Properties

Label 804.2.y.b.49.6
Level 804
Weight 2
Character 804.49
Analytic conductor 6.420
Analytic rank 0
Dimension 120
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.y (of order \(33\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(6\) over \(\Q(\zeta_{33})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

Embedding invariants

Embedding label 49.6
Character \(\chi\) = 804.49
Dual form 804.2.y.b.361.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.841254 - 0.540641i) q^{3} +(0.567849 + 3.94948i) q^{5} +(-4.15279 - 0.396544i) q^{7} +(0.415415 + 0.909632i) q^{9} +O(q^{10})\) \(q+(-0.841254 - 0.540641i) q^{3} +(0.567849 + 3.94948i) q^{5} +(-4.15279 - 0.396544i) q^{7} +(0.415415 + 0.909632i) q^{9} +(0.739053 + 0.295872i) q^{11} +(-3.13532 - 2.98952i) q^{13} +(1.65754 - 3.62951i) q^{15} +(0.359898 - 1.03986i) q^{17} +(-2.27810 + 0.217532i) q^{19} +(3.27916 + 2.57876i) q^{21} +(0.343734 - 7.21586i) q^{23} +(-10.4785 + 3.07675i) q^{25} +(0.142315 - 0.989821i) q^{27} +(1.98209 - 3.43309i) q^{29} +(7.92820 - 7.55953i) q^{31} +(-0.461771 - 0.648466i) q^{33} +(-0.792020 - 16.6265i) q^{35} +(0.839814 + 1.45460i) q^{37} +(1.02134 + 4.21003i) q^{39} +(1.67972 - 0.323740i) q^{41} +(-3.09358 - 3.57018i) q^{43} +(-3.35668 + 2.15721i) q^{45} +(-9.37215 + 4.83168i) q^{47} +(10.2149 + 1.96877i) q^{49} +(-0.864954 + 0.680208i) q^{51} +(-7.49129 + 8.64541i) q^{53} +(-0.748870 + 3.08688i) q^{55} +(2.03406 + 1.04863i) q^{57} +(-6.92945 - 2.03467i) q^{59} +(-3.49611 + 1.39963i) q^{61} +(-1.36442 - 3.94224i) q^{63} +(10.0267 - 14.0805i) q^{65} +(1.12947 + 8.10705i) q^{67} +(-4.19035 + 5.88453i) q^{69} +(-4.69313 - 13.5599i) q^{71} +(-12.9299 + 5.17635i) q^{73} +(10.4785 + 3.07675i) q^{75} +(-2.95181 - 1.52176i) q^{77} +(0.919920 - 3.79196i) q^{79} +(-0.654861 + 0.755750i) q^{81} +(-7.16855 + 5.63741i) q^{83} +(4.31126 + 0.830927i) q^{85} +(-3.52351 + 1.81650i) q^{87} +(6.83282 - 4.39119i) q^{89} +(11.8349 + 13.6582i) q^{91} +(-10.7566 + 2.07317i) q^{93} +(-2.15275 - 8.87377i) q^{95} +(1.05601 + 1.82906i) q^{97} +(0.0378789 + 0.795176i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + O(q^{10}) \) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + 11q^{11} + 2q^{13} - 9q^{15} + 48q^{17} - 4q^{19} - q^{21} + 22q^{23} - 42q^{25} + 12q^{27} - q^{29} + 27q^{31} + 17q^{35} - 8q^{37} - 2q^{39} - 58q^{41} - 17q^{43} - 2q^{45} - 84q^{47} + 101q^{49} - 26q^{51} + 28q^{53} - 9q^{55} + 26q^{57} + 34q^{59} + 16q^{61} + 12q^{63} + 144q^{65} + 23q^{67} + 11q^{69} + 173q^{71} - 2q^{73} + 42q^{75} + 128q^{77} + 31q^{79} - 12q^{81} + 47q^{83} - 75q^{85} - 10q^{87} - 67q^{89} + 16q^{91} + 6q^{93} - 79q^{95} + 10q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(e\left(\frac{23}{33}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.841254 0.540641i −0.485698 0.312139i
\(4\) 0 0
\(5\) 0.567849 + 3.94948i 0.253950 + 1.76626i 0.573996 + 0.818858i \(0.305392\pi\)
−0.320046 + 0.947402i \(0.603698\pi\)
\(6\) 0 0
\(7\) −4.15279 0.396544i −1.56961 0.149879i −0.726326 0.687351i \(-0.758774\pi\)
−0.843282 + 0.537471i \(0.819380\pi\)
\(8\) 0 0
\(9\) 0.415415 + 0.909632i 0.138472 + 0.303211i
\(10\) 0 0
\(11\) 0.739053 + 0.295872i 0.222833 + 0.0892089i 0.480393 0.877054i \(-0.340494\pi\)
−0.257560 + 0.966262i \(0.582918\pi\)
\(12\) 0 0
\(13\) −3.13532 2.98952i −0.869582 0.829145i 0.116878 0.993146i \(-0.462711\pi\)
−0.986460 + 0.164002i \(0.947560\pi\)
\(14\) 0 0
\(15\) 1.65754 3.62951i 0.427976 0.937137i
\(16\) 0 0
\(17\) 0.359898 1.03986i 0.0872881 0.252202i −0.892906 0.450244i \(-0.851337\pi\)
0.980194 + 0.198042i \(0.0634582\pi\)
\(18\) 0 0
\(19\) −2.27810 + 0.217532i −0.522631 + 0.0499052i −0.353038 0.935609i \(-0.614851\pi\)
−0.169593 + 0.985514i \(0.554245\pi\)
\(20\) 0 0
\(21\) 3.27916 + 2.57876i 0.715572 + 0.562732i
\(22\) 0 0
\(23\) 0.343734 7.21586i 0.0716734 1.50461i −0.621258 0.783606i \(-0.713378\pi\)
0.692931 0.721004i \(-0.256319\pi\)
\(24\) 0 0
\(25\) −10.4785 + 3.07675i −2.09569 + 0.615350i
\(26\) 0 0
