Properties

Label 804.2.y.b.73.5
Level 804
Weight 2
Character 804.73
Analytic conductor 6.420
Analytic rank 0
Dimension 120
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.y (of order \(33\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(6\) over \(\Q(\zeta_{33})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

Embedding invariants

Embedding label 73.5
Character \(\chi\) = 804.73
Dual form 804.2.y.b.793.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.415415 + 0.909632i) q^{3} +(2.10734 + 0.618772i) q^{5} +(0.474282 - 0.0914103i) q^{7} +(-0.654861 - 0.755750i) q^{9} +O(q^{10})\) \(q+(-0.415415 + 0.909632i) q^{3} +(2.10734 + 0.618772i) q^{5} +(0.474282 - 0.0914103i) q^{7} +(-0.654861 - 0.755750i) q^{9} +(3.02245 - 2.88190i) q^{11} +(0.287738 - 6.04037i) q^{13} +(-1.43828 + 1.65986i) q^{15} +(0.106025 - 0.0833792i) q^{17} +(4.57644 + 0.882036i) q^{19} +(-0.113874 + 0.469395i) q^{21} +(0.0590758 - 0.00564106i) q^{23} +(-0.148248 - 0.0952734i) q^{25} +(0.959493 - 0.281733i) q^{27} +(-0.202525 + 0.350784i) q^{29} +(0.214233 + 4.49731i) q^{31} +(1.36590 + 3.94650i) q^{33} +(1.05604 + 0.100839i) q^{35} +(-1.16314 - 2.01461i) q^{37} +(5.37498 + 2.77100i) q^{39} +(2.08254 + 0.833724i) q^{41} +(1.26496 + 8.79801i) q^{43} +(-0.912380 - 1.99783i) q^{45} +(0.663038 + 0.931107i) q^{47} +(-6.28199 + 2.51493i) q^{49} +(0.0317999 + 0.131081i) q^{51} +(0.919967 - 6.39851i) q^{53} +(8.15258 - 4.20295i) q^{55} +(-2.70345 + 3.79646i) q^{57} +(8.18366 - 5.25932i) q^{59} +(3.09277 + 2.94895i) q^{61} +(-0.379672 - 0.298577i) q^{63} +(4.34398 - 12.5511i) q^{65} +(1.95922 + 7.94742i) q^{67} +(-0.0194097 + 0.0560806i) q^{69} +(4.67866 + 3.67934i) q^{71} +(-5.09429 - 4.85739i) q^{73} +(0.148248 - 0.0952734i) q^{75} +(1.17006 - 1.64312i) q^{77} +(-6.81475 + 3.51325i) q^{79} +(-0.142315 + 0.989821i) q^{81} +(-1.19490 - 4.92546i) q^{83} +(0.275025 - 0.110103i) q^{85} +(-0.234952 - 0.329944i) q^{87} +(1.25611 + 2.75050i) q^{89} +(-0.415683 - 2.89114i) q^{91} +(-4.17990 - 1.67338i) q^{93} +(9.09834 + 4.69052i) q^{95} +(5.47937 + 9.49054i) q^{97} +(-4.15728 - 0.396972i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + O(q^{10}) \) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + 11q^{11} + 2q^{13} - 9q^{15} + 48q^{17} - 4q^{19} - q^{21} + 22q^{23} - 42q^{25} + 12q^{27} - q^{29} + 27q^{31} + 17q^{35} - 8q^{37} - 2q^{39} - 58q^{41} - 17q^{43} - 2q^{45} - 84q^{47} + 101q^{49} - 26q^{51} + 28q^{53} - 9q^{55} + 26q^{57} + 34q^{59} + 16q^{61} + 12q^{63} + 144q^{65} + 23q^{67} + 11q^{69} + 173q^{71} - 2q^{73} + 42q^{75} + 128q^{77} + 31q^{79} - 12q^{81} + 47q^{83} - 75q^{85} - 10q^{87} - 67q^{89} + 16q^{91} + 6q^{93} - 79q^{95} + 10q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(e\left(\frac{20}{33}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.415415 + 0.909632i −0.239840 + 0.525176i
\(4\) 0 0
\(5\) 2.10734 + 0.618772i 0.942433 + 0.276723i 0.716633 0.697450i \(-0.245682\pi\)
0.225800 + 0.974174i \(0.427500\pi\)
\(6\) 0 0
\(7\) 0.474282 0.0914103i 0.179262 0.0345499i −0.0988303 0.995104i \(-0.531510\pi\)
0.278092 + 0.960554i \(0.410298\pi\)
\(8\) 0 0
\(9\) −0.654861 0.755750i −0.218287 0.251917i
\(10\) 0 0
\(11\) 3.02245 2.88190i 0.911303 0.868925i −0.0804934 0.996755i \(-0.525650\pi\)
0.991796 + 0.127830i \(0.0408011\pi\)
\(12\) 0 0
\(13\) 0.287738 6.04037i 0.0798043 1.67530i −0.504231 0.863569i \(-0.668224\pi\)
0.584035 0.811729i \(-0.301473\pi\)
\(14\) 0 0
\(15\) −1.43828 + 1.65986i −0.371362 + 0.428574i
\(16\) 0 0
\(17\) 0.106025 0.0833792i 0.0257149 0.0202224i −0.605219 0.796059i \(-0.706914\pi\)
0.630934 + 0.775837i \(0.282672\pi\)
\(18\) 0 0
\(19\) 4.57644 + 0.882036i 1.04991 + 0.202353i 0.684889 0.728648i \(-0.259851\pi\)
0.365018 + 0.931001i \(0.381063\pi\)
\(20\) 0 0
\(21\) −0.113874 + 0.469395i −0.0248494 + 0.102430i
\(22\) 0 0
\(23\) 0.0590758 0.00564106i 0.0123182 0.00117624i −0.0888951 0.996041i \(-0.528334\pi\)
0.101213 + 0.994865i \(0.467728\pi\)
\(24\) 0 0
\(25\) −0.148248 0.0952734i −0.0296497 0.0190547i
\(26\) 0 0
\(27\) 0.959493 0.281733i 0.184655 0.0542195i
\(28\) 0 0
\(29\) −0.202525 + 0.350784i −0.0376080 + 0.0651389i −0.884217 0.467077i \(-0.845307\pi\)
0.846609 + 0.532216i \(0.178640\pi\)
\(30\) 0 0
\(31\) 0.214233 + 4.49731i 0.0384775 + 0.807741i 0.932817 + 0.360352i \(0.117343\pi\)
−0.894339 + 0.447390i \(0.852354\pi\)
\(32\) 0 0
\(33\) 1.36590 + 3.94650i 0.237772 + 0.686998i
\(34\) 0 0
\(35\) 1.05604 + 0.100839i 0.178503 + 0.0170450i
\(36\) 0 0
