Properties

Label 804.2.y.b.73.1
Level 804
Weight 2
Character 804.73
Analytic conductor 6.420
Analytic rank 0
Dimension 120
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.y (of order \(33\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(6\) over \(\Q(\zeta_{33})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

Embedding invariants

Embedding label 73.1
Character \(\chi\) = 804.73
Dual form 804.2.y.b.793.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.415415 + 0.909632i) q^{3} +(-3.13336 - 0.920039i) q^{5} +(-2.56141 + 0.493671i) q^{7} +(-0.654861 - 0.755750i) q^{9} +O(q^{10})\) \(q+(-0.415415 + 0.909632i) q^{3} +(-3.13336 - 0.920039i) q^{5} +(-2.56141 + 0.493671i) q^{7} +(-0.654861 - 0.755750i) q^{9} +(-1.04793 + 0.999195i) q^{11} +(-0.0752496 + 1.57968i) q^{13} +(2.13854 - 2.46801i) q^{15} +(6.09133 - 4.79027i) q^{17} +(6.41011 + 1.23545i) q^{19} +(0.614989 - 2.53502i) q^{21} +(2.94684 - 0.281389i) q^{23} +(4.76523 + 3.06243i) q^{25} +(0.959493 - 0.281733i) q^{27} +(2.68992 - 4.65909i) q^{29} +(-0.0686466 - 1.44107i) q^{31} +(-0.473576 - 1.36831i) q^{33} +(8.48003 + 0.809745i) q^{35} +(-0.917976 - 1.58998i) q^{37} +(-1.40567 - 0.724673i) q^{39} +(-0.463871 - 0.185706i) q^{41} +(0.294267 + 2.04667i) q^{43} +(1.35660 + 2.97054i) q^{45} +(-4.84236 - 6.80014i) q^{47} +(-0.181462 + 0.0726464i) q^{49} +(1.82696 + 7.53082i) q^{51} +(1.33800 - 9.30602i) q^{53} +(4.20283 - 2.16671i) q^{55} +(-3.78666 + 5.31762i) q^{57} +(-0.211108 + 0.135671i) q^{59} +(5.09947 + 4.86234i) q^{61} +(2.05046 + 1.61250i) q^{63} +(1.68915 - 4.88049i) q^{65} +(-1.16988 + 8.10132i) q^{67} +(-0.968202 + 2.79744i) q^{69} +(0.989232 + 0.777940i) q^{71} +(1.98241 + 1.89022i) q^{73} +(-4.76523 + 3.06243i) q^{75} +(2.19089 - 3.07668i) q^{77} +(12.0326 - 6.20325i) q^{79} +(-0.142315 + 0.989821i) q^{81} +(3.33870 + 13.7623i) q^{83} +(-23.4936 + 9.40541i) q^{85} +(3.12062 + 4.38230i) q^{87} +(-3.98045 - 8.71598i) q^{89} +(-0.587099 - 4.08336i) q^{91} +(1.33936 + 0.536198i) q^{93} +(-18.9485 - 9.76865i) q^{95} +(-6.62571 - 11.4761i) q^{97} +(1.44139 + 0.137636i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + O(q^{10}) \) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + 11q^{11} + 2q^{13} - 9q^{15} + 48q^{17} - 4q^{19} - q^{21} + 22q^{23} - 42q^{25} + 12q^{27} - q^{29} + 27q^{31} + 17q^{35} - 8q^{37} - 2q^{39} - 58q^{41} - 17q^{43} - 2q^{45} - 84q^{47} + 101q^{49} - 26q^{51} + 28q^{53} - 9q^{55} + 26q^{57} + 34q^{59} + 16q^{61} + 12q^{63} + 144q^{65} + 23q^{67} + 11q^{69} + 173q^{71} - 2q^{73} + 42q^{75} + 128q^{77} + 31q^{79} - 12q^{81} + 47q^{83} - 75q^{85} - 10q^{87} - 67q^{89} + 16q^{91} + 6q^{93} - 79q^{95} + 10q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(e\left(\frac{20}{33}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.415415 + 0.909632i −0.239840 + 0.525176i
\(4\) 0 0
\(5\) −3.13336 0.920039i −1.40128 0.411454i −0.508159 0.861264i \(-0.669674\pi\)
−0.893124 + 0.449810i \(0.851492\pi\)
\(6\) 0 0
\(7\) −2.56141 + 0.493671i −0.968122 + 0.186590i −0.648719 0.761028i \(-0.724695\pi\)
−0.319404 + 0.947619i \(0.603483\pi\)
\(8\) 0 0
\(9\) −0.654861 0.755750i −0.218287 0.251917i
\(10\) 0 0
\(11\) −1.04793 + 0.999195i −0.315962 + 0.301269i −0.831418 0.555647i \(-0.812471\pi\)
0.515457 + 0.856916i \(0.327622\pi\)
\(12\) 0 0
\(13\) −0.0752496 + 1.57968i −0.0208705 + 0.438125i 0.964115 + 0.265486i \(0.0855324\pi\)
−0.984985 + 0.172639i \(0.944771\pi\)
\(14\) 0 0
\(15\) 2.13854 2.46801i 0.552169 0.637237i
\(16\) 0 0
\(17\) 6.09133 4.79027i 1.47736 1.16181i 0.527331 0.849660i \(-0.323193\pi\)
0.950032 0.312152i \(-0.101050\pi\)
\(18\) 0 0
\(19\) 6.41011 + 1.23545i 1.47058 + 0.283431i 0.860720 0.509078i \(-0.170014\pi\)
0.609860 + 0.792509i \(0.291226\pi\)
\(20\) 0 0
\(21\) 0.614989 2.53502i 0.134202 0.553187i
\(22\) 0 0
\(23\) 2.94684 0.281389i 0.614459 0.0586737i 0.216814 0.976213i \(-0.430434\pi\)
0.397645 + 0.917539i \(0.369827\pi\)
\(24\) 0 0
\(25\) 4.76523 + 3.06243i 0.953046 + 0.612486i
\(26\) 0 0
\(27\) 0.959493 0.281733i 0.184655 0.0542195i
\(28\) 0 0
\(29\) 2.68992 4.65909i 0.499506 0.865170i −0.500493 0.865740i \(-0.666848\pi\)
1.00000 0.000569879i \(0.000181398\pi\)
\(30\) 0 0
\(31\) −0.0686466 1.44107i −0.0123293 0.258824i −0.996613 0.0822309i \(-0.973796\pi\)
0.984284 0.176593i \(-0.0565075\pi\)
\(32\) 0 0
\(33\) −0.473576 1.36831i −0.0824390 0.238192i
\(34\) 0 0
\(35\) 8.48003 + 0.809745i 1.43339 + 0.136872i
\(36\) 0 0