\(27\) 0.142315 0.989821i 0.0273885 0.190491i
\(28\) 0 0
\(29\) 1.98209 3.43309i 0.368066 0.637508i −0.621197 0.783654i \(-0.713353\pi\)
0.989263 + 0.146146i \(0.0466868\pi\)
\(30\) 0 0
\(31\) 7.92820 7.55953i 1.42395 1.35773i 0.588077 0.808805i \(-0.299885\pi\)
0.835871 0.548926i \(-0.184963\pi\)
\(32\) 0 0
\(33\) −0.461771 0.648466i −0.0803839 0.112883i
\(34\) 0 0
\(35\) −0.792020 16.6265i −0.133876 2.81040i
\(36\) 0 0
\(37\) 0.839814 + 1.45460i 0.138065 + 0.239135i 0.926764 0.375644i \(-0.122579\pi\)
−0.788699 + 0.614779i \(0.789245\pi\)
\(38\) 0 0
\(39\) 1.02134 + 4.21003i 0.163546 + 0.674144i
\(40\) 0 0
\(41\) 1.67972 0.323740i 0.262329 0.0505597i −0.0563909 0.998409i \(-0.517959\pi\)
0.318720 + 0.947849i \(0.396747\pi\)
\(42\) 0 0
\(43\) −3.09358 3.57018i −0.471766 0.544447i 0.469136 0.883126i \(-0.344565\pi\)
−0.940902 + 0.338679i \(0.890020\pi\)
\(44\) 0 0
\(45\) −3.35668 + 2.15721i −0.500384 + 0.321577i
\(46\) 0 0
\(47\) −9.37215 + 4.83168i −1.36707 + 0.704773i −0.976443 0.215777i \(-0.930772\pi\)
−0.390625 + 0.920550i \(0.627741\pi\)
\(48\) 0 0
\(49\) 10.2149 + 1.96877i 1.45928 + 0.281253i
\(50\) 0 0
\(51\) −0.864954 + 0.680208i −0.121118 + 0.0952481i
\(52\) 0 0
\(53\) −7.49129 + 8.64541i −1.02901 + 1.18754i −0.0469626 + 0.998897i \(0.514954\pi\)
−0.982046 + 0.188642i \(0.939591\pi\)
\(54\) 0 0
\(55\) −0.748870 + 3.08688i −0.100978 + 0.416235i
\(56\) 0 0
\(57\) 2.03406 + 1.04863i 0.269418 + 0.138895i
\(58\) 0 0
\(59\) −6.92945 2.03467i −0.902137 0.264891i −0.202409 0.979301i \(-0.564877\pi\)
−0.699728 + 0.714410i \(0.746695\pi\)
\(60\) 0 0
\(61\) −3.49611 + 1.39963i −0.447631 + 0.179204i −0.584515 0.811383i \(-0.698715\pi\)
0.136884 + 0.990587i \(0.456291\pi\)
\(62\) 0 0
\(63\) −1.36442 3.94224i −0.171901 0.496676i
\(64\) 0 0
\(65\) 10.0267 14.0805i 1.24365 1.74647i
\(66\) 0 0
\(67\) 1.12947 + 8.10705i 0.137987 + 0.990434i
\(68\) 0 0
\(69\) −4.19035 + 5.88453i −0.504459 + 0.708414i
\(70\) 0 0
\(71\) −4.69313 13.5599i −0.556972 1.60927i −0.774059 0.633114i \(-0.781777\pi\)
0.217086 0.976152i \(-0.430345\pi\)
\(72\) 0 0
\(73\) −12.9299 + 5.17635i −1.51333 + 0.605846i −0.972004 0.234966i \(-0.924502\pi\)
−0.541327 + 0.840812i \(0.682078\pi\)
\(74\) 0 0
\(75\) 10.4785 + 3.07675i 1.20995 + 0.355273i
\(76\) 0 0
\(77\) −2.95181 1.52176i −0.336390 0.173421i
\(78\) 0 0
\(79\) 0.919920 3.79196i 0.103499 0.426629i −0.896361 0.443324i \(-0.853799\pi\)
0.999861 + 0.0166946i \(0.00531431\pi\)
\(80\) 0 0
\(81\) −0.654861 + 0.755750i −0.0727623 + 0.0839722i
\(82\) 0 0
\(83\) −7.16855 + 5.63741i −0.786850 + 0.618786i −0.928585 0.371119i \(-0.878974\pi\)
0.141735 + 0.989905i \(0.454732\pi\)
\(84\) 0 0
\(85\) 4.31126 + 0.830927i 0.467622 + 0.0901267i
\(86\) 0 0
\(87\) −3.52351 + 1.81650i −0.377760 + 0.194749i
\(88\) 0 0
\(89\) 6.83282 4.39119i 0.724277 0.465465i −0.125845 0.992050i \(-0.540164\pi\)
0.850122 + 0.526585i \(0.176528\pi\)
\(90\) 0 0
\(91\) 11.8349 + 13.6582i 1.24063 + 1.43176i
\(92\) 0 0
\(93\) −10.7566 + 2.07317i −1.11541 + 0.214978i
\(94\) 0 0
\(95\) −2.15275 8.87377i −0.220868 0.910429i
\(96\) 0 0
\(97\) 1.05601 + 1.82906i 0.107221 + 0.185713i 0.914644 0.404261i \(-0.132471\pi\)
−0.807422 + 0.589974i \(0.799138\pi\)
\(98\) 0 0
\(99\) 0.0378789 + 0.795176i 0.00380697 + 0.0799182i
\(100\) 0 0
\(101\) −1.01562 1.42624i −0.101058 0.141916i 0.760951 0.648810i \(-0.224733\pi\)
−0.862008 + 0.506894i \(0.830794\pi\)
\(102\) 0 0
\(103\) 4.97032 4.73919i 0.489741 0.466967i −0.404510 0.914534i \(-0.632558\pi\)
0.894250 + 0.447567i \(0.147709\pi\)
\(104\) 0 0
\(105\) −8.32270 + 14.4153i −0.812212 + 1.40679i
\(106\) 0 0
\(107\) −0.807747 + 5.61800i −0.0780879 + 0.543113i 0.912798 + 0.408411i \(0.133917\pi\)
−0.990886 + 0.134702i \(0.956992\pi\)
\(108\) 0 0
\(109\) −9.42574 + 2.76765i −0.902822 + 0.265093i −0.700017 0.714127i \(-0.746824\pi\)
−0.202806 + 0.979219i \(0.565006\pi\)
\(110\) 0 0
\(111\) 0.0799199 1.67773i 0.00758567 0.159243i
\(112\) 0 0
\(113\) −1.38274 1.08740i −0.130077 0.102294i 0.551001 0.834505i \(-0.314246\pi\)
