 + 3.40306i −0.0222633 + 0.154845i
\(484\) 0 0
\(485\) −0.602525 2.48364i −0.0273592 0.112776i
\(486\) 0 0
\(487\) 24.3275 9.73928i 1.10239 0.441329i 0.252128 0.967694i \(-0.418870\pi\)
0.850259 + 0.526365i \(0.176445\pi\)
\(488\) 0 0
\(489\) 7.19855 + 10.1090i 0.325530 + 0.457143i
\(490\) 0 0
\(491\) −7.92338 17.3498i −0.357577 0.782985i −0.999864 0.0165200i \(-0.994741\pi\)
0.642286 0.766465i \(-0.277986\pi\)
\(492\) 0 0
\(493\) 0.300154 + 2.08762i 0.0135183 + 0.0940216i
\(494\) 0 0
\(495\) 20.1484 + 8.06621i 0.905604 + 0.362549i
\(496\) 0 0
\(497\) 2.58229 + 1.33126i 0.115831 + 0.0597153i
\(498\) 0 0
\(499\) −0.136988 0.237270i −0.00613243 0.0106217i 0.862943 0.505301i \(-0.168619\pi\)
−0.869075 + 0.494680i \(0.835285\pi\)
\(500\) 0 0
\(501\) −21.4089 2.04430i −0.956477 0.0913325i
\(502\) 0 0
\(503\) 2.69163 + 7.77697i 0.120014 + 0.346758i 0.988967 0.148137i \(-0.0473277\pi\)
−0.868953 + 0.494895i \(0.835207\pi\)
\(504\) 0 0
\(505\) 0.789346 + 16.5704i 0.0351255 + 0.737374i
\(506\) 0 0
\(507\) −2.11967 + 3.67138i −0.0941379 + 0.163052i
\(508\) 0 0
\(509\) −31.8549 + 9.35343i −1.41194 + 0.414584i −0.896768 0.442502i \(-0.854091\pi\)
−0.515175 + 0.857085i \(0.672273\pi\)
\(510\) 0 0
\(511\) −2.01095 1.29236i −0.0889591 0.0571705i
\(512\) 0 0
\(513\) 1.65784 0.158305i 0.0731956 0.00698933i
\(514\) 0 0
\(515\) 14.4735 59.6605i 0.637778 2.62896i
\(516\) 0 0
\(517\) −72.4961 13.9725i −3.18838 0.614509i
\(518\) 0 0
\(519\) −10.7016 + 8.41581i −0.469747 + 0.369413i
\(520\) 0 0
\(521\) −28.2385 + 32.5889i −1.23715 + 1.42775i −0.370500 + 0.928833i \(0.620814\pi\)
−0.866651 + 0.498915i \(0.833732\pi\)
\(522\) 0 0
\(523\) 1.72801 36.2753i 0.0755605 1.58621i −0.569443 0.822031i \(-0.692841\pi\)
0.645004 0.764179i \(-0.276856\pi\)
\(524\) 0 0
\(525\) 5.55728 5.29885i 0.242539 0.231261i
\(526\) 0 0
\(527\) −0.594638 0.686249i −0.0259028 0.0298935i
\(528\) 0 0
\(529\) −10.8808 + 2.09710i −0.473077 + 0.0911781i
\(530\) 0 0
\(531\) 2.54680 + 0.747809i 0.110522 + 0.0324521i
\(532\) 0 0
\(533\) −8.66226 + 18.9677i −0.375204 + 0.821582i
\(534\) 0 0
\(535\) 62.9664 2.72228
\(536\) 0 0
\(537\) 21.4669 0.926364
\(538\) 0 0
\(539\) 15.1939 33.2701i 0.654449 1.43304i
\(540\) 0 0
\(541\) 40.3725 + 11.8544i 1.73575 + 0.509662i 0.988018 0.154338i \(-0.0493243\pi\)
0.747733 + 0.664000i \(0.231143\pi\)
\(542\) 0 0
\(543\) 0.570658 0.109985i 0.0244893 0.00471992i
\(544\) 0 0