\(37\) −0.917976 1.58998i −0.150914 0.261391i 0.780649 0.624969i \(-0.214888\pi\)
−0.931564 + 0.363578i \(0.881555\pi\)
\(38\) 0 0
\(39\) −1.40567 0.724673i −0.225087 0.116041i
\(40\) 0 0
\(41\) −0.463871 0.185706i −0.0724444 0.0290024i 0.335157 0.942162i \(-0.391211\pi\)
−0.407602 + 0.913160i \(0.633635\pi\)
\(42\) 0 0
\(43\) 0.294267 + 2.04667i 0.0448753 + 0.312114i 0.999880 + 0.0155222i \(0.00494106\pi\)
−0.955004 + 0.296592i \(0.904150\pi\)
\(44\) 0 0
\(45\) 1.35660 + 2.97054i 0.202230 + 0.442821i
\(46\) 0 0
\(47\) −4.84236 6.80014i −0.706330 0.991902i −0.999359 0.0357983i \(-0.988603\pi\)
0.293029 0.956104i \(-0.405337\pi\)
\(48\) 0 0
\(49\) −0.181462 + 0.0726464i −0.0259231 + 0.0103781i
\(50\) 0 0
\(51\) 1.82696 + 7.53082i 0.255825 + 1.05453i
\(52\) 0 0
\(53\) 1.33800 9.30602i 0.183789 1.27828i −0.663914 0.747809i \(-0.731106\pi\)
0.847703 0.530471i \(-0.177985\pi\)
\(54\) 0 0
\(55\) 4.20283 2.16671i 0.566710 0.292159i
\(56\) 0 0
\(57\) −3.78666 + 5.31762i −0.501555 + 0.704336i
\(58\) 0 0
\(59\) −0.211108 + 0.135671i −0.0274839 + 0.0176628i −0.554311 0.832310i \(-0.687018\pi\)
0.526827 + 0.849973i \(0.323382\pi\)
\(60\) 0 0
\(61\) 5.09947 + 4.86234i 0.652921 + 0.622559i 0.942345 0.334642i \(-0.108615\pi\)
−0.289424 + 0.957201i \(0.593464\pi\)
\(62\) 0 0
\(63\) 2.05046 + 1.61250i 0.258334 + 0.203156i
\(64\) 0 0
\(65\) 1.68915 4.88049i 0.209514 0.605350i
\(66\) 0 0
\(67\) −1.16988 + 8.10132i −0.142924 + 0.989734i
\(68\) 0 0
\(69\) −0.968202 + 2.79744i −0.116558 + 0.336772i
\(70\) 0 0
\(71\) 0.989232 + 0.777940i 0.117400 + 0.0923245i 0.675133 0.737696i \(-0.264086\pi\)
−0.557733 + 0.830021i \(0.688329\pi\)
\(72\) 0 0
\(73\) 1.98241 + 1.89022i 0.232023 + 0.221234i 0.797167 0.603759i \(-0.206331\pi\)
−0.565144 + 0.824992i \(0.691179\pi\)
\(74\) 0 0
\(75\) −4.76523 + 3.06243i −0.550241 + 0.353619i
\(76\) 0 0
\(77\) 2.19089 3.07668i 0.249676 0.350620i
\(78\) 0 0
\(79\) 12.0326 6.20325i 1.35378 0.697920i 0.379906 0.925025i \(-0.375956\pi\)
0.973870 + 0.227104i \(0.0729259\pi\)
\(80\) 0 0
\(81\) −0.142315 + 0.989821i −0.0158128 + 0.109980i
\(82\) 0 0
\(83\) 3.33870 + 13.7623i 0.366470 + 1.51061i 0.794735 + 0.606956i \(0.207610\pi\)
−0.428266 + 0.903653i \(0.640875\pi\)
\(84\) 0 0
\(85\) −23.4936 + 9.40541i −2.54824 + 1.02016i
\(86\) 0 0
\(87\) 3.12062 + 4.38230i 0.334565 + 0.469831i
\(88\) 0 0
\(89\) −3.98045 8.71598i −0.421927 0.923892i −0.994568 0.104086i \(-0.966808\pi\)
0.572641 0.819806i \(-0.305919\pi\)
\(90\) 0 0
\(91\) −0.587099 4.08336i −0.0615447 0.428053i
\(92\) 0 0
\(93\) 1.33936 + 0.536198i 0.138885 + 0.0556012i
\(94\) 0 0
\(95\) −18.9485 9.76865i −1.94408 1.00224i
\(96\) 0 0
\(97\) −6.62571 11.4761i −0.672739 1.16522i −0.977124 0.212669i \(-0.931784\pi\)
0.304385 0.952549i \(-0.401549\pi\)
\(98\) 0 0
\(99\) 1.44139 + 0.137636i 0.144865 + 0.0138329i
\(100\) 0 0
\(101\) 2.98089 + 8.61270i 0.296609 + 0.856996i 0.990573 + 0.136986i \(0.0437416\pi\)
−0.693964 + 0.720010i \(0.744137\pi\)
\(102\) 0 0
\(103\) −0.181157 3.80296i −0.0178500 0.374717i −0.990064 0.140621i \(-0.955090\pi\)
0.972214 0.234096i \(-0.0752129\pi\)
\(104\) 0 0
\(105\) −4.25930 + 7.37733i −0.415665 + 0.719953i
\(106\) 0 0
\(107\) 15.6956 4.60864i 1.51735 0.445534i 0.586198 0.810168i \(-0.300624\pi\)
0.931151 + 0.364635i \(0.118806\pi\)
\(108\) 0 0
\(109\) −4.58320 2.94544i −0.438991 0.282122i 0.302419 0.953175i \(-0.402206\pi\)
−0.741409 + 0.671053i \(0.765842\pi\)
\(110\) 0 0
\(111\) 1.82764 0.174518i 0.173472 0.0165646i
\(112\) 0 0
\(113\) 2.16272 8.91484i 0.203451 0.838638i −0.774967 0.632002i \(-0.782233\pi\)
0.978418 0.206636i \(-0.0662515\pi\)
\(114\) 0 0
\(115\) −9.49242 1.82951i −0.885173 0.170603i
\(116\) 0 0
\(117\) 1.24312 0.977602i 0.114927 0.0903794i
\(118\) 0 0
\(119\) −13.2376 + 15.2770i −1.21349 + 1.40044i
\(120\) 0 0
\(121\) −0.423644 + 8.89337i −0.0385131 + 0.808489i
\(122\) 0 0
\(123\) 0.361623 0.344807i 0.0326064 0.0310902i
\(124\) 0 0
\(125\) −1.42093 1.63985i −0.127092 0.146672i
\(126\) 0 0
\(127\) 17.7596 3.42288i 1.57591 0.303732i 0.675026 0.737794i \(-0.264132\pi\)
0.900883 + 0.434062i \(0.142920\pi\)
\(128\) 0 0
\(129\) −1.98396 0.582543i −0.174678 0.0512901i
\(130\) 0 0
\(131\) 3.24732 7.11064i 0.283720 0.621259i −0.713090 0.701072i \(-0.752705\pi\)
0.996810 + 0.0798129i \(0.0254323\pi\)
\(132\) 0 0
\(133\) −17.0288 −1.47659
\(134\) 0 0
\(135\) −3.26565 −0.281062
\(136\) 0 0
\(137\) 2.33755 5.11851i 0.199710 0.437304i −0.783107 0.621887i \(-0.786366\pi\)
0.982817 + 0.184583i \(0.0590935\pi\)