−0.681078 + 0.732211i \(0.738488\pi\)
\(114\) 0 0
\(115\) 28.6940 2.73995i 2.67573 0.255502i
\(116\) 0 0
\(117\) 1.41691 4.09388i 0.130993 0.378480i
\(118\) 0 0
\(119\) −1.90693 + 4.17559i −0.174808 + 0.382776i
\(120\) 0 0
\(121\) −7.50242 7.15354i −0.682038 0.650322i
\(122\) 0 0
\(123\) −1.58810 0.635779i −0.143194 0.0573263i
\(124\) 0 0
\(125\) −9.81403 21.4897i −0.877793 1.92210i
\(126\) 0 0
\(127\) −10.1197 0.966319i −0.897982 0.0857469i −0.364153 0.931339i \(-0.618641\pi\)
−0.533829 + 0.845592i \(0.679248\pi\)
\(128\) 0 0
\(129\) 0.672298 + 4.67594i 0.0591926 + 0.411693i
\(130\) 0 0
\(131\) 5.88426 + 3.78158i 0.514110 + 0.330398i 0.771838 0.635819i \(-0.219338\pi\)
−0.257728 + 0.966217i \(0.582974\pi\)
\(132\) 0 0
\(133\) 9.54672 0.827806
\(134\) 0 0
\(135\) 3.99009 0.343412
\(136\) 0 0
\(137\) 10.0866 + 6.48225i 0.861754 + 0.553816i 0.895220 0.445624i \(-0.147018\pi\)
−0.0334661 + 0.999440i \(0.510655\pi\)
\(138\) 0 0
\(139\) 2.68219 + 18.6551i 0.227501 + 1.58230i 0.708584 + 0.705626i \(0.249334\pi\)
−0.481084 + 0.876675i \(0.659757\pi\)
\(140\) 0 0
\(141\) 10.4966 + 1.00230i 0.883969 + 0.0844088i
\(142\) 0 0
\(143\) −1.43265 3.13707i −0.119804 0.262335i
\(144\) 0 0
\(145\) 14.6844 + 5.87876i 1.21948 + 0.488205i
\(146\) 0 0
\(147\) −7.52896 7.17884i −0.620978 0.592101i
\(148\) 0 0
\(149\) 6.84988 14.9992i 0.561164 1.22878i −0.390206 0.920728i \(-0.627596\pi\)
0.951370 0.308051i \(-0.0996766\pi\)
\(150\) 0 0
\(151\) −5.74385 + 16.5958i −0.467428 + 1.35054i 0.427372 + 0.904076i \(0.359440\pi\)
−0.894800 + 0.446468i \(0.852682\pi\)
\(152\) 0 0
\(153\) 1.09539 0.104597i 0.0885573 0.00845620i
\(154\) 0 0
\(155\) 34.3582 + 27.0196i 2.75972 + 2.17027i
\(156\) 0 0
\(157\) 0.703087 14.7596i 0.0561124 1.17794i −0.778695 0.627403i \(-0.784118\pi\)
0.834807 0.550542i \(-0.185579\pi\)
\(158\) 0 0
\(159\) 10.9761 3.22289i 0.870465 0.255591i
\(160\) 0 0
\(161\) −4.28886 + 29.8296i −0.338009 + 2.35091i
\(162\) 0 0
\(163\) 3.41948 5.92270i 0.267834 0.463902i −0.700468 0.713684i \(-0.747025\pi\)
0.968302 + 0.249782i \(0.0803588\pi\)
\(164\) 0 0
\(165\) 2.29889 2.19198i 0.178968 0.170646i
\(166\) 0 0
\(167\) −4.97340 6.98416i −0.384853 0.540450i 0.576021 0.817435i \(-0.304604\pi\)
−0.960874 + 0.276984i \(0.910665\pi\)
\(168\) 0 0
\(169\) 0.274429 + 5.76096i 0.0211099 + 0.443151i
\(170\) 0 0
\(171\) −1.14423 1.98186i −0.0875014 0.151557i
\(172\) 0 0
\(173\) 1.22138 + 5.03458i 0.0928595 + 0.382772i 0.999209 0.0397559i \(-0.0126580\pi\)
−0.906350 + 0.422528i \(0.861143\pi\)
\(174\) 0 0
\(175\) 44.7349 8.62195i 3.38164 0.651758i
\(176\) 0 0
\(177\) 4.72940 + 5.45801i 0.355483 + 0.410249i
\(178\) 0 0
\(179\) 11.4700 7.37133i 0.857309 0.550959i −0.0365375 0.999332i \(-0.511633\pi\)
0.893846 + 0.448373i \(0.147996\pi\)
\(180\) 0 0
\(181\) 13.0200 6.71228i 0.967770 0.498920i 0.0995137 0.995036i \(-0.468271\pi\)
0.868256 + 0.496116i \(0.165241\pi\)
\(182\) 0 0
\(183\) 3.69781 + 0.712695i 0.273350 + 0.0526839i
\(184\) 0 0
\(185\) −5.26803 + 4.14282i −0.387313 + 0.304586i
\(186\) 0 0
\(187\) 0.573648 0.662026i 0.0419493 0.0484121i
\(188\) 0 0
\(189\) −0.983511 + 4.05409i −0.0715399 + 0.294892i
\(190\) 0 0
\(191\) −5.55560 2.86411i −0.401989 0.207240i 0.245362 0.969431i \(-0.421093\pi\)
−0.647351 + 0.762192i \(0.724123\pi\)
\(192\) 0 0
\(193\) −8.01543 2.35354i −0.576963 0.169412i −0.0197845 0.999804i \(-0.506298\pi\)
−0.557179 + 0.830393i \(0.688116\pi\)
\(194\) 0 0
\(195\) −16.0475 + 6.42443i −1.14918 + 0.460063i
\(196\) 0 0
\(197\) 0.736663 + 2.12845i 0.0524850 + 0.151646i 0.968197 0.250191i \(-0.0804933\pi\)
−0.915712 + 0.401836i \(0.868372\pi\)
\(198\) 0 0
\(199\) −11.9046 + 16.7177i −0.843896 + 1.18509i 0.137004 + 0.990571i \(0.456253\pi\)
−0.980900 + 0.194515i \(0.937687\pi\)
\(200\) 0 0
\(201\) 3.43283 7.43072i 0.242133 0.524123i
\(202\) 0 0
\(203\) −9.59260 + 13.4709i −0.673268 + 0.945473i
\(204\) 0 0
\(205\) 2.23243 + 6.45019i 0.155920 + 0.450501i
\(206\) 0 0
\(207\) 6.70657 2.68490i 0.466139 0.186614i
\(208\) 0 0