\(37\) −1.16314 2.01461i −0.191218 0.331200i 0.754436 0.656374i \(-0.227910\pi\)
−0.945654 + 0.325174i \(0.894577\pi\)
\(38\) 0 0
\(39\) 5.37498 + 2.77100i 0.860686 + 0.443715i
\(40\) 0 0
\(41\) 2.08254 + 0.833724i 0.325239 + 0.130206i 0.528535 0.848911i \(-0.322741\pi\)
−0.203297 + 0.979117i \(0.565166\pi\)
\(42\) 0 0
\(43\) 1.26496 + 8.79801i 0.192905 + 1.34168i 0.824270 + 0.566198i \(0.191586\pi\)
−0.631365 + 0.775486i \(0.717505\pi\)
\(44\) 0 0
\(45\) −0.912380 1.99783i −0.136010 0.297819i
\(46\) 0 0
\(47\) 0.663038 + 0.931107i 0.0967141 + 0.135816i 0.860097 0.510130i \(-0.170403\pi\)
−0.763383 + 0.645946i \(0.776463\pi\)
\(48\) 0 0
\(49\) −6.28199 + 2.51493i −0.897427 + 0.359276i
\(50\) 0 0
\(51\) 0.0317999 + 0.131081i 0.00445288 + 0.0183550i
\(52\) 0 0
\(53\) 0.919967 6.39851i 0.126367 0.878903i −0.823737 0.566972i \(-0.808115\pi\)
0.950105 0.311932i \(-0.100976\pi\)
\(54\) 0 0
\(55\) 8.15258 4.20295i 1.09929 0.566725i
\(56\) 0 0
\(57\) −2.70345 + 3.79646i −0.358080 + 0.502854i
\(58\) 0 0
\(59\) 8.18366 5.25932i 1.06542 0.684705i 0.114276 0.993449i \(-0.463545\pi\)
0.951145 + 0.308744i \(0.0999087\pi\)
\(60\) 0 0
\(61\) 3.09277 + 2.94895i 0.395989 + 0.377574i 0.861748 0.507337i \(-0.169370\pi\)
−0.465759 + 0.884912i \(0.654219\pi\)
\(62\) 0 0
\(63\) −0.379672 0.298577i −0.0478342 0.0376172i
\(64\) 0 0
\(65\) 4.34398 12.5511i 0.538804 1.55677i
\(66\) 0 0
\(67\) 1.95922 + 7.94742i 0.239356 + 0.970932i
\(68\) 0 0
\(69\) −0.0194097 + 0.0560806i −0.00233665 + 0.00675131i
\(70\) 0 0
\(71\) 4.67866 + 3.67934i 0.555254 + 0.436657i 0.855947 0.517064i \(-0.172975\pi\)
−0.300692 + 0.953721i \(0.597218\pi\)
\(72\) 0 0
\(73\) −5.09429 4.85739i −0.596241 0.568515i 0.330693 0.943738i \(-0.392718\pi\)
−0.926934 + 0.375223i \(0.877566\pi\)
\(74\) 0 0
\(75\) 0.148248 0.0952734i 0.0171182 0.0110012i
\(76\) 0 0
\(77\) 1.17006 1.64312i 0.133340 0.187250i
\(78\) 0 0
\(79\) −6.81475 + 3.51325i −0.766719 + 0.395271i −0.796774 0.604277i \(-0.793462\pi\)
0.0300553 + 0.999548i \(0.490432\pi\)
\(80\) 0 0
\(81\) −0.142315 + 0.989821i −0.0158128 + 0.109980i
\(82\) 0 0
\(83\) −1.19490 4.92546i −0.131158 0.540640i −0.999037 0.0438654i \(-0.986033\pi\)
0.867880 0.496775i \(-0.165482\pi\)
\(84\) 0 0
\(85\) 0.275025 0.110103i 0.0298306 0.0119424i
\(86\) 0 0
\(87\) −0.234952 0.329944i −0.0251895 0.0353737i
\(88\) 0 0
\(89\) 1.25611 + 2.75050i 0.133147 + 0.291552i 0.964449 0.264270i \(-0.0851309\pi\)
−0.831301 + 0.555822i \(0.812404\pi\)
\(90\) 0 0
\(91\) −0.415683 2.89114i −0.0435755 0.303074i
\(92\) 0 0
\(93\) −4.17990 1.67338i −0.433435 0.173521i
\(94\) 0 0
\(95\) 9.09834 + 4.69052i 0.933470 + 0.481237i
\(96\) 0 0
\(97\) 5.47937 + 9.49054i 0.556345 + 0.963619i 0.997797 + 0.0663338i \(0.0211302\pi\)
−0.441452 + 0.897285i \(0.645536\pi\)
\(98\) 0 0
\(99\) −4.15728 0.396972i −0.417822 0.0398972i
\(100\) 0 0
\(101\) 0.748085 + 2.16145i 0.0744372 + 0.215072i 0.976081 0.217407i \(-0.0697600\pi\)
−0.901644 + 0.432480i \(0.857639\pi\)
\(102\) 0 0
\(103\) 0.434157 + 9.11408i 0.0427788 + 0.898037i 0.913644 + 0.406515i \(0.133256\pi\)
−0.870865 + 0.491522i \(0.836441\pi\)
\(104\) 0 0
\(105\) −0.530420 + 0.918715i −0.0517637 + 0.0896574i
\(106\) 0 0
\(107\) −7.13214 + 2.09419i −0.689490 + 0.202453i −0.607664 0.794194i \(-0.707893\pi\)
−0.0818260 + 0.996647i \(0.526075\pi\)
\(108\) 0 0
\(109\) −2.63278 1.69199i −0.252175 0.162063i 0.408446 0.912782i \(-0.366071\pi\)
−0.660621 + 0.750719i \(0.729707\pi\)
\(110\) 0 0
\(111\) 2.31574 0.221126i 0.219800 0.0209884i
\(112\) 0 0
\(113\) 3.08211 12.7046i 0.289941 1.19515i −0.621398 0.783495i \(-0.713435\pi\)
0.911339 0.411657i \(-0.135050\pi\)
\(114\) 0 0
\(115\) 0.127984 + 0.0246668i 0.0119345 + 0.00230019i
\(116\) 0 0
\(117\) −4.75344 + 3.73814i −0.439455 + 0.345592i
\(118\) 0 0
\(119\) 0.0426642 0.0492371i 0.00391102 0.00451355i
\(120\) 0 0
\(121\) 0.306453 6.43325i 0.0278594 0.584841i
\(122\) 0 0
\(123\) −1.62350 + 1.54801i −0.146386 + 0.139579i
\(124\) 0 0
\(125\) −7.44484 8.59181i −0.665887 0.768475i
\(126\) 0 0
\(127\) −9.42316 + 1.81617i −0.836171 + 0.161159i −0.589325 0.807896i \(-0.700606\pi\)
−0.246846 + 0.969055i \(0.579394\pi\)
\(128\) 0 0
\(129\) −8.52843 2.50417i −0.750887 0.220480i
\(130\) 0 0
\(131\) −3.48887 + 7.63957i −0.304824 + 0.667472i −0.998610 0.0527094i \(-0.983214\pi\)
0.693785 + 0.720182i \(0.255942\pi\)
\(132\) 0 0
\(133\) 2.25115 0.195199
\(134\) 0 0
\(135\) 2.19631 0.189028
\(136\) 0 0
\(137\) 9.39297 20.5677i 0.802495 1.75722i 0.165716 0.986174i \(-0.447007\pi\)
0.636780 0.771046i \(-0.280266\pi\)