\(138\) 0 0
\(139\) 17.1653 + 5.04019i 1.45594 + 0.427503i 0.911501 0.411297i \(-0.134924\pi\)
0.544440 + 0.838800i \(0.316742\pi\)
\(140\) 0 0
\(141\) 8.19721 1.57988i 0.690330 0.133050i
\(142\) 0 0
\(143\) −1.49956 1.73058i −0.125399 0.144718i
\(144\) 0 0
\(145\) −12.7151 + 12.1238i −1.05593 + 1.00682i
\(146\) 0 0
\(147\) 0.00930053 0.195242i 0.000767095 0.0161033i
\(148\) 0 0
\(149\) 6.53331 7.53984i 0.535230 0.617688i −0.422148 0.906527i \(-0.638724\pi\)
0.957378 + 0.288839i \(0.0932692\pi\)
\(150\) 0 0
\(151\) −1.76274 + 1.38624i −0.143450 + 0.112810i −0.687305 0.726369i \(-0.741206\pi\)
0.543855 + 0.839179i \(0.316964\pi\)
\(152\) 0 0
\(153\) −7.60922 1.46656i −0.615169 0.118564i
\(154\) 0 0
\(155\) −1.11074 + 4.57855i −0.0892171 + 0.367758i
\(156\) 0 0
\(157\) −15.6810 + 1.49735i −1.25148 + 0.119502i −0.699669 0.714468i \(-0.746669\pi\)
−0.551811 + 0.833969i \(0.686063\pi\)
\(158\) 0 0
\(159\) 7.90923 + 5.08295i 0.627242 + 0.403104i
\(160\) 0 0
\(161\) −7.40916 + 2.17553i −0.583924 + 0.171455i
\(162\) 0 0
\(163\) 6.47975 11.2233i 0.507533 0.879074i −0.492429 0.870353i \(-0.663891\pi\)
0.999962 0.00872084i \(-0.00277596\pi\)
\(164\) 0 0
\(165\) 0.224990 + 4.72311i 0.0175154 + 0.367694i
\(166\) 0 0
\(167\) −1.54251 4.45680i −0.119363 0.344878i 0.869453 0.494016i \(-0.164471\pi\)
−0.988816 + 0.149138i \(0.952350\pi\)
\(168\) 0 0
\(169\) 10.4514 + 0.997988i 0.803954 + 0.0767683i
\(170\) 0 0
\(171\) −3.26404 5.65348i −0.249607 0.432333i
\(172\) 0 0
\(173\) −22.5992 11.6507i −1.71818 0.885784i −0.976641 0.214876i \(-0.931065\pi\)
−0.741541 0.670908i \(-0.765905\pi\)
\(174\) 0 0
\(175\) −13.7175 5.49168i −1.03695 0.415132i
\(176\) 0 0
\(177\) −0.0357131 0.248390i −0.00268436 0.0186702i
\(178\) 0 0
\(179\) 1.58074 + 3.46134i 0.118150 + 0.258713i 0.959462 0.281837i \(-0.0909436\pi\)
−0.841312 + 0.540550i \(0.818216\pi\)
\(180\) 0 0
\(181\) −3.03436 4.26116i −0.225542 0.316730i 0.686262 0.727354i \(-0.259250\pi\)
−0.911805 + 0.410624i \(0.865311\pi\)
\(182\) 0 0
\(183\) −6.54134 + 2.61876i −0.483550 + 0.193584i
\(184\) 0 0
\(185\) 1.41351 + 5.82656i 0.103923 + 0.428378i
\(186\) 0 0
\(187\) −1.59684 + 11.1063i −0.116773 + 0.812171i
\(188\) 0 0
\(189\) −2.31857 + 1.19531i −0.168651 + 0.0869458i
\(190\) 0 0
\(191\) 0.669604 0.940327i 0.0484508 0.0680396i −0.789640 0.613571i \(-0.789733\pi\)
0.838091 + 0.545531i \(0.183672\pi\)
\(192\) 0 0
\(193\) −13.1371 + 8.44270i −0.945629 + 0.607719i −0.919986 0.391952i \(-0.871800\pi\)
−0.0256434 + 0.999671i \(0.508163\pi\)
\(194\) 0 0
\(195\) 3.73775 + 3.56394i 0.267666 + 0.255219i
\(196\) 0 0
\(197\) −10.7577 8.45995i −0.766454 0.602746i 0.156490 0.987679i \(-0.449982\pi\)
−0.922944 + 0.384933i \(0.874224\pi\)
\(198\) 0 0
\(199\) −1.30128 + 3.75980i −0.0922453 + 0.266525i −0.981680 0.190537i \(-0.938977\pi\)
0.889435 + 0.457062i \(0.151098\pi\)
\(200\) 0 0
\(201\) −6.88323 4.42957i −0.485506 0.312438i
\(202\) 0 0
\(203\) −4.58994 + 13.2618i −0.322151 + 0.930794i
\(204\) 0 0
\(205\) 1.28262 + 1.00866i 0.0895820 + 0.0704481i
\(206\) 0 0
\(207\) −2.14243 2.04280i −0.148909 0.141985i
\(208\) 0 0
\(209\) −7.95177 + 5.11029i −0.550036 + 0.353486i
\(210\) 0 0
\(211\) 7.63412 10.7206i 0.525554 0.738038i −0.463418 0.886140i \(-0.653377\pi\)
0.988972 + 0.148102i \(0.0473164\pi\)
\(212\) 0 0
\(213\) −1.11858 + 0.576669i −0.0766439 + 0.0395127i
\(214\) 0 0
\(215\) 0.960971 6.68370i 0.0655377 0.455824i
\(216\) 0 0
\(217\) 0.887246 + 3.65728i 0.0602302 + 0.248272i
\(218\) 0 0
\(219\) −2.54293 + 1.01804i −0.171835 + 0.0687924i
\(220\) 0 0
\(221\) 7.10874 + 9.98283i 0.478186 + 0.671518i
\(222\) 0 0
\(223\) −4.15036 9.08803i −0.277929 0.608580i 0.718262 0.695772i \(-0.244938\pi\)
−0.996191 + 0.0871926i \(0.972210\pi\)
\(224\) 0 0
\(225\) −0.806134 5.60678i −0.0537423 0.373786i
\(226\) 0 0
\(227\) 14.1563 + 5.66734i 0.939589 + 0.376155i 0.790356 0.612647i \(-0.209895\pi\)
0.149233 + 0.988802i \(0.452320\pi\)
\(228\) 0 0
\(229\) −0.389309 0.200703i −0.0257262 0.0132628i 0.445315 0.895374i \(-0.353092\pi\)
−0.471042 + 0.882111i \(0.656122\pi\)
\(230\) 0 0
\(231\) 1.88852 + 3.27101i 0.124255 + 0.215216i
\(232\) 0 0
\(233\) −10.8167 1.03287i −0.708626 0.0676656i −0.265482 0.964116i \(-0.585531\pi\)
−0.443144 + 0.896450i \(0.646137\pi\)
\(234\) 0 0
\(235\) 8.91647 + 25.7625i 0.581647 + 1.68056i
\(236\) 0 0
\(237\) 0.644141 + 13.5222i 0.0418415 + 0.878361i
\(238\) 0 0
\(239\) −6.65017 + 11.5184i −0.430164 + 0.745065i −0.996887 0.0788429i \(-0.974877\pi\)