\(209\) −1.74800 0.513258i −0.120911 0.0355028i
\(210\) 0 0
\(211\) −18.9585 9.77380i −1.30516 0.672856i −0.341472 0.939892i \(-0.610925\pi\)
−0.963687 + 0.267036i \(0.913956\pi\)
\(212\) 0 0
\(213\) −3.38293 + 13.9446i −0.231795 + 0.955470i
\(214\) 0 0
\(215\) 12.3436 14.2453i 0.841830 0.971523i
\(216\) 0 0
\(217\) −35.9219 + 28.2493i −2.43854 + 1.91769i
\(218\) 0 0
\(219\) 13.6759 + 2.63581i 0.924130 + 0.178111i
\(220\) 0 0
\(221\) −4.23707 + 2.18436i −0.285016 + 0.146936i
\(222\) 0 0
\(223\) −14.6881 + 9.43946i −0.983587 + 0.632113i −0.930429 0.366473i \(-0.880565\pi\)
−0.0531585 + 0.998586i \(0.516929\pi\)
\(224\) 0 0
\(225\) −7.15162 8.25341i −0.476775 0.550227i
\(226\) 0 0
\(227\) 2.65846 0.512375i 0.176448 0.0340075i −0.100262 0.994961i \(-0.531968\pi\)
0.276710 + 0.960954i \(0.410756\pi\)
\(228\) 0 0
\(229\) 3.98529 + 16.4276i 0.263356 + 1.08557i 0.937782 + 0.347225i \(0.112876\pi\)
−0.674426 + 0.738342i \(0.735609\pi\)
\(230\) 0 0
\(231\) 1.66049 + 2.87606i 0.109252 + 0.189231i
\(232\) 0 0
\(233\) −1.33179 27.9576i −0.0872482 1.83157i −0.442470 0.896783i \(-0.645898\pi\)
0.355222 0.934782i \(-0.384405\pi\)
\(234\) 0 0
\(235\) −24.4046 34.2714i −1.59198 2.23562i
\(236\) 0 0
\(237\) −2.82398 + 2.69266i −0.183437 + 0.174907i
\(238\) 0 0
\(239\) 3.36704 5.83189i 0.217796 0.377234i −0.736338 0.676614i \(-0.763447\pi\)
0.954134 + 0.299380i \(0.0967800\pi\)
\(240\) 0 0
\(241\) −3.83205 + 26.6525i −0.246844 + 1.71684i 0.369389 + 0.929275i \(0.379567\pi\)
−0.616233 + 0.787564i \(0.711342\pi\)
\(242\) 0 0
\(243\) 0.959493 0.281733i 0.0615515 0.0180732i
\(244\) 0 0
\(245\) −1.97506 + 41.4616i −0.126182 + 2.64889i
\(246\) 0 0
\(247\) 7.79288 + 6.12839i 0.495849 + 0.389940i
\(248\) 0 0
\(249\) 9.07838 0.866880i 0.575319 0.0549363i
\(250\) 0 0
\(251\) 2.73956 7.91543i 0.172919 0.499618i −0.824925 0.565242i \(-0.808783\pi\)
0.997844 + 0.0656244i \(0.0209039\pi\)
\(252\) 0 0
\(253\) 2.38901 5.23120i 0.150196 0.328883i
\(254\) 0 0
\(255\) −3.17763 3.02986i −0.198991 0.189737i
\(256\) 0 0
\(257\) 10.7480 + 4.30286i 0.670443 + 0.268405i 0.681809 0.731530i \(-0.261194\pi\)
−0.0113656 + 0.999935i \(0.503618\pi\)
\(258\) 0 0
\(259\) −2.91076 6.37368i −0.180866 0.396041i
\(260\) 0 0
\(261\) 3.94624 + 0.376820i 0.244266 + 0.0233246i
\(262\) 0 0
\(263\) −3.19366 22.2124i −0.196930 1.36968i −0.813128 0.582084i \(-0.802237\pi\)
0.616199 0.787591i \(-0.288672\pi\)
\(264\) 0 0
\(265\) −38.3988 24.6774i −2.35882 1.51592i
\(266\) 0 0
\(267\) −8.12219 −0.497070
\(268\) 0 0
\(269\) −22.2330 −1.35557 −0.677784 0.735261i \(-0.737060\pi\)
−0.677784 + 0.735261i \(0.737060\pi\)
\(270\) 0 0
\(271\) −14.1129 9.06983i −0.857299 0.550953i 0.0365442 0.999332i \(-0.488365\pi\)
−0.893843 + 0.448379i \(0.852001\pi\)
\(272\) 0 0
\(273\) −2.57196 17.8884i −0.155662 1.08265i
\(274\) 0 0
\(275\) −8.65446 0.826401i −0.521884 0.0498338i
\(276\) 0 0
\(277\) −9.75679 21.3644i −0.586229 1.28366i −0.937694 0.347461i \(-0.887044\pi\)
0.351465 0.936201i \(-0.385683\pi\)
\(278\) 0 0
\(279\) 10.1699 + 4.07141i 0.608855 + 0.243749i
\(280\) 0 0
\(281\) 12.1180 + 11.5545i 0.722901 + 0.689285i 0.959306 0.282370i \(-0.0911206\pi\)
−0.236405 + 0.971655i \(0.575969\pi\)
\(282\) 0 0
\(283\) 1.11485 2.44117i 0.0662707 0.145113i −0.873598 0.486648i \(-0.838220\pi\)
0.939869 + 0.341535i \(0.110947\pi\)
\(284\) 0 0
\(285\) −2.98651 + 8.62895i −0.176906 + 0.511135i
\(286\) 0 0
\(287\) −7.10392 + 0.678342i −0.419331 + 0.0400413i
\(288\) 0 0
\(289\) 12.4111 + 9.76022i 0.730066 + 0.574130i
\(290\) 0 0
\(291\) 0.100494 2.10962i 0.00589105 0.123668i
\(292\) 0 0
\(293\) 12.7944 3.75678i 0.747458 0.219474i 0.114247 0.993452i \(-0.463555\pi\)
0.633211 + 0.773979i \(0.281736\pi\)
\(294\) 0 0
\(295\) 4.10100 28.5231i 0.238769 1.66068i
\(296\) 0 0
\(297\) 0.398039 0.689424i 0.0230966 0.0400044i
\(298\) 0 0
\(299\) −22.6497 + 21.5964i −1.30987 + 1.24895i
\(300\) 0 0
\(301\) 11.4312 + 16.0529i 0.658886 + 0.925276i
\(302\) 0 0
\(303\) 0.0833109 + 1.74891i 0.00478609 + 0.100472i
\(304\) 0 0