\(545\) −0.266866 0.307979i −0.0114313 0.0131924i
\(546\) 0 0
\(547\) −20.9127 + 19.9402i −0.894163 + 0.852583i −0.989746 0.142839i \(-0.954377\pi\)
0.0955830 + 0.995421i \(0.469528\pi\)
\(548\) 0 0
\(549\) −0.229798 + 4.82406i −0.00980756 + 0.205886i
\(550\) 0 0
\(551\) 3.28135 3.78688i 0.139790 0.161326i
\(552\) 0 0
\(553\) 3.47089 2.72954i 0.147597 0.116072i
\(554\) 0 0
\(555\) −1.94886 0.375612i −0.0827246 0.0159439i
\(556\) 0 0
\(557\) −7.25372 + 29.9002i −0.307350 + 1.26691i 0.583313 + 0.812248i \(0.301756\pi\)
−0.890662 + 0.454665i \(0.849759\pi\)
\(558\) 0 0
\(559\) 16.8428 1.60830i 0.712376 0.0680237i
\(560\) 0 0
\(561\) 3.58980 + 2.30702i 0.151561 + 0.0974025i
\(562\) 0 0
\(563\) 29.6648 8.71036i 1.25022 0.367098i 0.411375 0.911466i \(-0.365049\pi\)
0.838846 + 0.544368i \(0.183231\pi\)
\(564\) 0 0
\(565\) 15.0811 26.1213i 0.634467 1.09893i
\(566\) 0 0
\(567\) −0.0473844 0.994721i −0.00198996 0.0417744i
\(568\) 0 0
\(569\) −5.30220 15.3197i −0.222280 0.642235i −0.999909 0.0135117i \(-0.995699\pi\)
0.777629 0.628723i \(-0.216422\pi\)
\(570\) 0 0
\(571\) −16.3789 1.56399i −0.685434 0.0654510i −0.253472 0.967343i \(-0.581573\pi\)
−0.431962 + 0.901892i \(0.642179\pi\)
\(572\) 0 0
\(573\) 0.356526 + 0.617521i 0.0148941 + 0.0257973i
\(574\) 0 0
\(575\) −23.6609 12.1980i −0.986726 0.508692i
\(576\) 0 0
\(577\) −5.47711 2.19271i −0.228015 0.0912835i 0.254842 0.966983i \(-0.417977\pi\)
−0.482857 + 0.875699i \(0.660401\pi\)
\(578\) 0 0
\(579\) 3.27656 + 22.7890i 0.136169 + 0.947077i
\(580\) 0 0
\(581\) −6.07108 13.2938i −0.251871 0.551521i
\(582\) 0 0
\(583\) 8.05400 + 11.3103i 0.333563 + 0.468423i
\(584\) 0 0
\(585\) 9.79652 3.92194i 0.405036 0.162152i
\(586\) 0 0
\(587\) −4.99559 20.5921i −0.206190 0.849927i −0.977065 0.212941i \(-0.931696\pi\)
0.770875 0.636986i \(-0.219819\pi\)
\(588\) 0 0
\(589\) −0.307017 + 2.13535i −0.0126504 + 0.0879857i
\(590\) 0 0
\(591\) 17.0406 8.78504i 0.700957 0.361368i
\(592\) 0 0
\(593\) −5.98436 + 8.40385i −0.245748 + 0.345105i −0.918964 0.394341i \(-0.870973\pi\)
0.673216 + 0.739446i \(0.264912\pi\)
\(594\) 0 0
\(595\) 2.09367 1.34552i 0.0858323 0.0551611i
\(596\) 0 0
\(597\) −3.23219 3.08189i −0.132285 0.126133i
\(598\) 0 0
\(599\) −21.9505 17.2621i −0.896874 0.705309i 0.0592590 0.998243i \(-0.481126\pi\)
−0.956133 + 0.292933i \(0.905369\pi\)
\(600\) 0 0
\(601\) −2.46864 + 7.13268i −0.100698 + 0.290948i −0.984086 0.177695i \(-0.943136\pi\)