0.566723 + 0.823908i \(0.308211\pi\)
\(240\) 0 0
\(241\) 28.5539 8.38417i 1.83932 0.540072i 0.839322 0.543634i \(-0.182952\pi\)
0.999994 + 0.00356255i \(0.00113400\pi\)
\(242\) 0 0
\(243\) −0.841254 0.540641i −0.0539664 0.0346821i
\(244\) 0 0
\(245\) 0.635424 0.0606756i 0.0405958 0.00387642i
\(246\) 0 0
\(247\) −2.43397 + 10.0330i −0.154870 + 0.638383i
\(248\) 0 0
\(249\) −13.9056 2.68008i −0.881230 0.169843i
\(250\) 0 0
\(251\) 2.31948 1.82406i 0.146404 0.115134i −0.542270 0.840204i \(-0.682435\pi\)
0.688675 + 0.725070i \(0.258193\pi\)
\(252\) 0 0
\(253\) −2.80691 + 3.23935i −0.176469 + 0.203656i
\(254\) 0 0
\(255\) 1.20412 25.2777i 0.0754051 1.58295i
\(256\) 0 0
\(257\) 15.9495 15.2078i 0.994902 0.948637i −0.00377826 0.999993i \(-0.501203\pi\)
0.998680 + 0.0513556i \(0.0163542\pi\)
\(258\) 0 0
\(259\) 3.13624 + 3.61942i 0.194877 + 0.224900i
\(260\) 0 0
\(261\) −5.28263 + 1.01814i −0.326986 + 0.0630215i
\(262\) 0 0
\(263\) −22.1647 6.50814i −1.36673 0.401309i −0.485601 0.874180i \(-0.661399\pi\)
−0.881131 + 0.472871i \(0.843218\pi\)
\(264\) 0 0
\(265\) −12.7543 + 27.9281i −0.783493 + 1.71561i
\(266\) 0 0
\(267\) 9.58187 0.586401
\(268\) 0 0
\(269\) 4.21819 0.257187 0.128594 0.991697i \(-0.458954\pi\)
0.128594 + 0.991697i \(0.458954\pi\)
\(270\) 0 0
\(271\) −8.39041 + 18.3724i −0.509681 + 1.11605i 0.463519 + 0.886087i \(0.346586\pi\)
−0.973200 + 0.229959i \(0.926141\pi\)
\(272\) 0 0
\(273\) 3.95825 + 1.16225i 0.239564 + 0.0703424i
\(274\) 0 0
\(275\) −8.05357 + 1.55220i −0.485649 + 0.0936011i
\(276\) 0 0
\(277\) 20.1606 + 23.2666i 1.21133 + 1.39795i 0.893050 + 0.449958i \(0.148561\pi\)
0.318284 + 0.947995i \(0.396894\pi\)
\(278\) 0 0
\(279\) −1.04413 + 0.995579i −0.0625106 + 0.0596037i
\(280\) 0 0
\(281\) −1.11268 + 23.3581i −0.0663772 + 1.39343i 0.682580 + 0.730811i \(0.260858\pi\)
−0.748957 + 0.662618i \(0.769445\pi\)
\(282\) 0 0
\(283\) −13.8593 + 15.9945i −0.823852 + 0.950776i −0.999432 0.0336893i \(-0.989274\pi\)
0.175580 + 0.984465i \(0.443820\pi\)
\(284\) 0 0
\(285\) 16.7574 13.1782i 0.992622 0.780607i
\(286\) 0 0
\(287\) 1.27984 + 0.246669i 0.0755466 + 0.0145604i
\(288\) 0 0
\(289\) 10.1496 41.8374i 0.597038 2.46102i
\(290\) 0 0
\(291\) 13.1914 1.25963i 0.773295 0.0738407i
\(292\) 0 0
\(293\) 6.75619 + 4.34194i 0.394701 + 0.253659i 0.722904 0.690948i \(-0.242807\pi\)
−0.328204 + 0.944607i \(0.606443\pi\)
\(294\) 0 0
\(295\) 0.786300 0.230879i 0.0457802 0.0134423i
\(296\) 0 0
\(297\) −0.723972 + 1.25396i −0.0420091 + 0.0727619i
\(298\) 0 0
\(299\) 0.222757 + 4.67625i 0.0128824 + 0.270435i
\(300\) 0 0
\(301\) −1.76412 5.09709i −0.101682 0.293791i
\(302\) 0 0
\(303\) −9.07270 0.866337i −0.521213 0.0497698i
\(304\) 0 0
\(305\) −11.5050 19.9272i −0.658773 1.14103i
\(306\) 0 0
\(307\) −19.3729 9.98743i −1.10567 0.570013i −0.194028 0.980996i \(-0.562155\pi\)
−0.911643 + 0.410983i \(0.865185\pi\)
\(308\) 0 0
\(309\) 3.53455 + 1.41502i 0.201073 + 0.0804977i
\(310\) 0 0
\(311\) −2.43610 16.9434i −0.138138 0.960774i −0.934503 0.355956i \(-0.884155\pi\)
0.796364 0.604817i \(-0.206754\pi\)
\(312\) 0 0
\(313\) −5.53583 12.1218i −0.312903 0.685163i 0.686204 0.727409i \(-0.259276\pi\)
−0.999107 + 0.0422465i \(0.986549\pi\)
\(314\) 0 0
\(315\) −4.94127 6.93905i −0.278409 0.390971i
\(316\) 0 0
\(317\) 8.26345 3.30819i 0.464121 0.185806i −0.127803 0.991800i \(-0.540793\pi\)
0.591925 + 0.805993i \(0.298368\pi\)
\(318\) 0 0
\(319\) 1.83650 + 7.57014i 0.102824 + 0.423846i
\(320\) 0 0
\(321\) −2.32801 + 16.1917i −0.129937 + 0.903732i
\(322\) 0 0
\(323\) 44.9642 23.1807i 2.50187 1.28981i
\(324\) 0 0
\(325\) −5.19625 + 7.29711i −0.288236 + 0.404771i
\(326\) 0 0
\(327\) 4.58320 2.94544i 0.253451 0.162883i
\(328\) 0 0
\(329\) 15.7603 + 15.0274i 0.868893 + 0.828488i
\(330\) 0 0
\(331\) −1.20696 0.949162i −0.0663404 0.0521707i 0.584438 0.811438i \(-0.301315\pi\)
−0.650779 + 0.759268i \(0.725557\pi\)
\(332\) 0 0
\(333\) −0.600481 + 1.73498i −0.0329062 + 0.0950761i
\(334\) 0 0
\(335\) 11.1192 24.3080i 0.607506 1.32809i
\(336\) 0 0
\(337\) 11.6806 33.7488i 0.636281 1.83841i 0.0988583 0.995102i \(-0.468481\pi\)
0.537423 0.843313i \(-0.319398\pi\)
\(338\) 0 0
\(339\) 7.21080 + 5.67064i 0.391637 + 0.307987i
\(340\) 0 0
\(341\) 1.51185 + 1.44154i 0.0818710 + 0.0780639i
\(342\) 0 0
\(343\) 15.7901 10.1477i 0.852585 0.547923i
\(344\) 0 0
\(345\) 5.60748 7.87460i 0.301897 0.423954i
\(346\) 0 0
\(347\) 12.6669 6.53024i 0.679995 0.350562i −0.0833797 0.996518i \(-0.526571\pi\)