\(305\) −7.51307 13.0130i −0.430197 0.745124i
\(306\) 0 0
\(307\) 1.53177 + 6.31405i 0.0874229 + 0.360362i 0.998673 0.0514903i \(-0.0163971\pi\)
−0.911251 + 0.411852i \(0.864882\pi\)
\(308\) 0 0
\(309\) −6.74350 + 1.29970i −0.383625 + 0.0739376i
\(310\) 0 0
\(311\) 15.9088 + 18.3597i 0.902105 + 1.04108i 0.998951 + 0.0457855i \(0.0145791\pi\)
−0.0968461 + 0.995299i \(0.530875\pi\)
\(312\) 0 0
\(313\) −17.4194 + 11.1948i −0.984604 + 0.632767i −0.930702 0.365780i \(-0.880802\pi\)
−0.0539026 + 0.998546i \(0.517166\pi\)
\(314\) 0 0
\(315\) 14.7950 7.62736i 0.833605 0.429753i
\(316\) 0 0
\(317\) 31.2130 + 6.01582i 1.75310 + 0.337882i 0.961843 0.273603i \(-0.0882156\pi\)
0.791256 + 0.611485i \(0.209428\pi\)
\(318\) 0 0
\(319\) 2.48063 1.95079i 0.138889 0.109223i
\(320\) 0 0
\(321\) 3.71684 4.28946i 0.207454 0.239415i
\(322\) 0 0
\(323\) −0.593680 + 2.44718i −0.0330332 + 0.136165i
\(324\) 0 0
\(325\) 42.0514 + 21.6790i 2.33259 + 1.20253i
\(326\) 0 0
\(327\) 9.42574 + 2.76765i 0.521245 + 0.153051i
\(328\) 0 0
\(329\) 40.8365 16.3485i 2.25139 0.901321i
\(330\) 0 0
\(331\) 5.18267 + 14.9743i 0.284865 + 0.823064i 0.993119 + 0.117107i \(0.0373620\pi\)
−0.708254 + 0.705958i \(0.750517\pi\)
\(332\) 0 0
\(333\) −0.974280 + 1.36819i −0.0533902 + 0.0749761i
\(334\) 0 0
\(335\) −31.3773 + 9.06439i −1.71432 + 0.495241i
\(336\) 0 0
\(337\) 16.4174 23.0550i 0.894312 1.25589i −0.0717099 0.997426i \(-0.522846\pi\)
0.966022 0.258460i \(-0.0832150\pi\)
\(338\) 0 0
\(339\) 0.575342 + 1.66234i 0.0312483 + 0.0902859i
\(340\) 0 0
\(341\) 8.09602 3.24116i 0.438424 0.175519i
\(342\) 0 0
\(343\) −13.6209 3.99946i −0.735460 0.215951i
\(344\) 0 0
\(345\) −25.6203 13.2082i −1.37935 0.711105i
\(346\) 0 0
\(347\) −3.03740 + 12.5203i −0.163056 + 0.672127i 0.830327 + 0.557277i \(0.188154\pi\)
−0.993383 + 0.114850i \(0.963361\pi\)
\(348\) 0 0
\(349\) 1.42380 1.64315i 0.0762140 0.0879557i −0.716362 0.697729i \(-0.754194\pi\)
0.792576 + 0.609773i \(0.208739\pi\)
\(350\) 0 0
\(351\) −3.40530 + 2.67796i −0.181761 + 0.142939i
\(352\) 0 0
\(353\) −1.87805 0.361965i −0.0999587 0.0192655i 0.139027 0.990289i \(-0.455603\pi\)
−0.238985 + 0.971023i \(0.576815\pi\)
\(354\) 0 0
\(355\) 50.8896 26.2354i 2.70094 1.39243i
\(356\) 0 0
\(357\) 3.86171 2.48177i 0.204383 0.131349i
\(358\) 0 0
\(359\) −20.5008 23.6592i −1.08199 1.24869i −0.966852 0.255338i \(-0.917813\pi\)
−0.115141 0.993349i \(-0.536732\pi\)
\(360\) 0 0
\(361\) −13.5142 + 2.60466i −0.711276 + 0.137087i
\(362\) 0 0
\(363\) 2.44394 + 10.0741i 0.128273 + 0.528751i
\(364\) 0 0
\(365\) −27.7861 48.1270i −1.45439 2.51908i
\(366\) 0 0
\(367\) 0.508970 + 10.6846i 0.0265680 + 0.557732i 0.972435 + 0.233176i \(0.0749118\pi\)
−0.945867 + 0.324556i \(0.894785\pi\)
\(368\) 0 0
\(369\) 0.992266 + 1.39344i 0.0516553 + 0.0725398i
\(370\) 0 0
\(371\) 34.5381 32.9320i 1.79313 1.70974i
\(372\) 0 0
\(373\) 7.19678 12.4652i 0.372635 0.645423i −0.617335 0.786701i \(-0.711788\pi\)
0.989970 + 0.141277i \(0.0451210\pi\)
\(374\) 0 0
\(375\) −3.36214 + 23.3842i −0.173620 + 1.20755i
\(376\) 0 0
\(377\) −16.4778 + 4.83832i −0.848650 + 0.249186i
\(378\) 0 0
\(379\) −0.904935 + 18.9969i −0.0464834 + 0.975807i 0.848358 + 0.529423i \(0.177591\pi\)
−0.894842 + 0.446384i \(0.852712\pi\)
\(380\) 0 0
\(381\) 7.99084 + 6.28407i 0.409383 + 0.321943i
\(382\) 0 0
\(383\) −17.0233 + 1.62552i −0.869848 + 0.0830604i −0.520428 0.853906i \(-0.674228\pi\)
−0.349420 + 0.936966i \(0.613621\pi\)
\(384\) 0 0
\(385\) 4.33399 12.5222i 0.220880 0.638192i
\(386\) 0 0
\(387\) 1.96243 4.29712i 0.0997559 0.218435i
\(388\) 0 0
\(389\) −22.3772 21.3366i −1.13457 1.08181i −0.995807 0.0914835i \(-0.970839\pi\)
−0.138762 0.990326i \(-0.544312\pi\)
\(390\) 0 0
\(391\) −7.37975 2.95441i −0.373210 0.149411i
\(392\) 0 0
\(393\) −2.90567 6.36254i −0.146572 0.320948i
\(394\) 0 0
\(395\) 15.4987 + 1.47994i 0.779822 + 0.0744640i
\(396\) 0 0
\(397\) −2.34044 16.2782i −0.117464 0.816977i −0.960332 0.278858i \(-0.910044\pi\)
0.842869 0.538119i \(-0.180865\pi\)
\(398\) 0 0