0.883387 + 0.468643i \(0.155257\pi\)
\(602\) 0 0
\(603\) −7.78285 2.53521i −0.316942 0.103242i
\(604\) 0 0
\(605\) 30.3845 87.7903i 1.23531 3.56918i
\(606\) 0 0
\(607\) 5.37156 + 4.22424i 0.218025 + 0.171457i 0.721198 0.692729i \(-0.243592\pi\)
−0.503173 + 0.864186i \(0.667834\pi\)
\(608\) 0 0
\(609\) −2.16851 2.06767i −0.0878724 0.0837862i
\(610\) 0 0
\(611\) −30.1990 + 19.4077i −1.22172 + 0.785153i
\(612\) 0 0
\(613\) −13.5952 + 19.0918i −0.549104 + 0.771109i −0.992105 0.125413i \(-0.959975\pi\)
0.443001 + 0.896521i \(0.353914\pi\)
\(614\) 0 0
\(615\) −22.3247 + 11.5092i −0.900218 + 0.464095i
\(616\) 0 0
\(617\) −0.200811 + 1.39667i −0.00808434 + 0.0562279i −0.993464 0.114143i \(-0.963588\pi\)
0.985380 + 0.170371i \(0.0544967\pi\)
\(618\) 0 0
\(619\) −4.01310 16.5422i −0.161300 0.664889i −0.993831 0.110909i \(-0.964624\pi\)
0.832530 0.553980i \(-0.186891\pi\)
\(620\) 0 0
\(621\) −3.20509 + 1.28312i −0.128616 + 0.0514899i
\(622\) 0 0
\(623\) −9.42350 13.2335i −0.377545 0.530187i
\(624\) 0 0
\(625\) −1.70296 3.72896i −0.0681184 0.149158i
\(626\) 0 0
\(627\) −1.44279 10.0348i −0.0576193 0.400751i
\(628\) 0 0
\(629\) −0.362279 0.145035i −0.0144450 0.00578291i
\(630\) 0 0
\(631\) 14.9004 + 7.68170i 0.593176 + 0.305804i 0.728552 0.684991i \(-0.240194\pi\)
−0.135376 + 0.990794i \(0.543224\pi\)
\(632\) 0 0
\(633\) −11.5444 19.9955i −0.458849 0.794750i
\(634\) 0 0
\(635\) −35.2115 3.36229i −1.39733 0.133429i
\(636\) 0 0
\(637\) −5.81644 16.8055i −0.230456 0.665858i
\(638\) 0 0
\(639\) 0.138814 + 2.91406i 0.00549138 + 0.115278i
\(640\) 0 0
\(641\) −23.0181 + 39.8685i −0.909160 + 1.57471i −0.0939253 + 0.995579i \(0.529941\pi\)
−0.815234 + 0.579131i \(0.803392\pi\)
\(642\) 0 0
\(643\) 37.5845 11.0358i 1.48219 0.435209i 0.562148 0.827037i \(-0.309975\pi\)
0.920039 + 0.391828i \(0.128157\pi\)
\(644\) 0 0
\(645\) 17.1446 + 11.0182i 0.675069 + 0.433841i
\(646\) 0 0
\(647\) 29.4079 2.80811i 1.15614 0.110398i 0.500685 0.865630i \(-0.333081\pi\)
0.655459 + 0.755231i \(0.272475\pi\)
\(648\) 0 0
\(649\) 3.80942 15.7026i 0.149533 0.616383i
\(650\) 0 0
\(651\) 1.26669 + 0.244135i 0.0496457 + 0.00956841i
\(652\) 0 0
\(653\) −5.38208 + 4.23252i −0.210617 + 0.165631i −0.717895 0.696151i \(-0.754894\pi\)
0.507278 + 0.861783i \(0.330652\pi\)
\(654\) 0 0
\(655\) 42.9634 49.5824i 1.67872 1.93735i
\(656\) 0 0
\(657\) 0.114215 2.39766i 0.00445594 0.0935417i
\(658\) 0 0