0.763375 + 0.645956i \(0.223541\pi\)
\(348\) 0 0
\(349\) −2.17786 + 15.1474i −0.116578 + 0.810819i 0.844700 + 0.535240i \(0.179779\pi\)
−0.961278 + 0.275579i \(0.911130\pi\)
\(350\) 0 0
\(351\) 0.372847 + 1.53689i 0.0199011 + 0.0820334i
\(352\) 0 0
\(353\) −27.0313 + 10.8217i −1.43873 + 0.575981i −0.954301 0.298848i \(-0.903397\pi\)
−0.484431 + 0.874830i \(0.660973\pi\)
\(354\) 0 0
\(355\) −2.38389 3.34770i −0.126524 0.177678i
\(356\) 0 0
\(357\) −8.39733 18.3876i −0.444434 0.973175i
\(358\) 0 0
\(359\) 0.297374 + 2.06828i 0.0156948 + 0.109160i 0.996163 0.0875185i \(-0.0278937\pi\)
−0.980468 + 0.196678i \(0.936985\pi\)
\(360\) 0 0
\(361\) 21.9242 + 8.77712i 1.15390 + 0.461954i
\(362\) 0 0
\(363\) −7.91371 4.07980i −0.415362 0.214134i
\(364\) 0 0
\(365\) −4.47253 7.74665i −0.234103 0.405478i
\(366\) 0 0
\(367\) −32.5434 3.10752i −1.69875 0.162211i −0.799803 0.600262i \(-0.795063\pi\)
−0.898950 + 0.438051i \(0.855669\pi\)
\(368\) 0 0
\(369\) 0.163424 + 0.472182i 0.00850749 + 0.0245808i
\(370\) 0 0
\(371\) 1.16694 + 24.4971i 0.0605845 + 1.27182i
\(372\) 0 0
\(373\) 12.5938 21.8131i 0.652081 1.12944i −0.330536 0.943794i \(-0.607229\pi\)
0.982617 0.185645i \(-0.0594373\pi\)
\(374\) 0 0
\(375\) 2.08193 0.611311i 0.107511 0.0315680i
\(376\) 0 0
\(377\) 7.15746 + 4.59982i 0.368628 + 0.236903i
\(378\) 0 0
\(379\) 23.4114 2.23552i 1.20256 0.114831i 0.525525 0.850778i \(-0.323869\pi\)
0.677039 + 0.735947i \(0.263263\pi\)
\(380\) 0 0
\(381\) −4.26404 + 17.5766i −0.218453 + 0.900477i
\(382\) 0 0
\(383\) 12.7154 + 2.45069i 0.649727 + 0.125225i 0.503457 0.864020i \(-0.332061\pi\)
0.146270 + 0.989245i \(0.453273\pi\)
\(384\) 0 0
\(385\) −9.69554 + 7.62465i −0.494130 + 0.388588i
\(386\) 0 0
\(387\) 1.35407 1.56268i 0.0688311 0.0794353i
\(388\) 0 0
\(389\) −0.689242 + 14.4690i −0.0349460 + 0.733606i 0.911608 + 0.411061i \(0.134842\pi\)
−0.946554 + 0.322545i \(0.895461\pi\)
\(390\) 0 0
\(391\) 16.6022 15.8302i 0.839612 0.800568i
\(392\) 0 0
\(393\) 5.11908 + 5.90773i 0.258223 + 0.298006i
\(394\) 0 0
\(395\) −43.4098 + 8.36656i −2.18419 + 0.420967i
\(396\) 0 0
\(397\) 11.6107 + 3.40921i 0.582725 + 0.171103i 0.559791 0.828634i \(-0.310881\pi\)
0.0229334 + 0.999737i \(0.492699\pi\)
\(398\) 0 0
\(399\) 7.07403 15.4900i 0.354145 0.775468i
\(400\) 0 0
\(401\) 34.2575 1.71074 0.855370 0.518017i \(-0.173330\pi\)
0.855370 + 0.518017i \(0.173330\pi\)
\(402\) 0 0
\(403\) 2.28160 0.113654
\(404\) 0 0
\(405\) 1.35660 2.97054i 0.0674099 0.147607i
\(406\) 0 0
\(407\) 2.55067 + 0.748945i 0.126432 + 0.0371238i
\(408\) 0 0
\(409\) 19.1084 3.68283i 0.944848 0.182104i 0.306516 0.951866i \(-0.400837\pi\)
0.638332 + 0.769761i \(0.279625\pi\)
\(410\) 0 0
\(411\) 3.68491 + 4.25261i 0.181763 + 0.209766i
\(412\) 0 0
\(413\) 0.473757 0.451727i 0.0233121 0.0222280i
\(414\) 0 0
\(415\) 2.20049 46.1940i 0.108018 2.26758i
\(416\) 0 0
\(417\) −11.7154 + 13.5203i −0.573707 + 0.662094i
\(418\) 0 0
\(419\) −21.0453 + 16.5502i −1.02813 + 0.808531i −0.981708 0.190391i \(-0.939025\pi\)
−0.0464226 + 0.998922i \(0.514782\pi\)
\(420\) 0 0
\(421\) −7.73690 1.49117i −0.377074 0.0726750i −0.00280679 0.999996i \(-0.500893\pi\)
−0.374267 + 0.927321i \(0.622106\pi\)
\(422\) 0 0
\(423\) −1.96813 + 8.11275i −0.0956939 + 0.394455i
\(424\) 0 0
\(425\) 43.6964 4.17250i 2.11959 0.202396i
\(426\) 0 0
\(427\) −15.4622 9.93698i −0.748271 0.480884i
\(428\) 0 0
\(429\) 2.19713 0.645135i 0.106078 0.0311474i
\(430\) 0 0
\(431\) 0.473650 0.820386i 0.0228149 0.0395166i −0.854393 0.519628i \(-0.826070\pi\)
0.877207 + 0.480112i \(0.159404\pi\)
\(432\) 0 0
\(433\) −1.51637 31.8326i −0.0728722 1.52977i −0.678840 0.734286i \(-0.737517\pi\)
0.605968 0.795489i \(-0.292786\pi\)
\(434\) 0 0
\(435\) −5.74615 16.6024i −0.275507 0.796025i
\(436\) 0 0
\(437\) 19.2372 + 1.83693i 0.920241 + 0.0878724i
\(438\) 0 0
\(439\) −9.22634 15.9805i −0.440349 0.762707i 0.557366 0.830267i \(-0.311812\pi\)
−0.997715 + 0.0675599i \(0.978479\pi\)
\(440\) 0 0
\(441\) 0.173735 + 0.0895666i 0.00827309 + 0.00426507i
\(442\) 0 0
\(443\) −20.2637 8.11238i −0.962759 0.385431i −0.163584 0.986529i \(-0.552306\pi\)
−0.799175 + 0.601099i \(0.794730\pi\)
\(444\) 0 0
\(445\) 4.45317 + 30.9725i 0.211101 + 1.46824i
\(446\) 0 0
\(447\) 4.14445 + 9.07507i 0.196026 + 0.429236i
\(448\) 0 0
\(449\) −9.90699 13.9124i −0.467540 0.656568i 0.511726 0.859149i \(-0.329006\pi\)
−0.979266 + 0.202581i \(0.935067\pi\)
\(450\) 0 0
\(451\) 0.671659 0.268892i 0.0316272 0.0126616i
\(452\) 0 0