\(399\) −8.03121 5.16135i −0.402064 0.258391i
\(400\) 0 0
\(401\) 14.1520 0.706718 0.353359 0.935488i \(-0.385039\pi\)
0.353359 + 0.935488i \(0.385039\pi\)
\(402\) 0 0
\(403\) −47.4569 −2.36399
\(404\) 0 0
\(405\) −3.35668 2.15721i −0.166795 0.107192i
\(406\) 0 0
\(407\) 0.190291 + 1.32351i 0.00943239 + 0.0656037i
\(408\) 0 0
\(409\) 2.04232 + 0.195018i 0.100986 + 0.00964300i 0.145427 0.989369i \(-0.453544\pi\)
−0.0444406 + 0.999012i \(0.514151\pi\)
\(410\) 0 0
\(411\) −4.98080 10.9064i −0.245685 0.537974i
\(412\) 0 0
\(413\) 27.9697 + 11.1974i 1.37630 + 0.550987i
\(414\) 0 0
\(415\) −26.3355 25.1108i −1.29276 1.23264i
\(416\) 0 0
\(417\) 7.82928 17.1437i 0.383401 0.839532i
\(418\) 0 0
\(419\) −8.95004 + 25.8595i −0.437238 + 1.26332i 0.484256 + 0.874926i \(0.339090\pi\)
−0.921495 + 0.388391i \(0.873031\pi\)
\(420\) 0 0
\(421\) 14.8404 1.41709i 0.723278 0.0690647i 0.273077 0.961992i \(-0.411958\pi\)
0.450201 + 0.892927i \(0.351352\pi\)
\(422\) 0 0
\(423\) −8.28838 6.51805i −0.402995 0.316919i
\(424\) 0 0
\(425\) −0.571793 + 12.0034i −0.0277360 + 0.582251i
\(426\) 0 0
\(427\) 15.0736 4.42602i 0.729464 0.214190i
\(428\) 0 0
\(429\) −0.490805 + 3.41362i −0.0236963 + 0.164811i
\(430\) 0 0
\(431\) −8.62573 + 14.9402i −0.415487 + 0.719644i −0.995479 0.0949775i \(-0.969722\pi\)
0.579993 + 0.814622i \(0.303055\pi\)
\(432\) 0 0
\(433\) −4.06882 + 3.87961i −0.195535 + 0.186442i −0.781521 0.623879i \(-0.785556\pi\)
0.585986 + 0.810321i \(0.300707\pi\)
\(434\) 0 0
\(435\) −9.17503 12.8845i −0.439909 0.617766i
\(436\) 0 0
\(437\) 0.786620 + 16.5132i 0.0376291 + 0.789933i
\(438\) 0 0
\(439\) −10.3430 17.9145i −0.493643 0.855014i 0.506330 0.862340i \(-0.331002\pi\)
−0.999973 + 0.00732524i \(0.997668\pi\)
\(440\) 0 0
\(441\) 2.45258 + 10.1097i 0.116790 + 0.481414i
\(442\) 0 0
\(443\) 16.1897 3.12031i 0.769195 0.148250i 0.210467 0.977601i \(-0.432502\pi\)
0.558728 + 0.829351i \(0.311289\pi\)
\(444\) 0 0
\(445\) 21.2229 + 24.4925i 1.00606 + 1.16106i
\(446\) 0 0
\(447\) −13.8716 + 8.91476i −0.656106 + 0.421654i
\(448\) 0 0
\(449\) −25.7486 + 13.2743i −1.21515 + 0.626455i −0.942031 0.335525i \(-0.891086\pi\)
−0.273122 + 0.961980i \(0.588056\pi\)
\(450\) 0 0
\(451\) 1.33719 + 0.257722i 0.0629658 + 0.0121357i
\(452\) 0 0
\(453\) 13.8044 10.8559i 0.648586 0.510054i
\(454\) 0 0
\(455\) −47.2222 + 54.4973i −2.21381 + 2.55487i
\(456\) 0 0
\(457\) −0.764064 + 3.14952i −0.0357414 + 0.147328i −0.986886 0.161417i \(-0.948394\pi\)
0.951145 + 0.308745i \(0.0999089\pi\)
\(458\) 0 0
\(459\) −0.978054 0.504222i −0.0456516 0.0235351i
\(460\) 0 0
\(461\) −32.5734 9.56442i −1.51710 0.445459i −0.586023 0.810294i \(-0.699307\pi\)
−0.931072 + 0.364835i \(0.881125\pi\)
\(462\) 0 0
\(463\) −10.9332 + 4.37701i −0.508111 + 0.203417i −0.611530 0.791221i \(-0.709446\pi\)
0.103420 + 0.994638i \(0.467022\pi\)
\(464\) 0 0
\(465\) −14.2961 41.3058i −0.662964 1.91551i
\(466\) 0 0
\(467\) 1.31181 1.84219i 0.0607035 0.0852462i −0.783108 0.621885i \(-0.786367\pi\)
0.843812 + 0.536639i \(0.180306\pi\)
\(468\) 0 0
\(469\) −1.47565 34.1148i −0.0681392 1.57527i
\(470\) 0 0
\(471\) −8.57112 + 12.0365i −0.394936 + 0.554611i
\(472\) 0 0
\(473\) −1.23000 3.55385i −0.0565555 0.163406i
\(474\) 0 0
\(475\) 23.2016 9.28854i 1.06456 0.426187i
\(476\) 0 0
\(477\) −10.9761 3.22289i −0.502563 0.147566i
\(478\) 0 0
\(479\) −19.4396 10.0218i −0.888218 0.457908i −0.0471815 0.998886i \(-0.515024\pi\)
−0.841037 + 0.540978i \(0.818054\pi\)
\(480\) 0 0
\(481\) 1.71548 7.07129i 0.0782190 0.322423i
\(482\) 0 0
\(483\) 19.7351 22.7756i 0.897980 1.03632i
\(484\) 0 0
\(485\) −6.62418 + 5.20931i −0.300789 + 0.236543i
\(486\) 0 0
\(487\) 5.42062 + 1.04474i 0.245632 + 0.0473416i 0.310581 0.950547i \(-0.399476\pi\)
−0.0649493 + 0.997889i \(0.520689\pi\)
\(488\) 0 0
\(489\) −6.07870 + 3.13379i −0.274888 + 0.141715i
\(490\) 0 0
\(491\) −11.2543 + 7.23272i −0.507901 + 0.326408i −0.769370 0.638804i \(-0.779430\pi\)
0.261469 + 0.965212i \(0.415793\pi\)
\(492\) 0 0
\(493\) −2.85657 3.29666i −0.128653 0.148474i