\(138\) 0 0
\(139\) −9.73845 2.85947i −0.826004 0.242537i −0.158705 0.987326i \(-0.550732\pi\)
−0.667300 + 0.744789i \(0.732550\pi\)
\(140\) 0 0
\(141\) −1.12240 + 0.216325i −0.0945232 + 0.0182179i
\(142\) 0 0
\(143\) −16.5381 19.0860i −1.38298 1.59605i
\(144\) 0 0
\(145\) −0.643845 + 0.613905i −0.0534684 + 0.0509820i
\(146\) 0 0
\(147\) 0.321973 6.75904i 0.0265559 0.557476i
\(148\) 0 0
\(149\) −12.8096 + 14.7831i −1.04940 + 1.21108i −0.0725063 + 0.997368i \(0.523100\pi\)
−0.976897 + 0.213709i \(0.931446\pi\)
\(150\) 0 0
\(151\) −2.17354 + 1.70929i −0.176880 + 0.139100i −0.702674 0.711512i \(-0.748011\pi\)
0.525794 + 0.850612i \(0.323768\pi\)
\(152\) 0 0
\(153\) −0.132446 0.0255268i −0.0107076 0.00206372i
\(154\) 0 0
\(155\) −2.33135 + 9.60995i −0.187258 + 0.771889i
\(156\) 0 0
\(157\) −16.2488 + 1.55157i −1.29679 + 0.123829i −0.720523 0.693431i \(-0.756098\pi\)
−0.576269 + 0.817260i \(0.695492\pi\)
\(158\) 0 0
\(159\) 5.43812 + 3.49487i 0.431271 + 0.277161i
\(160\) 0 0
\(161\) 0.0275029 0.00807559i 0.00216753 0.000636446i
\(162\) 0 0
\(163\) −0.220703 + 0.382270i −0.0172868 + 0.0299417i −0.874539 0.484954i \(-0.838836\pi\)
0.857253 + 0.514896i \(0.172170\pi\)
\(164\) 0 0
\(165\) 0.436431 + 9.16181i 0.0339761 + 0.713246i
\(166\) 0 0
\(167\) −2.92282 8.44494i −0.226175 0.653489i −0.999803 0.0198492i \(-0.993681\pi\)
0.773628 0.633640i \(-0.218440\pi\)
\(168\) 0 0
\(169\) −23.4622 2.24036i −1.80478 0.172336i
\(170\) 0 0
\(171\) −2.33033 4.03625i −0.178205 0.308660i
\(172\) 0 0
\(173\) −21.6314 11.1518i −1.64461 0.847853i −0.996251 0.0865151i \(-0.972427\pi\)
−0.648355 0.761338i \(-0.724543\pi\)
\(174\) 0 0
\(175\) −0.0790205 0.0316350i −0.00597339 0.00239138i
\(176\) 0 0
\(177\) 1.38443 + 9.62891i 0.104060 + 0.723754i
\(178\) 0 0
\(179\) −2.69567 5.90270i −0.201484 0.441189i 0.781737 0.623609i \(-0.214334\pi\)
−0.983221 + 0.182420i \(0.941607\pi\)
\(180\) 0 0
\(181\) 11.6405 + 16.3468i 0.865231 + 1.21505i 0.975247 + 0.221117i \(0.0709703\pi\)
−0.110016 + 0.993930i \(0.535090\pi\)
\(182\) 0 0
\(183\) −3.96724 + 1.58824i −0.293267 + 0.117406i
\(184\) 0 0
\(185\) −1.20454 4.96519i −0.0885597 0.365048i
\(186\) 0 0
\(187\) 0.0801656 0.557564i 0.00586229 0.0407731i
\(188\) 0 0
\(189\) 0.429317 0.221328i 0.0312282 0.0160993i
\(190\) 0 0
\(191\) 4.20722 5.90822i 0.304424 0.427504i −0.633819 0.773482i \(-0.718513\pi\)
0.938243 + 0.345978i \(0.112453\pi\)
\(192\) 0 0
\(193\) −2.10693 + 1.35404i −0.151660 + 0.0974660i −0.614270 0.789096i \(-0.710549\pi\)
0.462610 + 0.886562i \(0.346913\pi\)
\(194\) 0 0
\(195\) 9.61233 + 9.16533i 0.688353 + 0.656343i
\(196\) 0 0
\(197\) 15.7977 + 12.4234i 1.12554 + 0.885133i 0.994342 0.106223i \(-0.0338758\pi\)
0.131196 + 0.991356i \(0.458118\pi\)
\(198\) 0 0
\(199\) 5.02946 14.5317i 0.356529 1.03012i −0.614035 0.789279i \(-0.710455\pi\)
0.970564 0.240843i \(-0.0774240\pi\)
\(200\) 0 0
\(201\) −8.04311 1.51931i −0.567318 0.107164i
\(202\) 0 0
\(203\) −0.0639887 + 0.184883i −0.00449113 + 0.0129763i
\(204\) 0 0
\(205\) 3.87275 + 3.04556i 0.270484 + 0.212711i
\(206\) 0 0
\(207\) −0.0429497 0.0409524i −0.00298521 0.00284639i
\(208\) 0 0
\(209\) 16.3740 10.5229i 1.13261 0.727886i
\(210\) 0 0
\(211\) −7.81143 + 10.9696i −0.537761 + 0.755180i −0.990656 0.136384i \(-0.956452\pi\)
0.452895 + 0.891564i \(0.350391\pi\)
\(212\) 0 0
\(213\) −5.29043 + 2.72740i −0.362494 + 0.186879i
\(214\) 0 0
\(215\) −2.77825 + 19.3232i −0.189475 + 1.31783i
\(216\) 0 0
\(217\) 0.512708 + 2.11341i 0.0348049 + 0.143468i
\(218\) 0 0
\(219\) 6.53469 2.61609i 0.441573 0.176779i
\(220\) 0 0
\(221\) −0.473134 0.664424i −0.0318264 0.0446940i
\(222\) 0 0
\(223\) −2.11515 4.63154i −0.141641 0.310151i 0.825495 0.564409i \(-0.190896\pi\)
−0.967136 + 0.254258i \(0.918169\pi\)
\(224\) 0 0
\(225\) 0.0250792 + 0.174429i 0.00167194 + 0.0116286i
\(226\) 0 0
\(227\) 16.1695 + 6.47329i 1.07321 + 0.429647i 0.839892 0.542754i \(-0.182618\pi\)
0.233315 + 0.972401i \(0.425043\pi\)
\(228\) 0 0
\(229\) 4.30231 + 2.21799i 0.284304 + 0.146569i 0.594481 0.804110i \(-0.297358\pi\)
−0.310176 + 0.950679i \(0.600388\pi\)
\(230\) 0 0
\(231\) 1.00857 + 1.74690i 0.0663591 + 0.114937i
\(232\) 0 0
\(233\) −4.34168 0.414580i −0.284433 0.0271601i −0.0481355 0.998841i \(-0.515328\pi\)
−0.236297 + 0.971681i \(0.575934\pi\)
\(234\) 0 0
\(235\) 0.821107 + 2.37243i 0.0535631 + 0.154760i
\(236\) 0 0
\(237\) −0.364813 7.65837i −0.0236971 0.497464i
\(238\) 0 0
\(239\) 3.76281 6.51737i 0.243396 0.421574i −0.718284 0.695750i \(-0.755072\pi\)