\(453\) −0.528695 2.17931i −0.0248402 0.102393i
\(454\) 0 0
\(455\) −1.91726 + 13.3348i −0.0898824 + 0.625146i
\(456\) 0 0
\(457\) 13.1520 6.78034i 0.615226 0.317171i −0.122297 0.992494i \(-0.539026\pi\)
0.737522 + 0.675323i \(0.235996\pi\)
\(458\) 0 0
\(459\) 4.49501 6.31236i 0.209809 0.294636i
\(460\) 0 0
\(461\) 7.14839 4.59399i 0.332934 0.213963i −0.363484 0.931601i \(-0.618413\pi\)
0.696417 + 0.717637i \(0.254776\pi\)
\(462\) 0 0
\(463\) 4.89240 + 4.66489i 0.227369 + 0.216796i 0.795197 0.606352i \(-0.207368\pi\)
−0.567828 + 0.823147i \(0.692216\pi\)
\(464\) 0 0
\(465\) −3.70338 2.91237i −0.171740 0.135058i
\(466\) 0 0
\(467\) −11.9568 + 34.5470i −0.553297 + 1.59865i 0.227444 + 0.973791i \(0.426963\pi\)
−0.780741 + 0.624855i \(0.785158\pi\)
\(468\) 0 0
\(469\) −1.00285 21.3283i −0.0463072 0.984851i
\(470\) 0 0
\(471\) 5.15208 14.8860i 0.237395 0.685909i
\(472\) 0 0
\(473\) −2.35339 1.85073i −0.108209 0.0850966i
\(474\) 0 0
\(475\) 26.7622 + 25.5177i 1.22793 + 1.17083i
\(476\) 0 0
\(477\) −7.90923 + 5.08295i −0.362139 + 0.232732i
\(478\) 0 0
\(479\) −20.2881 + 28.4906i −0.926985 + 1.30177i 0.0262866 + 0.999654i \(0.491632\pi\)
−0.953272 + 0.302114i \(0.902308\pi\)
\(480\) 0 0
\(481\) 2.58074 1.33047i 0.117672 0.0606640i
\(482\) 0 0
\(483\) 1.09895 7.64336i 0.0500039 0.347785i
\(484\) 0 0
\(485\) 10.2023 + 42.0546i 0.463264 + 1.90960i
\(486\) 0 0
\(487\) 13.6293 5.45636i 0.617604 0.247251i −0.0416972 0.999130i \(-0.513276\pi\)
0.659301 + 0.751879i \(0.270852\pi\)
\(488\) 0 0
\(489\) 7.51725 + 10.5565i 0.339942 + 0.477382i
\(490\) 0 0
\(491\) 14.1188 + 30.9158i 0.637171 + 1.39521i 0.902347 + 0.431010i \(0.141843\pi\)
−0.265176 + 0.964200i \(0.585430\pi\)
\(492\) 0 0
\(493\) −5.93308 41.2655i −0.267212 1.85850i
\(494\) 0 0
\(495\) −4.38976 1.75739i −0.197305 0.0789890i
\(496\) 0 0
\(497\) −2.91788 1.50427i −0.130885 0.0674757i
\(498\) 0 0
\(499\) −16.8927 29.2590i −0.756220 1.30981i −0.944765 0.327747i \(-0.893711\pi\)
0.188545 0.982064i \(-0.439623\pi\)
\(500\) 0 0
\(501\) 4.69483 + 0.448302i 0.209750 + 0.0200287i
\(502\) 0 0
\(503\) 10.2003 + 29.4718i 0.454809 + 1.31408i 0.906612 + 0.421966i \(0.138660\pi\)
−0.451803 + 0.892118i \(0.649219\pi\)
\(504\) 0 0
\(505\) −1.41618 29.7293i −0.0630192 1.32293i
\(506\) 0 0
\(507\) −5.24947 + 9.09235i −0.233137 + 0.403805i
\(508\) 0 0
\(509\) −15.6075 + 4.58278i −0.691790 + 0.203128i −0.608684 0.793413i \(-0.708302\pi\)
−0.0831062 + 0.996541i \(0.526484\pi\)
\(510\) 0 0
\(511\) −6.01091 3.86298i −0.265907 0.170888i
\(512\) 0 0
\(513\) 6.49852 0.620533i 0.286917 0.0273972i
\(514\) 0 0
\(515\) −2.93124 + 12.0827i −0.129166 + 0.532429i
\(516\) 0 0
\(517\) 11.8691 + 2.28758i 0.522002 + 0.100608i
\(518\) 0 0
\(519\) 19.9859 15.7170i 0.877282 0.689902i
\(520\) 0 0
\(521\) −3.04015 + 3.50852i −0.133191 + 0.153711i −0.818427 0.574610i \(-0.805154\pi\)
0.685236 + 0.728321i \(0.259699\pi\)
\(522\) 0 0
\(523\) −1.52352 + 31.9827i −0.0666190 + 1.39850i 0.679980 + 0.733230i \(0.261988\pi\)
−0.746599 + 0.665274i \(0.768315\pi\)
\(524\) 0 0
\(525\) 10.6939 10.1966i 0.466719 0.445016i
\(526\) 0 0
\(527\) −7.32126 8.44918i −0.318919 0.368052i
\(528\) 0 0
\(529\) −13.9797 + 2.69436i −0.607811 + 0.117146i
\(530\) 0 0
\(531\) 0.240779 + 0.0706992i 0.0104489 + 0.00306809i
\(532\) 0 0
\(533\) 0.328262 0.718794i 0.0142186 0.0311344i
\(534\) 0 0
\(535\) −53.4201 −2.30955
\(536\) 0 0
\(537\) −3.80521 −0.164207
\(538\) 0 0
\(539\) 0.117571 0.257444i 0.00506413 0.0110889i
\(540\) 0 0
\(541\) 32.9875 + 9.68602i 1.41825 + 0.416434i 0.898909 0.438135i \(-0.144361\pi\)
0.519337 + 0.854570i \(0.326179\pi\)
\(542\) 0 0
\(543\) 5.13661 0.990000i 0.220433 0.0424850i
\(544\) 0 0
\(545\) 11.6509 + 13.4459i 0.499070 + 0.575957i
\(546\) 0 0
\(547\) 10.8132 10.3103i 0.462338 0.440839i −0.422761 0.906241i \(-0.638939\pi\)
0.885099 + 0.465403i \(0.154090\pi\)
\(548\) 0 0
\(549\) 0.335265 7.03808i 0.0143088 0.300378i
\(550\) 0 0
\(551\) 22.9988 26.5420i 0.979780 1.13073i
\(552\) 0 0
\(553\) −27.7581 + 21.8292i −1.18040 + 0.928274i
\(554\) 0 0
\(555\) −5.88722 1.13467i −0.249899 0.0481640i
\(556\) 0 0
\(557\) −5.77505 + 23.8051i −0.244697 + 1.00865i 0.708358 + 0.705854i \(0.249436\pi\)
−0.953054 + 0.302800i \(0.902079\pi\)
\(558\) 0 0
\(559\) −3.25523 + 0.310837i −0.137682 + 0.0131470i
\(560\) 0 0
\(561\) −9.43927 6.06625i −0.398526 0.256117i
\(562\) 0 0
\(563\) −40.1465 + 11.7881i −1.69197 + 0.496808i −0.978910 0.204292i \(-0.934511\pi\)
−0.713063 + 0.701100i \(0.752693\pi\)