\(494\) 0 0
\(495\) −3.11902 + 0.601142i −0.140190 + 0.0270193i
\(496\) 0 0
\(497\) 14.1125 + 58.1726i 0.633033 + 2.60940i
\(498\) 0 0
\(499\) −10.6081 18.3738i −0.474885 0.822526i 0.524701 0.851287i \(-0.324177\pi\)
−0.999586 + 0.0287609i \(0.990844\pi\)
\(500\) 0 0
\(501\) 0.407966 + 8.56427i 0.0182266 + 0.382623i
\(502\) 0 0
\(503\) −1.45754 2.04682i −0.0649883 0.0912633i 0.780803 0.624778i \(-0.214810\pi\)
−0.845791 + 0.533514i \(0.820871\pi\)
\(504\) 0 0
\(505\) 5.05617 4.82105i 0.224997 0.214534i
\(506\) 0 0
\(507\) 2.88375 4.99480i 0.128072 0.221827i
\(508\) 0 0
\(509\) 1.58281 11.0087i 0.0701569 0.487952i −0.924204 0.381900i \(-0.875270\pi\)
0.994361 0.106052i \(-0.0338210\pi\)
\(510\) 0 0
\(511\) 55.7479 16.3691i 2.46614 0.724124i
\(512\) 0 0
\(513\) −0.108889 + 2.28587i −0.00480758 + 0.100923i
\(514\) 0 0
\(515\) 21.5397 + 16.9390i 0.949154 + 0.746423i
\(516\) 0 0
\(517\) −8.35607 + 0.797908i −0.367500 + 0.0350920i
\(518\) 0 0
\(519\) 1.69441 4.89568i 0.0743764 0.214897i
\(520\) 0 0
\(521\) −5.53380 + 12.1173i −0.242440 + 0.530870i −0.991263 0.131901i \(-0.957892\pi\)
0.748823 + 0.662770i \(0.230619\pi\)
\(522\) 0 0
\(523\) −11.9597 11.4036i −0.522962 0.498643i 0.381984 0.924169i \(-0.375241\pi\)
−0.904947 + 0.425525i \(0.860089\pi\)
\(524\) 0 0
\(525\) −42.2948 16.9323i −1.84590 0.738985i
\(526\) 0 0
\(527\) −5.00748 10.9649i −0.218129 0.477637i
\(528\) 0 0
\(529\) −29.0546 2.77438i −1.26324 0.120625i
\(530\) 0 0
\(531\) −1.02780 7.14848i −0.0446026 0.310218i
\(532\) 0 0
\(533\) −6.23430 4.00654i −0.270038 0.173543i
\(534\) 0 0
\(535\) −22.6469 −0.979109
\(536\) 0 0
\(537\) −13.6344 −0.588369
\(538\) 0 0
\(539\) 6.96688 + 4.47734i 0.300085 + 0.192853i
\(540\) 0 0
\(541\) 1.24913 + 8.68787i 0.0537042 + 0.373521i 0.998895 + 0.0470017i \(0.0149666\pi\)
−0.945191 + 0.326519i \(0.894124\pi\)
\(542\) 0 0
\(543\) −14.5821 1.39242i −0.625776 0.0597544i
\(544\) 0 0
\(545\) −16.2832 35.6551i −0.697494 1.52730i
\(546\) 0 0
\(547\) 34.8916 + 13.9685i 1.49186 + 0.597249i 0.967189 0.254058i \(-0.0817653\pi\)
0.524668 + 0.851307i \(0.324190\pi\)
\(548\) 0 0
\(549\) −2.72549 2.59875i −0.116321 0.110912i
\(550\) 0 0
\(551\) −3.76860 + 8.25207i −0.160548 + 0.351550i
\(552\) 0 0
\(553\) −5.32392 + 15.3825i −0.226396 + 0.654128i
\(554\) 0 0
\(555\) 6.67152 0.637053i 0.283190 0.0270414i
\(556\) 0 0
\(557\) 25.1241 + 19.7578i 1.06454 + 0.837164i 0.987144 0.159836i \(-0.0510967\pi\)
0.0773970 + 0.997000i \(0.475339\pi\)
\(558\) 0 0
\(559\) −0.973771 + 20.4420i −0.0411861 + 0.864603i
\(560\) 0 0
\(561\) −0.840502 + 0.246794i −0.0354860 + 0.0104196i
\(562\) 0 0
\(563\) −2.54760 + 17.7190i −0.107369 + 0.746765i 0.863012 + 0.505184i \(0.168575\pi\)
−0.970381 + 0.241581i \(0.922334\pi\)
\(564\) 0 0
\(565\) 3.50946 6.07857i 0.147644 0.255727i
\(566\) 0 0
\(567\) 3.01919 2.87879i 0.126794 0.120898i
\(568\) 0 0
\(569\) −6.38681 8.96903i −0.267749 0.376001i 0.658710 0.752397i \(-0.271103\pi\)
−0.926459 + 0.376396i \(0.877163\pi\)
\(570\) 0 0
\(571\) −0.553774 11.6251i −0.0231747 0.486497i −0.980384 0.197099i \(-0.936848\pi\)
0.957209 0.289398i \(-0.0934551\pi\)
\(572\) 0 0
\(573\) 3.12521 + 5.41303i 0.130558 + 0.226132i
\(574\) 0 0
\(575\) 18.5996 + 76.6686i 0.775657 + 3.19730i
\(576\) 0 0
\(577\) −25.9820 + 5.00763i −1.08165 + 0.208470i −0.698782 0.715335i \(-0.746274\pi\)
−0.382864 + 0.923805i \(0.625062\pi\)
\(578\) 0 0
\(579\) 5.47059 + 6.31340i 0.227350 + 0.262376i
\(580\) 0 0
\(581\) 32.0050 20.5683i 1.32779 0.853318i
\(582\) 0 0
\(583\) −8.09440 + 4.17296i −0.335236 + 0.172826i
\(584\) 0 0
\(585\) 16.9733 + 3.27133i 0.701759 + 0.135253i
\(586\) 0 0
\(587\) 23.2001 18.2447i 0.957569 0.753041i −0.0114736 0.999934i \(-0.503652\pi\)
0.969043 + 0.246894i \(0.0794098\pi\)
\(588\) 0 0
\(589\) −16.4168 + 18.9460i −0.676441 + 0.780655i
\(590\) 0 0
\(591\) 0.531005 2.18883i 0.0218426 0.0900366i
\(592\) 0 0
\(593\) 27.1678 + 14.0060i 1.11565 + 0.575157i 0.914574 0.404419i \(-0.132526\pi\)
0.201075 + 0.979576i \(0.435556\pi\)
\(594\) 0 0