0.961679 + 0.274177i \(0.0884053\pi\)
\(240\) 0 0
\(241\) −12.4339 + 3.65093i −0.800940 + 0.235177i −0.656490 0.754335i \(-0.727959\pi\)
−0.144450 + 0.989512i \(0.546141\pi\)
\(242\) 0 0
\(243\) −0.841254 0.540641i −0.0539664 0.0346821i
\(244\) 0 0
\(245\) −14.7945 + 1.41270i −0.945184 + 0.0902542i
\(246\) 0 0
\(247\) 6.64464 27.3896i 0.422788 1.74276i
\(248\) 0 0
\(249\) 4.97674 + 0.959188i 0.315388 + 0.0607861i
\(250\) 0 0
\(251\) −17.5290 + 13.7849i −1.10642 + 0.870097i −0.992360 0.123377i \(-0.960628\pi\)
−0.114059 + 0.993474i \(0.536385\pi\)
\(252\) 0 0
\(253\) 0.162297 0.187300i 0.0102035 0.0117755i
\(254\) 0 0
\(255\) −0.0140959 + 0.295910i −0.000882720 + 0.0185306i
\(256\) 0 0
\(257\) 6.85758 6.53869i 0.427764 0.407872i −0.445374 0.895344i \(-0.646929\pi\)
0.873138 + 0.487472i \(0.162081\pi\)
\(258\) 0 0
\(259\) −0.735810 0.849170i −0.0457210 0.0527649i
\(260\) 0 0
\(261\) 0.397730 0.0766562i 0.0246189 0.00474490i
\(262\) 0 0
\(263\) 15.6817 + 4.60455i 0.966972 + 0.283929i 0.726836 0.686811i \(-0.240990\pi\)
0.240136 + 0.970739i \(0.422808\pi\)
\(264\) 0 0
\(265\) 5.89791 12.9146i 0.362306 0.793338i
\(266\) 0 0
\(267\) −3.02375 −0.185050
\(268\) 0 0
\(269\) −3.53092 −0.215284 −0.107642 0.994190i \(-0.534330\pi\)
−0.107642 + 0.994190i \(0.534330\pi\)
\(270\) 0 0
\(271\) 5.58754 12.2350i 0.339419 0.743224i −0.660553 0.750780i \(-0.729678\pi\)
0.999971 + 0.00755614i \(0.00240522\pi\)
\(272\) 0 0
\(273\) 2.80256 + 0.822905i 0.169618 + 0.0498045i
\(274\) 0 0
\(275\) −0.722642 + 0.139278i −0.0435769 + 0.00839876i
\(276\) 0 0
\(277\) −12.4578 14.3771i −0.748519 0.863838i 0.245904 0.969294i \(-0.420915\pi\)
−0.994424 + 0.105457i \(0.966370\pi\)
\(278\) 0 0
\(279\) 3.25855 3.10702i 0.195084 0.186012i
\(280\) 0 0
\(281\) −1.29052 + 27.0914i −0.0769860 + 1.61614i 0.548672 + 0.836038i \(0.315134\pi\)
−0.625658 + 0.780098i \(0.715169\pi\)
\(282\) 0 0
\(283\) −7.26894 + 8.38880i −0.432094 + 0.498663i −0.929483 0.368865i \(-0.879747\pi\)
0.497389 + 0.867527i \(0.334292\pi\)
\(284\) 0 0
\(285\) −8.04624 + 6.32763i −0.476618 + 0.374817i
\(286\) 0 0
\(287\) 1.06392 + 0.205054i 0.0628014 + 0.0121040i
\(288\) 0 0
\(289\) −4.00361 + 16.5031i −0.235507 + 0.970772i
\(290\) 0 0
\(291\) −10.9091 + 1.04169i −0.639504 + 0.0610652i
\(292\) 0 0
\(293\) −9.12464 5.86405i −0.533067 0.342581i 0.246255 0.969205i \(-0.420800\pi\)
−0.779322 + 0.626624i \(0.784436\pi\)
\(294\) 0 0
\(295\) 20.5001 6.01937i 1.19356 0.350461i
\(296\) 0 0
\(297\) 2.08809 3.61668i 0.121163 0.209861i
\(298\) 0 0
\(299\) −0.0170757 0.358463i −0.000987513 0.0207305i
\(300\) 0 0
\(301\) 1.40418 + 4.05711i 0.0809355 + 0.233848i
\(302\) 0 0
\(303\) −2.27689 0.217416i −0.130804 0.0124903i
\(304\) 0 0
\(305\) 4.69280 + 8.12817i 0.268709 + 0.465418i
\(306\) 0 0
\(307\) 25.9285 + 13.3671i 1.47982 + 0.762899i 0.993814 0.111058i \(-0.0354239\pi\)
0.486004 + 0.873957i \(0.338454\pi\)
\(308\) 0 0
\(309\) −8.47081 3.39120i −0.481888 0.192919i
\(310\) 0 0
\(311\) 3.52137 + 24.4917i 0.199679 + 1.38880i 0.805217 + 0.592980i \(0.202049\pi\)
−0.605538 + 0.795816i \(0.707042\pi\)
\(312\) 0 0
\(313\) −4.47873 9.80705i −0.253153 0.554327i 0.739802 0.672825i \(-0.234919\pi\)
−0.992954 + 0.118498i \(0.962192\pi\)
\(314\) 0 0
\(315\) −0.615348 0.864135i −0.0346709 0.0486885i
\(316\) 0 0
\(317\) 13.5378 5.41972i 0.760359 0.304402i 0.0411103 0.999155i \(-0.486911\pi\)
0.719249 + 0.694753i \(0.244486\pi\)
\(318\) 0 0
\(319\) 0.398802 + 1.64388i 0.0223286 + 0.0920398i
\(320\) 0 0
\(321\) 1.05786 7.35758i 0.0590440 0.410660i
\(322\) 0 0
\(323\) 0.558762 0.288062i 0.0310903 0.0160282i
\(324\) 0 0
\(325\) −0.618144 + 0.868061i −0.0342884 + 0.0481514i
\(326\) 0 0
\(327\) 2.63278 1.69199i 0.145593 0.0935671i
\(328\) 0 0
\(329\) 0.399580 + 0.380999i 0.0220296 + 0.0210051i
\(330\) 0 0
\(331\) 6.32159 + 4.97136i 0.347466 + 0.273250i 0.776605 0.629988i \(-0.216940\pi\)
−0.429138 + 0.903239i \(0.641183\pi\)
\(332\) 0 0
\(333\) −0.760849 + 2.19833i −0.0416942 + 0.120468i
\(334\) 0 0
\(335\) −0.788897 + 17.9603i −0.0431021 + 0.981273i
\(336\) 0 0
\(337\) 6.60932 19.0964i 0.360033 1.04025i −0.608970 0.793194i \(-0.708417\pi\)
0.969002 0.247052i \(-0.0794619\pi\)
\(338\) 0 0
\(339\) 10.2762 + 8.08129i 0.558126 + 0.438915i
\(340\) 0 0
\(341\) 13.6083 + 12.9755i 0.736932 + 0.702663i
\(342\) 0 0
\(343\) −5.59388 + 3.59497i −0.302041 + 0.194110i
\(344\) 0 0
\(345\) −0.0756040 + 0.106171i −0.00407038 + 0.00571605i
\(346\) 0 0
\(347\) −23.5321 + 12.1316i −1.26327 + 0.651261i −0.954026 0.299722i \(-0.903106\pi\)