\(564\) 0 0
\(565\) −14.9786 + 25.9437i −0.630154 + 1.09146i
\(566\) 0 0
\(567\) −0.124120 2.60560i −0.00521254 0.109425i
\(568\) 0 0
\(569\) −5.63472 16.2805i −0.236220 0.682513i −0.999342 0.0362588i \(-0.988456\pi\)
0.763123 0.646254i \(-0.223665\pi\)
\(570\) 0 0
\(571\) 0.105016 + 0.0100279i 0.00439480 + 0.000419653i 0.0972532 0.995260i \(-0.468994\pi\)
−0.0928584 + 0.995679i \(0.529600\pi\)
\(572\) 0 0
\(573\) 0.577188 + 0.999719i 0.0241124 + 0.0417638i
\(574\) 0 0
\(575\) 14.9041 + 7.68361i 0.621545 + 0.320429i
\(576\) 0 0
\(577\) −17.5885 7.04136i −0.732218 0.293136i −0.0245669 0.999698i \(-0.507821\pi\)
−0.707651 + 0.706562i \(0.750245\pi\)
\(578\) 0 0
\(579\) −2.22240 15.4571i −0.0923599 0.642377i
\(580\) 0 0
\(581\) −15.3458 33.6027i −0.636652 1.39407i
\(582\) 0 0
\(583\) 7.89640 + 11.0889i 0.327036 + 0.459257i
\(584\) 0 0
\(585\) −4.79459 + 1.91946i −0.198232 + 0.0793600i
\(586\) 0 0
\(587\) 5.67917 + 23.4099i 0.234405 + 0.966229i 0.960421 + 0.278552i \(0.0898544\pi\)
−0.726017 + 0.687677i \(0.758630\pi\)
\(588\) 0 0
\(589\) 1.34033 9.32222i 0.0552274 0.384115i
\(590\) 0 0
\(591\) 12.1643 6.27116i 0.500374 0.257961i
\(592\) 0 0
\(593\) 14.0341 19.7081i 0.576311 0.809315i −0.418800 0.908078i \(-0.637549\pi\)
0.995111 + 0.0987632i \(0.0314886\pi\)
\(594\) 0 0
\(595\) 55.5335 35.6892i 2.27665 1.46312i
\(596\) 0 0
\(597\) −2.87946 2.74556i −0.117849 0.112368i
\(598\) 0 0
\(599\) 20.0397 + 15.7594i 0.818799 + 0.643911i 0.937098 0.349067i \(-0.113502\pi\)
−0.118299 + 0.992978i \(0.537744\pi\)
\(600\) 0 0
\(601\) −8.15764 + 23.5699i −0.332757 + 0.961438i 0.647216 + 0.762307i \(0.275933\pi\)
−0.979973 + 0.199131i \(0.936188\pi\)
\(602\) 0 0
\(603\) 6.88868 4.42110i 0.280529 0.180041i
\(604\) 0 0
\(605\) 9.50968 27.4764i 0.386623 1.11707i
\(606\) 0 0
\(607\) 22.7708 + 17.9071i 0.924237 + 0.726828i 0.962169 0.272452i \(-0.0878347\pi\)
−0.0379323 + 0.999280i \(0.512077\pi\)
\(608\) 0 0
\(609\) −10.1566 9.68430i −0.411566 0.392428i
\(610\) 0 0
\(611\) 11.1064 7.13768i 0.449319 0.288760i
\(612\) 0 0
\(613\) 5.45314 7.65787i 0.220250 0.309298i −0.689636 0.724156i \(-0.742229\pi\)
0.909886 + 0.414858i \(0.136169\pi\)
\(614\) 0 0
\(615\) −1.45033 + 0.747698i −0.0584830 + 0.0301501i
\(616\) 0 0
\(617\) −2.72317 + 18.9401i −0.109631 + 0.762499i 0.858637 + 0.512584i \(0.171312\pi\)
−0.968268 + 0.249915i \(0.919597\pi\)
\(618\) 0 0
\(619\) −3.22226 13.2824i −0.129514 0.533863i −0.999190 0.0402405i \(-0.987188\pi\)
0.869676 0.493623i \(-0.164328\pi\)
\(620\) 0 0
\(621\) 2.74820 1.10021i 0.110281 0.0441500i
\(622\) 0 0
\(623\) 14.4984 + 20.3602i 0.580866 + 0.815713i
\(624\) 0 0
\(625\) −8.82189 19.3172i −0.352875 0.772689i
\(626\) 0 0
\(627\) −1.34520 9.35608i −0.0537222 0.373646i
\(628\) 0 0
\(629\) −13.2081 5.28774i −0.526643 0.210836i
\(630\) 0 0
\(631\) 18.9727 + 9.78113i 0.755293 + 0.389380i 0.792456 0.609929i \(-0.208802\pi\)
−0.0371635 + 0.999309i \(0.511832\pi\)
\(632\) 0 0
\(633\) 6.58049 + 11.3977i 0.261551 + 0.453020i
\(634\) 0 0
\(635\) −58.7965 5.61438i −2.33327 0.222800i
\(636\) 0 0
\(637\) −0.101103 0.292119i −0.00400586 0.0115742i
\(638\) 0 0
\(639\) −0.0598809 1.25705i −0.00236885 0.0497283i
\(640\) 0 0
\(641\) −5.38009 + 9.31859i −0.212501 + 0.368062i −0.952497 0.304549i \(-0.901494\pi\)
0.739996 + 0.672612i \(0.234827\pi\)
\(642\) 0 0
\(643\) −35.2525 + 10.3511i −1.39022 + 0.408207i −0.889316 0.457293i \(-0.848819\pi\)
−0.500909 + 0.865500i \(0.667001\pi\)
\(644\) 0 0
\(645\) 5.68050 + 3.65064i 0.223670 + 0.143744i
\(646\) 0 0
\(647\) −16.0942 + 1.53681i −0.632729 + 0.0604183i −0.406493 0.913654i \(-0.633248\pi\)
−0.226237 + 0.974072i \(0.572642\pi\)
\(648\) 0 0
\(649\) 0.0856638 0.353111i 0.00336260 0.0138608i
\(650\) 0 0
\(651\) −3.69535 0.712221i −0.144832 0.0279141i
\(652\) 0 0
\(653\) 1.61501 1.27006i 0.0632002 0.0497012i −0.586059 0.810268i \(-0.699321\pi\)
0.649259 + 0.760567i \(0.275079\pi\)
\(654\) 0 0
\(655\) −16.7171 + 19.2926i −0.653191 + 0.753823i
\(656\) 0 0
\(657\) 0.130333 2.73604i 0.00508479 0.106743i
\(658\) 0 0
\(659\) 24.9131 23.7545i 0.970475 0.925346i −0.0267616 0.999642i \(-0.508519\pi\)
0.997236 + 0.0742961i \(0.0236710\pi\)
\(660\) 0 0
\(661\) 27.1637 + 31.3486i 1.05655 + 1.21932i 0.974897 + 0.222657i \(0.0714731\pi\)
0.0816489 + 0.996661i \(0.473981\pi\)
\(662\) 0 0
\(663\) −12.0338 + 2.31932i −0.467353 + 0.0900749i
\(664\) 0 0
\(665\) 53.3575 + 15.6672i 2.06912 + 0.607547i
\(666\) 0 0
\(667\) 6.61577 14.4865i 0.256164 0.560920i