\(659\) 7.24743 6.91041i 0.282320 0.269191i −0.535666 0.844430i \(-0.679939\pi\)
0.817986 + 0.575239i \(0.195091\pi\)
\(660\) 0 0
\(661\) −32.4527 37.4524i −1.26226 1.45673i −0.832728 0.553682i \(-0.813222\pi\)
−0.429536 0.903050i \(-0.641323\pi\)
\(662\) 0 0
\(663\) 2.03729 0.392656i 0.0791219 0.0152495i
\(664\) 0 0
\(665\) −5.67327 1.66582i −0.220000 0.0645978i
\(666\) 0 0
\(667\) −4.31510 + 9.44874i −0.167081 + 0.365857i
\(668\) 0 0
\(669\) −19.6892 −0.761230
\(670\) 0 0
\(671\) 29.3997 1.13496
\(672\) 0 0
\(673\) 16.4875 36.1026i 0.635546 1.39165i −0.268108 0.963389i \(-0.586398\pi\)
0.903654 0.428263i \(-0.140874\pi\)
\(674\) 0 0
\(675\) 7.39829 + 2.17233i 0.284760 + 0.0836131i
\(676\) 0 0
\(677\) −34.7196 + 6.69166i −1.33438 + 0.257181i −0.806046 0.591853i \(-0.798397\pi\)
−0.528338 + 0.849034i \(0.677185\pi\)
\(678\) 0 0
\(679\) 0.467483 + 0.539504i 0.0179404 + 0.0207043i
\(680\) 0 0
\(681\) −6.53620 + 6.23225i −0.250468 + 0.238820i
\(682\) 0 0
\(683\) 0.509399 10.6936i 0.0194916 0.409180i −0.967945 0.251163i \(-0.919187\pi\)
0.987436 0.158017i \(-0.0505100\pi\)
\(684\) 0 0
\(685\) −22.4735 + 25.9358i −0.858668 + 0.990956i
\(686\) 0 0
\(687\) 11.2580 8.85336i 0.429518 0.337777i
\(688\) 0 0
\(689\) 6.62906 + 1.27765i 0.252547 + 0.0486745i
\(690\) 0 0
\(691\) −9.94105 + 40.9776i −0.378175 + 1.55886i 0.391349 + 0.920243i \(0.372009\pi\)
−0.769524 + 0.638618i \(0.779506\pi\)
\(692\) 0 0
\(693\) −6.03476 + 0.576250i −0.229242 + 0.0218899i
\(694\) 0 0
\(695\) −1.00159 0.643683i −0.0379925 0.0244163i
\(696\) 0 0
\(697\) −4.73835 + 1.39131i −0.179478 + 0.0526995i
\(698\) 0 0
\(699\) 0.130208 0.225527i 0.00492493 0.00853022i
\(700\) 0 0
\(701\) −0.855114 17.9511i −0.0322972 0.678002i −0.955731 0.294243i \(-0.904932\pi\)
0.923433 0.383759i \(-0.125371\pi\)
\(702\) 0 0
\(703\) 0.303229 + 0.876121i 0.0114365 + 0.0330435i
\(704\) 0 0
\(705\) −43.0437 4.11018i −1.62112 0.154798i
\(706\) 0 0
\(707\) −2.31689 4.01298i −0.0871357 0.150923i
\(708\) 0 0
\(709\) 40.6240 + 20.9431i 1.52567 + 0.786536i 0.998018 0.0629263i \(-0.0200433\pi\)
0.527649 + 0.849462i \(0.323074\pi\)
\(710\) 0 0
\(711\) 4.11638 + 1.64795i 0.154376 + 0.0618030i
\(712\) 0 0
\(713\) −0.636455 4.42664i −0.0238354 0.165779i
\(714\) 0 0
\(715\) −26.6853 58.4326i −0.997972 2.18525i
\(716\) 0 0
\(717\) 14.7768 + 20.7510i 0.551848 + 0.774962i
\(718\) 0 0
\(719\) 11.2972 4.52273i 0.421316 0.168669i −0.151310 0.988486i \(-0.548349\pi\)
0.572626 + 0.819817i \(0.305925\pi\)