−0.309243 + 0.950983i \(0.600076\pi\)
\(348\) 0 0
\(349\) 4.25964 29.6264i 0.228013 1.58587i −0.478449 0.878115i \(-0.658801\pi\)
0.706462 0.707750i \(-0.250290\pi\)
\(350\) 0 0
\(351\) −1.42569 5.87676i −0.0760975 0.313678i
\(352\) 0 0
\(353\) 19.7201 7.89475i 1.04960 0.420195i 0.218217 0.975900i \(-0.429976\pi\)
0.831379 + 0.555705i \(0.187552\pi\)
\(354\) 0 0
\(355\) 7.58287 + 10.6487i 0.402457 + 0.565172i
\(356\) 0 0
\(357\) 0.0270643 + 0.0592625i 0.00143239 + 0.00313650i
\(358\) 0 0
\(359\) −4.37756 30.4466i −0.231039 1.60691i −0.693625 0.720337i \(-0.743987\pi\)
0.462586 0.886575i \(-0.346922\pi\)
\(360\) 0 0
\(361\) 2.52679 + 1.01157i 0.132989 + 0.0532407i
\(362\) 0 0
\(363\) 5.72458 + 2.95123i 0.300463 + 0.154899i
\(364\) 0 0
\(365\) −7.72980 13.3884i −0.404596 0.700781i
\(366\) 0 0
\(367\) −3.77148 0.360133i −0.196870 0.0187988i −0.00384471 0.999993i \(-0.501224\pi\)
−0.193025 + 0.981194i \(0.561830\pi\)
\(368\) 0 0
\(369\) −0.733689 2.11985i −0.0381943 0.110355i
\(370\) 0 0
\(371\) −0.148566 3.11879i −0.00771318 0.161920i
\(372\) 0 0
\(373\) −13.3966 + 23.2035i −0.693648 + 1.20143i 0.276987 + 0.960874i \(0.410664\pi\)
−0.970634 + 0.240559i \(0.922669\pi\)
\(374\) 0 0
\(375\) 10.9081 3.20290i 0.563291 0.165397i
\(376\) 0 0
\(377\) 2.06059 + 1.32426i 0.106126 + 0.0682029i
\(378\) 0 0
\(379\) 36.7380 3.50806i 1.88711 0.180197i 0.913256 0.407386i \(-0.133560\pi\)
0.973851 + 0.227189i \(0.0729535\pi\)
\(380\) 0 0
\(381\) 2.26248 9.32607i 0.115910 0.477789i
\(382\) 0 0
\(383\) −36.3599 7.00779i −1.85790 0.358082i −0.867629 0.497211i \(-0.834357\pi\)
−0.990274 + 0.139130i \(0.955569\pi\)
\(384\) 0 0
\(385\) 3.48243 2.73861i 0.177481 0.139573i
\(386\) 0 0
\(387\) 5.82072 6.71746i 0.295884 0.341468i
\(388\) 0 0
\(389\) −0.170793 + 3.58538i −0.00865953 + 0.181786i 0.990394 + 0.138277i \(0.0441566\pi\)
−0.999053 + 0.0435084i \(0.986146\pi\)
\(390\) 0 0
\(391\) 0.00579318 0.00552379i 0.000292974 0.000279350i
\(392\) 0 0
\(393\) −5.49987 6.34718i −0.277432 0.320173i
\(394\) 0 0
\(395\) −16.5349 + 3.18684i −0.831962 + 0.160347i
\(396\) 0 0
\(397\) 13.0116 + 3.82054i 0.653032 + 0.191748i 0.591434 0.806353i \(-0.298562\pi\)
0.0615983 + 0.998101i \(0.480380\pi\)
\(398\) 0 0
\(399\) −0.935161 + 2.04772i −0.0468166 + 0.102514i
\(400\) 0 0
\(401\) 7.02365 0.350744 0.175372 0.984502i \(-0.443887\pi\)
0.175372 + 0.984502i \(0.443887\pi\)
\(402\) 0 0
\(403\) 27.2271 1.35628
\(404\) 0 0
\(405\) −0.912380 + 1.99783i −0.0453365 + 0.0992732i
\(406\) 0 0
\(407\) −9.32142 2.73702i −0.462046 0.135669i
\(408\) 0 0
\(409\) −22.4899 + 4.33457i −1.11205 + 0.214331i −0.712013 0.702167i \(-0.752216\pi\)
−0.400041 + 0.916497i \(0.631004\pi\)
\(410\) 0 0
\(411\) 14.8071 + 17.0883i 0.730380 + 0.842903i
\(412\) 0 0
\(413\) 3.40060 3.24247i 0.167333 0.159551i
\(414\) 0 0
\(415\) 0.529664 11.1190i 0.0260002 0.545811i
\(416\) 0 0
\(417\) 6.64656 7.67054i 0.325483 0.375628i
\(418\) 0 0
\(419\) 11.6102 9.13039i 0.567197 0.446049i −0.292926 0.956135i \(-0.594629\pi\)
0.860123 + 0.510086i \(0.170387\pi\)
\(420\) 0 0
\(421\) −4.52663 0.872437i −0.220614 0.0425200i 0.0777461 0.996973i \(-0.475228\pi\)
−0.298361 + 0.954453i \(0.596440\pi\)
\(422\) 0 0
\(423\) 0.269486 1.11084i 0.0131029 0.0540107i
\(424\) 0 0
\(425\) −0.0236619 + 0.00225944i −0.00114777 + 0.000109599i
\(426\) 0 0
\(427\) 1.73641 + 1.11592i 0.0840307 + 0.0540033i
\(428\) 0 0
\(429\) 24.2314 7.11497i 1.16990 0.343514i
\(430\) 0 0
\(431\) 5.60380 9.70606i 0.269925 0.467525i −0.698917 0.715203i \(-0.746334\pi\)
0.968842 + 0.247678i \(0.0796676\pi\)
\(432\) 0 0
\(433\) 1.01682 + 21.3457i 0.0488652 + 1.02581i 0.881559 + 0.472073i \(0.156494\pi\)
−0.832694 + 0.553733i \(0.813203\pi\)
\(434\) 0 0
\(435\) −0.290965 0.840688i −0.0139507 0.0403079i
\(436\) 0 0
\(437\) 0.275332 + 0.0262910i 0.0131709 + 0.00125767i
\(438\) 0 0
\(439\) −8.96338 15.5250i −0.427799 0.740969i 0.568878 0.822422i \(-0.307377\pi\)
−0.996677 + 0.0814524i \(0.974044\pi\)
\(440\) 0 0
\(441\) 6.01448 + 3.10068i 0.286404 + 0.147652i
\(442\) 0 0
\(443\) −8.06760 3.22978i −0.383303 0.153451i 0.172005 0.985096i \(-0.444975\pi\)
−0.555308 + 0.831645i \(0.687400\pi\)
\(444\) 0 0
\(445\) 0.945125 + 6.57349i 0.0448032 + 0.311613i
\(446\) 0 0
\(447\) −8.12585 17.7931i −0.384340 0.841587i
\(448\) 0 0
\(449\) 21.3969 + 30.0478i 1.00978 + 1.41804i 0.905918 + 0.423452i \(0.139182\pi\)
0.103866 + 0.994591i \(0.466879\pi\)
\(450\) 0 0
\(451\) 8.69709 3.48179i 0.409530 0.163951i
\(452\) 0 0