\(668\) 0 0
\(669\) 9.99089 0.386270
\(670\) 0 0
\(671\) −10.2023 −0.393855
\(672\) 0 0
\(673\) −7.05263 + 15.4431i −0.271859 + 0.595288i −0.995487 0.0949024i \(-0.969746\pi\)
0.723628 + 0.690191i \(0.242473\pi\)
\(674\) 0 0
\(675\) 5.43499 + 1.59586i 0.209193 + 0.0614246i
\(676\) 0 0
\(677\) −5.42785 + 1.04613i −0.208609 + 0.0402061i −0.292485 0.956270i \(-0.594482\pi\)
0.0838759 + 0.996476i \(0.473270\pi\)
\(678\) 0 0
\(679\) 22.6366 + 26.1240i 0.868712 + 1.00255i
\(680\) 0 0
\(681\) −11.0360 + 10.5228i −0.422899 + 0.403233i
\(682\) 0 0
\(683\) 0.483723 10.1546i 0.0185092 0.388555i −0.970537 0.240951i \(-0.922541\pi\)
0.989047 0.147604i \(-0.0471562\pi\)
\(684\) 0 0
\(685\) −12.0336 + 13.8875i −0.459780 + 0.530615i
\(686\) 0 0
\(687\) 0.344290 0.270753i 0.0131355 0.0103299i
\(688\) 0 0
\(689\) 14.5999 + 2.81389i 0.556211 + 0.107201i
\(690\) 0 0
\(691\) −3.22504 + 13.2938i −0.122686 + 0.505719i 0.876996 + 0.480498i \(0.159544\pi\)
−0.999682 + 0.0252210i \(0.991971\pi\)
\(692\) 0 0
\(693\) −3.75993 + 0.359030i −0.142828 + 0.0136384i
\(694\) 0 0
\(695\) −49.1480 31.5855i −1.86429 1.19811i
\(696\) 0 0
\(697\) −3.71517 + 1.09087i −0.140722 + 0.0413197i
\(698\) 0 0
\(699\) 5.43295 9.41015i 0.205493 0.355925i
\(700\) 0 0
\(701\) 1.37646 + 28.8954i 0.0519881 + 1.09137i 0.862634 + 0.505829i \(0.168813\pi\)
−0.810646 + 0.585537i \(0.800884\pi\)
\(702\) 0 0
\(703\) −3.91999 11.3261i −0.147845 0.427171i
\(704\) 0 0
\(705\) −27.1384 2.59140i −1.02209 0.0975979i
\(706\) 0 0
\(707\) −11.8871 20.5891i −0.447061 0.774333i
\(708\) 0 0
\(709\) −34.0170 17.5370i −1.27754 0.658616i −0.320134 0.947372i \(-0.603728\pi\)
−0.957403 + 0.288756i \(0.906758\pi\)
\(710\) 0 0
\(711\) −12.5678 5.03139i −0.471329 0.188692i
\(712\) 0 0
\(713\) −0.607792 4.22729i −0.0227620 0.158313i
\(714\) 0 0
\(715\) 3.10645 + 6.80218i 0.116175 + 0.254387i
\(716\) 0 0
\(717\) −7.71495 10.8341i −0.288120 0.404608i
\(718\) 0 0
\(719\) −28.7557 + 11.5121i −1.07241 + 0.429327i −0.839605 0.543197i \(-0.817214\pi\)
−0.232802 + 0.972524i \(0.574790\pi\)
\(720\) 0 0
\(721\) 2.34143 + 9.65151i 0.0871994 + 0.359441i
\(722\) 0 0
\(723\) −4.23519 + 29.4564i −0.157509 + 1.09550i
\(724\) 0 0
\(725\) 27.0862 13.9639i 1.00596 0.518607i
\(726\) 0 0
\(727\) 26.5408 37.2713i 0.984344 1.38232i 0.0610880 0.998132i \(-0.480543\pi\)
0.923256 0.384185i \(-0.125518\pi\)
\(728\) 0 0
\(729\) 0.841254 0.540641i 0.0311575 0.0200237i
\(730\) 0 0
\(731\) 11.5966 + 11.0573i 0.428915 + 0.408970i
\(732\) 0 0
\(733\) −1.25121 0.983964i −0.0462146 0.0363435i 0.594785 0.803885i \(-0.297237\pi\)
−0.640999 + 0.767542i \(0.721480\pi\)
\(734\) 0 0
\(735\) −0.208772 + 0.603208i −0.00770068 + 0.0222497i
\(736\) 0 0
\(737\) −6.86885 9.65852i −0.253018 0.355776i
\(738\) 0 0
\(739\) 7.45587 21.5423i 0.274269 0.792447i −0.720790 0.693154i \(-0.756221\pi\)
0.995058 0.0992933i \(-0.0316582\pi\)
\(740\) 0 0
\(741\) −8.11520 6.38187i −0.298119 0.234444i
\(742\) 0 0
\(743\) −27.9119 26.6140i −1.02399 0.976372i −0.0242613 0.999706i \(-0.507723\pi\)
−0.999728 + 0.0233341i \(0.992572\pi\)
\(744\) 0 0
\(745\) −27.4082 + 17.6142i −1.00416 + 0.645333i
\(746\) 0 0
\(747\) 8.21447 11.5356i 0.300552 0.422066i
\(748\) 0 0
\(749\) −37.9277 + 19.5531i −1.38585 + 0.714453i
\(750\) 0 0
\(751\) −3.85366 + 26.8028i −0.140622 + 0.978048i 0.790271 + 0.612757i \(0.209940\pi\)
−0.930893 + 0.365291i \(0.880970\pi\)
\(752\) 0 0
\(753\) 0.695677 + 2.86762i 0.0253519 + 0.104502i
\(754\) 0 0
\(755\) 6.79870 2.72179i 0.247430 0.0990561i
\(756\) 0 0
\(757\) 2.73926 + 3.84676i 0.0995603 + 0.139813i 0.861351 0.508011i \(-0.169619\pi\)
−0.761791 + 0.647823i \(0.775680\pi\)
\(758\) 0 0
\(759\) −1.78058 3.89893i −0.0646310 0.141522i
\(760\) 0 0
\(761\) −1.67124 11.6237i −0.0605823 0.421359i −0.997432 0.0716258i \(-0.977181\pi\)
0.936849 0.349733i \(-0.113728\pi\)
\(762\) 0 0
\(763\) 13.1935 + 5.28189i 0.477638 + 0.191217i
\(764\) 0 0
\(765\) 22.4932 + 11.5960i 0.813242 + 0.419255i
\(766\) 0 0
\(767\) −0.198431 0.343693i −0.00716493 0.0124100i
\(768\) 0 0
\(769\) −36.5556 3.49064i −1.31823 0.125876i −0.587879 0.808949i \(-0.700037\pi\)
−0.730350 + 0.683073i \(0.760643\pi\)
\(770\) 0 0
\(771\) 7.20785 + 20.8257i 0.259585 + 0.750020i
\(772\) 0 0
\(773\) 1.43729 + 30.1725i 0.0516958 + 1.08523i 0.864481 + 0.502666i \(0.167647\pi\)
−0.812785 + 0.582564i \(0.802050\pi\)
\(774\) 0 0
\(775\) 4.08605 7.07725i 0.146775 0.254222i
\(776\) 0 0
\(777\) −4.59518 + 1.34927i −0.164851 + 0.0484047i
\(778\)