\(720\) 0 0
\(721\) 4.04281 + 16.6647i 0.150562 + 0.620625i
\(722\) 0 0
\(723\) 1.21874 8.47655i 0.0453256 0.315246i
\(724\) 0 0
\(725\) 20.6205 10.6306i 0.765827 0.394811i
\(726\) 0 0
\(727\) 12.5925 17.6837i 0.467029 0.655851i −0.512139 0.858903i \(-0.671147\pi\)
0.979168 + 0.203052i \(0.0650861\pi\)
\(728\) 0 0
\(729\) 0.841254 0.540641i 0.0311575 0.0200237i
\(730\) 0 0
\(731\) 2.90003 + 2.76517i 0.107261 + 0.102274i
\(732\) 0 0
\(733\) 32.5868 + 25.6265i 1.20362 + 0.946538i 0.999475 0.0324027i \(-0.0103159\pi\)
0.204146 + 0.978940i \(0.434558\pi\)
\(734\) 0 0
\(735\) 7.00603 20.2426i 0.258421 0.746659i
\(736\) 0 0
\(737\) −13.1613 + 48.0586i −0.484801 + 1.77026i
\(738\) 0 0
\(739\) −9.50958 + 27.4761i −0.349815 + 1.01073i 0.623613 + 0.781733i \(0.285664\pi\)
−0.973428 + 0.228992i \(0.926457\pi\)
\(740\) 0 0
\(741\) −3.87467 3.04707i −0.142340 0.111937i
\(742\) 0 0
\(743\) 23.5591 + 22.4635i 0.864298 + 0.824107i 0.985702 0.168497i \(-0.0538912\pi\)
−0.121404 + 0.992603i \(0.538740\pi\)
\(744\) 0 0
\(745\) 58.6267 37.6771i 2.14791 1.38038i
\(746\) 0 0
\(747\) 8.51258 11.9542i 0.311459 0.437383i
\(748\) 0 0
\(749\) −15.6329 + 8.05934i −0.571215 + 0.294482i
\(750\) 0 0
\(751\) 5.51189 38.3360i 0.201132 1.39890i −0.599802 0.800149i \(-0.704754\pi\)
0.800934 0.598753i \(-0.204337\pi\)
\(752\) 0 0
\(753\) −3.16051 13.0278i −0.115175 0.474759i
\(754\) 0 0
\(755\) 41.7302 16.7063i 1.51872 0.608003i
\(756\) 0 0
\(757\) 18.2155 + 25.5800i 0.662052 + 0.929722i 0.999934 0.0114664i \(-0.00364996\pi\)
−0.337882 + 0.941188i \(0.609711\pi\)
\(758\) 0 0
\(759\) 8.73050 + 19.1171i 0.316897 + 0.693908i
\(760\) 0 0
\(761\) −0.776833 5.40299i −0.0281602 0.195858i 0.970885 0.239546i \(-0.0769985\pi\)
−0.999045 + 0.0436875i \(0.986089\pi\)
\(762\) 0 0
\(763\) 0.105675 + 0.0423060i 0.00382571 + 0.00153158i
\(764\) 0 0
\(765\) 2.22131 + 1.14517i 0.0803118 + 0.0414036i
\(766\) 0 0
\(767\) −3.92818 6.80381i −0.141839 0.245671i
\(768\) 0 0
\(769\) 8.47834 + 0.809583i 0.305737 + 0.0291943i 0.246797 0.969067i \(-0.420622\pi\)
0.0589398 + 0.998262i \(0.481228\pi\)
\(770\) 0 0
\(771\) −3.04572 8.80004i −0.109689 0.316926i
\(772\) 0 0
\(773\) −1.97559 41.4728i −0.0710571 1.49167i −0.699957 0.714185i \(-0.746797\pi\)
0.628900 0.777486i \(-0.283506\pi\)
\(774\) 0 0
\(775\) −4.99410 + 8.65004i −0.179394 + 0.310719i
\(776\) 0 0
\(777\) 0.531928 0.156188i 0.0190828 0.00560322i
\(778\)