\(453\) −0.651905 2.68719i −0.0306292 0.126255i
\(454\) 0 0
\(455\) 0.912969 6.34984i 0.0428007 0.297685i
\(456\) 0 0
\(457\) 8.79847 4.53593i 0.411575 0.212182i −0.239989 0.970776i \(-0.577144\pi\)
0.651564 + 0.758594i \(0.274113\pi\)
\(458\) 0 0
\(459\) 0.0782399 0.109873i 0.00365193 0.00512841i
\(460\) 0 0
\(461\) 24.3709 15.6623i 1.13507 0.729464i 0.168456 0.985709i \(-0.446122\pi\)
0.966612 + 0.256245i \(0.0824854\pi\)
\(462\) 0 0
\(463\) −4.62922 4.41396i −0.215138 0.205134i 0.574845 0.818262i \(-0.305062\pi\)
−0.789983 + 0.613128i \(0.789911\pi\)
\(464\) 0 0
\(465\) −7.77304 6.11278i −0.360466 0.283474i
\(466\) 0 0
\(467\) −2.20524 + 6.37162i −0.102046 + 0.294844i −0.984454 0.175642i \(-0.943800\pi\)
0.882408 + 0.470485i \(0.155921\pi\)
\(468\) 0 0
\(469\) 1.65570 + 3.59022i 0.0764530 + 0.165781i
\(470\) 0 0
\(471\) 5.33862 15.4249i 0.245991 0.710744i
\(472\) 0 0
\(473\) 29.1783 + 22.9460i 1.34162 + 1.05506i
\(474\) 0 0
\(475\) −0.594414 0.566773i −0.0272736 0.0260053i
\(476\) 0 0
\(477\) −5.43812 + 3.49487i −0.248995 + 0.160019i
\(478\) 0 0
\(479\) −17.7194 + 24.8834i −0.809620 + 1.13695i 0.178602 + 0.983921i \(0.442843\pi\)
−0.988221 + 0.153030i \(0.951097\pi\)
\(480\) 0 0
\(481\) −12.5037 + 6.44609i −0.570118 + 0.293916i
\(482\) 0 0
\(483\) −0.00407932 + 0.0283723i −0.000185615 + 0.00129098i
\(484\) 0 0
\(485\) 5.67443 + 23.3903i 0.257663 + 1.06210i
\(486\) 0 0
\(487\) 5.47916 2.19353i 0.248285 0.0993982i −0.244182 0.969729i \(-0.578520\pi\)
0.492467 + 0.870331i \(0.336095\pi\)
\(488\) 0 0
\(489\) −0.256041 0.359559i −0.0115786 0.0162598i
\(490\) 0 0
\(491\) 13.4842 + 29.5262i 0.608532 + 1.33250i 0.923573 + 0.383422i \(0.125255\pi\)
−0.315041 + 0.949078i \(0.602018\pi\)
\(492\) 0 0
\(493\) 0.00777529 + 0.0540783i 0.000350182 + 0.00243557i
\(494\) 0 0
\(495\) −8.51518 3.40896i −0.382729 0.153222i
\(496\) 0 0
\(497\) 2.55533 + 1.31737i 0.114622 + 0.0590919i
\(498\) 0 0
\(499\) 11.3516 + 19.6615i 0.508166 + 0.880170i 0.999955 + 0.00945528i \(0.00300975\pi\)
−0.491789 + 0.870714i \(0.663657\pi\)
\(500\) 0 0
\(501\) 8.89597 + 0.849462i 0.397443 + 0.0379512i
\(502\) 0 0
\(503\) −7.08610 20.4739i −0.315953 0.912887i −0.985434 0.170058i \(-0.945605\pi\)
0.669481 0.742829i \(-0.266517\pi\)
\(504\) 0 0
\(505\) 0.239028 + 5.01781i 0.0106366 + 0.223290i
\(506\) 0 0
\(507\) 11.7844 20.4113i 0.523365 0.906496i
\(508\) 0 0
\(509\) −7.97886 + 2.34280i −0.353657 + 0.103843i −0.453735 0.891137i \(-0.649909\pi\)
0.100079 + 0.994980i \(0.468091\pi\)
\(510\) 0 0
\(511\) −2.86015 1.83810i −0.126525 0.0813129i
\(512\) 0 0
\(513\) 4.63956 0.443024i 0.204841 0.0195600i
\(514\) 0 0
\(515\) −4.72462 + 19.4751i −0.208192 + 0.858177i
\(516\) 0 0
\(517\) 4.68736 + 0.903414i 0.206150 + 0.0397321i
\(518\) 0 0
\(519\) 19.1300 15.0440i 0.839715 0.660359i
\(520\) 0 0
\(521\) 20.3842 23.5246i 0.893047 1.03063i −0.106294 0.994335i \(-0.533898\pi\)
0.999341 0.0362968i \(-0.0115562\pi\)
\(522\) 0 0
\(523\) 1.86562 39.1641i 0.0815777 1.71253i −0.473555 0.880764i \(-0.657029\pi\)
0.555133 0.831762i \(-0.312667\pi\)
\(524\) 0 0
\(525\) 0.0616025 0.0587379i 0.00268855 0.00256353i
\(526\) 0 0
\(527\) 0.397697 + 0.458966i 0.0173239 + 0.0199929i
\(528\) 0 0
\(529\) −22.5809 + 4.35211i −0.981778 + 0.189222i
\(530\) 0 0
\(531\) −9.33388 2.74067i −0.405056 0.118935i
\(532\) 0 0
\(533\) 5.63523 12.3394i 0.244089 0.534480i
\(534\) 0 0
\(535\) −16.3257 −0.705822
\(536\) 0 0
\(537\) 6.48911 0.280026
\(538\) 0 0
\(539\) −11.7392 + 25.7053i −0.505644 + 1.10721i
\(540\) 0 0
\(541\) 35.3740 + 10.3867i 1.52085 + 0.446561i 0.932234 0.361855i \(-0.117857\pi\)
0.588612 + 0.808416i \(0.299675\pi\)
\(542\) 0 0
\(543\) −19.7052 + 3.79787i −0.845631 + 0.162982i
\(544\) 0 0
\(545\) −4.50122 5.19469i −0.192811 0.222516i
\(546\) 0 0
\(547\) −6.00022 + 5.72120i −0.256551 + 0.244621i −0.807429 0.589965i \(-0.799141\pi\)
0.550878 + 0.834586i \(0.314293\pi\)
\(548\) 0 0
\(549\) 0.203334 4.26851i 0.00867809 0.182176i
\(550\) 0 0
\(551\) −1.23625 + 1.42670i −0.0526659 + 0.0607797i
\(552\) 0 0
\(553\) −2.91096 + 2.28921i −0.123787 + 0.0973470i
\(554\) 0 0
\(555\) 5.01688 + 0.966925i 0.212955 + 0.0410437i
\(556\) 0 0
\(557\) 2.26395 9.33212i 0.0959265 0.395414i −0.903525 0.428536i \(-0.859030\pi\)
0.999451 + 0.0331213i \(0.0105448\pi\)
\(558\) 0 0
\(559\) 53.5072 5.10932i 2.26311 0.216101i
\(560\) 0 0
\(561\) 0.473876 + 0.304542i 0.0200071 + 0.0128578i
\(562\) 0 0
\(563\) −0.582858 + 0.171143i −0.0245645 + 0.00721280i −0.293992 0.955808i \(-0.594984\pi\)
0.269427 + 0.963021i \(0.413166\pi\)
\(564\) 0 0
\(565\) 14.3563 24.8659i 0.603976 1.04612i
\(566\) 0 0
\(567\) 0.0229826 + 0.482463i 0.000965177 + 0.0202616i
\(568\) 0 0
\(569\) 10.8527 + 31.3569i 0.454970 + 1.31455i 0.906467 + 0.422276i \(0.138769\pi\)
−0.451497 + 0.892272i \(0.649110\pi\)
\(570\) 0 0
\(571\) −20.9268 1.99827i −0.875759 0.0836249i −0.352513 0.935807i \(-0.614673\pi\)
−0.523246 + 0.852182i \(0.675279\pi\)
\(572\) 0 0
\(573\) 3.62656 + 6.28138i 0.151502 + 0.262409i
\(574\) 0 0
\(575\) −0.00929533 0.00479208i −0.000387642 0.000199843i
\(576\) 0 0
\(577\) −8.04078 3.21904i −0.334742 0.134010i 0.198202 0.980161i \(-0.436490\pi\)
−0.532944 + 0.846151i \(0.678914\pi\)
\(578\) 0 0
\(579\) −0.356429 2.47902i −0.0148127 0.103024i
\(580\) 0 0
\(581\) −1.01696 2.22683i −0.0421906 0.0923846i
\(582\) 0 0
\(583\) −15.6593 21.9904i −0.648543 0.910751i
\(584\) 0 0
\(585\) −12.3302 + 4.93626i −0.509790 + 0.204089i
\(586\) 0 0
\(587\) 8.01395 + 33.0339i 0.330771 + 1.36346i 0.857964 + 0.513711i \(0.171730\pi\)
−0.527193 + 0.849746i \(0.676755\pi\)
\(588\) 0 0
\(589\) −2.98637 + 20.7706i −0.123051 + 0.855839i
\(590\) 0 0
\(591\) −17.8634 + 9.20920i −0.734800 + 0.378816i
\(592\) 0 0
\(593\) −10.1218 + 14.2141i −0.415654 + 0.583704i −0.968324 0.249696i \(-0.919669\pi\)
0.552671 + 0.833400i \(0.313609\pi\)
\(594\) 0 0
\(595\) 0.120375 0.0773600i 0.00493488 0.00317145i
\(596\) 0 0
\(597\) 11.1291 + 10.6116i 0.455486 + 0.434305i
\(598\) 0 0
\(599\) −34.2984 26.9726i −1.40140 1.10207i −0.980843 0.194802i \(-0.937594\pi\)
−0.420553 0.907268i \(-0.638164\pi\)
\(600\) 0 0
\(601\) −7.55287 + 21.8226i −0.308088 + 0.890162i 0.679580 + 0.733601i \(0.262162\pi\)
−0.987668 + 0.156561i \(0.949959\pi\)
\(602\) 0 0
\(603\) 4.72324 6.68513i 0.192345 0.272240i
\(604\) 0 0
\(605\) 4.62652 13.3674i 0.188095 0.543464i
\(606\) 0 0
\(607\) −29.0363 22.8344i −1.17855 0.926818i −0.180161 0.983637i \(-0.557662\pi\)
−0.998384 + 0.0568190i \(0.981904\pi\)
\(608\) 0 0
\(609\) −0.141594 0.135009i −0.00573767 0.00547086i
\(610\) 0 0
\(611\) 5.81501 3.73708i 0.235250 0.151186i
\(612\) 0 0
\(613\) 8.07328 11.3373i 0.326077 0.457911i −0.618699 0.785628i \(-0.712340\pi\)
0.944776 + 0.327717i \(0.106279\pi\)
\(614\) 0 0
\(615\) −4.37914 + 2.25760i −0.176584 + 0.0910353i
\(616\) 0 0
\(617\) −1.59780 + 11.1129i −0.0643250 + 0.447390i 0.932051 + 0.362328i \(0.118018\pi\)
−0.996376 + 0.0850622i \(0.972891\pi\)
\(618\) 0 0
\(619\) 6.10170 + 25.1516i 0.245248 + 1.01093i 0.952639 + 0.304104i \(0.0983570\pi\)
−0.707391 + 0.706823i \(0.750128\pi\)
\(620\) 0 0
\(621\) 0.0550936 0.0220561i 0.00221083 0.000885082i
\(622\) 0 0
\(623\) 0.847174 + 1.18969i 0.0339413 + 0.0476639i
\(624\) 0 0
\(625\) −10.0064 21.9111i −0.400258 0.876442i
\(626\) 0 0
\(627\) 2.76999 + 19.2657i 0.110623 + 0.769397i
\(628\) 0 0
\(629\) −0.291298 0.116618i −0.0116148 0.00464988i
\(630\) 0 0
\(631\) 6.57686 + 3.39060i 0.261821 + 0.134978i 0.584140 0.811653i \(-0.301432\pi\)
−0.322319 + 0.946631i \(0.604462\pi\)
\(632\) 0 0
\(633\) −6.73333 11.6625i −0.267626 0.463542i
\(634\) 0 0
\(635\) −20.9816 2.00350i −0.832631 0.0795066i
\(636\) 0 0
\(637\) 13.3835 + 38.6692i 0.530275 + 1.53213i
\(638\) 0 0
\(639\) −0.283212 5.94535i −0.0112037 0.235194i
\(640\) 0 0
\(641\) −10.7777 + 18.6676i −0.425695 + 0.737326i −0.996485 0.0837702i \(-0.973304\pi\)
0.570790 + 0.821096i \(0.306637\pi\)
\(642\) 0 0
\(643\) −43.4029 + 12.7442i −1.71164 + 0.502583i −0.983201 0.182526i \(-0.941573\pi\)
−0.728440 + 0.685109i \(0.759755\pi\)
\(644\) 0 0
\(645\) −16.4228 10.5543i −0.646648 0.415576i
\(646\) 0 0
\(647\) −47.0520 + 4.49292i −1.84980 + 0.176635i −0.960055 0.279813i \(-0.909728\pi\)
−0.889750 + 0.456448i \(0.849121\pi\)
\(648\) 0 0
\(649\) 9.57786 39.4805i 0.375964 1.54974i
\(650\) 0 0
\(651\) −2.13541 0.411567i −0.0836934 0.0161306i
\(652\) 0 0
\(653\) −7.81203 + 6.14345i −0.305708 + 0.240412i −0.759213 0.650842i \(-0.774416\pi\)
0.453505 + 0.891254i \(0.350174\pi\)
\(654\) 0 0
\(655\) −12.0794 + 13.9404i −0.471982 + 0.544696i
\(656\) 0 0
\(657\) −0.334924 + 7.03092i −0.0130666 + 0.274302i
\(658\) 0 0
\(659\) −9.76423 + 9.31018i −0.380361 + 0.362673i −0.856008 0.516963i \(-0.827062\pi\)
0.475647 + 0.879636i \(0.342214\pi\)
\(660\) 0 0
\(661\) 13.3705 + 15.4303i 0.520051 + 0.600171i 0.953644 0.300938i \(-0.0972998\pi\)
−0.433593 + 0.901109i \(0.642754\pi\)
\(662\) 0 0
\(663\) 0.800928 0.154366i 0.0311055 0.00599509i
\(664\) 0 0
\(665\) 4.74394 + 1.39295i 0.183962 + 0.0540162i
\(666\) 0 0
\(667\) −0.00998554 + 0.0218653i −0.000386642 + 0.000846627i
\(668\) 0 0
\(669\) 5.09166 0.196855
\(670\) 0 0
\(671\) 17.8463 0.688949
\(672\) 0 0
\(673\) 7.65772 16.7681i 0.295183 0.646362i −0.702693 0.711493i \(-0.748019\pi\)
0.997877 + 0.0651314i \(0.0207467\pi\)
\(674\) 0 0
\(675\) −0.169085 0.0496478i −0.00650808 0.00191094i
\(676\) 0 0
\(677\) −40.7653 + 7.85687i −1.56674 + 0.301964i −0.897477 0.441062i \(-0.854602\pi\)
−0.669262 + 0.743026i \(0.733390\pi\)
\(678\) 0 0
\(679\) 3.46630 + 4.00032i 0.133024 + 0.153518i
\(680\) 0 0
\(681\) −12.6054 + 12.0192i −0.483038 + 0.460576i
\(682\) 0 0
\(683\) −2.10518 + 44.1931i −0.0805523 + 1.69100i 0.491575 + 0.870835i \(0.336421\pi\)
−0.572127 + 0.820165i \(0.693882\pi\)
\(684\) 0 0
\(685\) 32.5209 37.5312i 1.24256 1.43399i
\(686\) 0 0
\(687\) −3.80480 + 2.99213i −0.145162 + 0.114157i
\(688\) 0 0
\(689\) −38.3847 7.39804i −1.46234 0.281843i
\(690\) 0 0
\(691\) 1.46240 6.02809i 0.0556323 0.229320i −0.937208 0.348772i \(-0.886599\pi\)
0.992840 + 0.119452i \(0.0381139\pi\)
\(692\) 0 0
\(693\) −2.00801 + 0.191742i −0.0762779 + 0.00728366i
\(694\) 0 0
\(695\) −18.7529 12.0518i −0.711338 0.457149i
\(696\) 0 0
\(697\) 0.290318 0.0852449i 0.0109966 0.00322888i
\(698\) 0 0
\(699\) 2.18071 3.77711i 0.0824822 0.142863i
\(700\) 0 0
\(701\) −1.35044 28.3492i −0.0510054 1.07073i −0.868781 0.495197i \(-0.835096\pi\)
0.817775 0.575537i \(-0.195207\pi\)
\(702\) 0 0
\(703\) −3.54606 10.2457i −0.133742 0.386422i
\(704\) 0 0
\(705\) −2.49914 0.238639i −0.0941231 0.00898766i
\(706\) 0 0
\(707\) 0.552382 + 0.956753i 0.0207745 + 0.0359824i
\(708\) 0 0
\(709\) −3.50226 1.80554i −0.131530 0.0678085i 0.391205 0.920303i \(-0.372058\pi\)
−0.522736 + 0.852495i \(0.675088\pi\)
\(710\) 0 0
\(711\) 7.11784 + 2.84955i 0.266940 + 0.106867i
\(712\) 0 0
\(713\) 0.0380256 + 0.264474i 0.00142407 + 0.00990463i
\(714\) 0 0
\(715\) −23.0415 50.4540i −0.861705 1.88687i
\(716\) 0 0
\(717\) 4.36529 + 6.13019i 0.163025 + 0.228936i
\(718\) 0 0
\(719\) −14.2817 + 5.71755i −0.532619 + 0.213229i −0.622352 0.782737i \(-0.713823\pi\)
0.0897330 + 0.995966i \(0.471399\pi\)
\(720\) 0 0
\(721\) 1.03903 + 4.28296i 0.0386956 + 0.159506i
\(722\) 0 0
\(723\) 1.84424 12.8270i 0.0685879 0.477039i
\(724\) 0 0
\(725\) 0.0634444 0.0327079i 0.00235627 0.00121474i
\(726\) 0 0
\(727\) −5.98223 + 8.40087i −0.221869 + 0.311571i −0.910475 0.413565i \(-0.864284\pi\)
0.688606 + 0.725136i \(0.258223\pi\)
\(728\) 0 0
\(729\) 0.841254 0.540641i 0.0311575 0.0200237i
\(730\) 0 0
\(731\) 0.867689 + 0.827340i 0.0320926 + 0.0306003i
\(732\) 0 0
\(733\) −39.2262 30.8478i −1.44885 1.13939i −0.964360 0.264593i \(-0.914762\pi\)
−0.484491 0.874796i \(-0.660995\pi\)
\(734\) 0 0
\(735\) 4.86081 14.0444i 0.179294 0.518035i
\(736\) 0 0
\(737\) 28.8253 + 18.3744i 1.06179 + 0.676830i
\(738\) 0 0
\(739\) 12.0190 34.7268i 0.442128 1.27744i −0.475399 0.879770i \(-0.657696\pi\)
0.917527 0.397674i \(-0.130182\pi\)
\(740\) 0 0
\(741\) 22.1542 + 17.4222i 0.813853 + 0.640021i
\(742\) 0 0
\(743\) 14.7421 + 14.0565i 0.540834 + 0.515684i 0.910516 0.413474i \(-0.135685\pi\)
−0.369682 + 0.929158i \(0.620533\pi\)
\(744\) 0 0
\(745\) −36.1416 + 23.2268i −1.32413 + 0.850964i
\(746\) 0 0
\(747\) −2.93992 + 4.12854i −0.107566 + 0.151055i
\(748\) 0 0
\(749\) −3.19122 + 1.64519i −0.116604 + 0.0601138i
\(750\) 0 0
\(751\) −0.557020 + 3.87416i −0.0203260 + 0.141370i −0.997457 0.0712664i \(-0.977296\pi\)
0.977131 + 0.212637i \(0.0682050\pi\)
\(752\) 0 0
\(753\) −5.25742 21.6714i −0.191591 0.789749i
\(754\) 0 0
\(755\) −5.63806 + 2.25714i −0.205190 + 0.0821457i
\(756\) 0 0
\(757\) 14.6848 + 20.6219i 0.533727 + 0.749514i 0.990114 0.140267i \(-0.0447961\pi\)
−0.456387 + 0.889781i \(0.650857\pi\)
\(758\) 0 0
\(759\) 0.102954 + 0.225438i 0.00373699 + 0.00818287i
\(760\) 0 0
\(761\) −1.41798 9.86226i −0.0514017 0.357507i −0.999248 0.0387784i \(-0.987653\pi\)
0.947846 0.318728i \(-0.103256\pi\)
\(762\) 0 0
\(763\) −1.40335 0.561815i −0.0508045 0.0203391i
\(764\) 0 0
\(765\) −0.263313 0.135747i −0.00952011 0.00490796i
\(766\) 0 0
\(767\) −29.4135 50.9456i −1.06206 1.83954i
\(768\) 0 0
\(769\) 39.4517 + 3.76719i 1.42267 + 0.135848i 0.777831 0.628473i \(-0.216320\pi\)
0.644835 + 0.764322i \(0.276926\pi\)
\(770\) 0 0
\(771\) 3.09906 + 8.95414i 0.111610 + 0.322476i
\(772\) 0 0
\(773\) −0.911187 19.1282i −0.0327731 0.687992i −0.954151 0.299325i \(-0.903239\pi\)
0.921378 0.388667i \(-0.127064\pi\)
\(774\) 0 0
\(775\) 0.396715 0.687130i 0.0142504 0.0246824i
\(776\) 0 0
\(777\) 1.07810 0.316558i 0.0386766 0.0113565i