\(595\) −17.5743 5.16027i −0.720474 0.211550i
\(596\) 0 0
\(597\) 19.0531 7.62770i 0.779790 0.312181i
\(598\) 0 0
\(599\) 10.6763 + 30.8471i 0.436221 + 1.26038i 0.922304 + 0.386465i \(0.126304\pi\)
−0.486083 + 0.873912i \(0.661575\pi\)
\(600\) 0 0
\(601\) 13.1166 18.4196i 0.535036 0.751353i −0.455255 0.890361i \(-0.650452\pi\)
0.990291 + 0.139008i \(0.0443913\pi\)
\(602\) 0 0
\(603\) −6.90524 + 4.39519i −0.281203 + 0.178986i
\(604\) 0 0
\(605\) 23.9925 33.6927i 0.975434 1.36981i
\(606\) 0 0
\(607\) −6.47303 18.7026i −0.262732 0.759115i −0.996792 0.0800303i \(-0.974498\pi\)
0.734060 0.679084i \(-0.237623\pi\)
\(608\) 0 0
\(609\) 15.3527 6.14631i 0.622124 0.249061i
\(610\) 0 0
\(611\) 43.8291 + 12.8694i 1.77314 + 0.520640i
\(612\) 0 0
\(613\) 14.1284 + 7.28370i 0.570641 + 0.294186i 0.719297 0.694703i \(-0.244464\pi\)
−0.148655 + 0.988889i \(0.547495\pi\)
\(614\) 0 0
\(615\) 1.60919 6.63319i 0.0648890 0.267476i
\(616\) 0 0
\(617\) 7.86306 9.07446i 0.316555 0.365324i −0.575066 0.818107i \(-0.695023\pi\)
0.891621 + 0.452783i \(0.149569\pi\)
\(618\) 0 0
\(619\) 23.7793 18.7002i 0.955770 0.751626i −0.0129158 0.999917i \(-0.504111\pi\)
0.968686 + 0.248291i \(0.0798689\pi\)
\(620\) 0 0
\(621\) −7.09349 1.36716i −0.284652 0.0548622i
\(622\) 0 0
\(623\) −30.1166 + 15.5262i −1.20660 + 0.622043i
\(624\) 0 0
\(625\) 33.3644 21.4420i 1.33457 0.857679i
\(626\) 0 0
\(627\) 1.19302 + 1.37682i 0.0476446 + 0.0549848i
\(628\) 0 0
\(629\) 1.81482 0.349779i 0.0723618 0.0139466i
\(630\) 0 0
\(631\) −1.82979 7.54250i −0.0728428 0.300262i 0.923724 0.383060i \(-0.125130\pi\)
−0.996566 + 0.0827976i \(0.973614\pi\)
\(632\) 0 0
\(633\) 10.6648 + 18.4720i 0.423888 + 0.734196i
\(634\) 0 0
\(635\) −1.93004 40.5164i −0.0765911 1.60785i
\(636\) 0 0
\(637\) −26.1414 36.7105i −1.03576 1.45452i
\(638\) 0 0
\(639\) 10.3849 9.90202i 0.410822 0.391718i
\(640\) 0 0
\(641\) 20.3932 35.3221i 0.805484 1.39514i −0.110480 0.993878i \(-0.535239\pi\)
0.915964 0.401261i \(-0.131428\pi\)
\(642\) 0 0
\(643\) −3.47067 + 24.1390i −0.136870 + 0.951951i 0.799433 + 0.600756i \(0.205134\pi\)
−0.936302 + 0.351195i \(0.885776\pi\)
\(644\) 0 0
\(645\) −18.0857 + 5.31045i −0.712125 + 0.209099i
\(646\) 0 0
\(647\) −0.662080 + 13.8988i −0.0260290 + 0.546417i 0.947763 + 0.318976i \(0.103339\pi\)
−0.973792 + 0.227441i \(0.926964\pi\)
\(648\) 0 0
\(649\) −4.51923 3.55396i −0.177395 0.139505i
\(650\) 0 0
\(651\) 45.4921 4.34397i 1.78298 0.170254i
\(652\) 0 0
\(653\) −6.71981 + 19.4156i −0.262966 + 0.759792i 0.733795 + 0.679371i \(0.237747\pi\)
−0.996761 + 0.0804202i \(0.974374\pi\)
\(654\) 0 0
\(655\) −11.5939 + 25.3871i −0.453011 + 0.991956i
\(656\) 0 0
\(657\) −10.0799 9.61112i −0.393253 0.374966i
\(658\) 0 0
\(659\) −33.8939 13.5691i −1.32032 0.528576i −0.398845 0.917018i \(-0.630589\pi\)
−0.921473 + 0.388442i \(0.873013\pi\)
\(660\) 0 0
\(661\) 16.6171 + 36.3863i 0.646329 + 1.41526i 0.894730 + 0.446607i \(0.147368\pi\)
−0.248401 + 0.968657i \(0.579905\pi\)
\(662\) 0 0
\(663\) 4.74541 + 0.453131i 0.184296 + 0.0175982i
\(664\) 0 0
\(665\) 5.42110 + 37.7046i 0.210221 + 1.46212i
\(666\) 0 0
\(667\) −24.0914 15.4826i −0.932821 0.599488i
\(668\) 0 0
\(669\) 17.4598 0.675034
\(670\) 0 0
\(671\) −2.99792 −0.115734
\(672\) 0 0
\(673\) −33.2704 21.3816i −1.28248 0.824199i −0.291287 0.956636i \(-0.594083\pi\)
−0.991191 + 0.132437i \(0.957720\pi\)
\(674\) 0 0
\(675\) 1.55420 + 10.8097i 0.0598210 + 0.416064i
\(676\) 0 0
\(677\) 16.5338 + 1.57879i 0.635445 + 0.0606776i 0.407807 0.913068i \(-0.366294\pi\)
0.227638 + 0.973746i \(0.426900\pi\)
\(678\) 0 0
\(679\) −3.66008 8.01446i −0.140461 0.307567i
\(680\) 0 0
\(681\) −2.51345 1.00623i −0.0963155 0.0385589i
\(682\) 0 0
\(683\) 2.26401 + 2.15873i 0.0866298 + 0.0826013i 0.732157 0.681136i \(-0.238514\pi\)
−0.645527 + 0.763737i \(0.723362\pi\)
\(684\) 0 0
\(685\) −19.8738 + 43.5176i −0.759340 + 1.66272i
\(686\) 0 0
\(687\) 5.52879 15.9744i 0.210937 0.609461i
\(688\) 0 0
\(689\) 49.3333 4.71076i 1.87945 0.179466i
\(690\) 0 0
\(691\) 39.0192 + 30.6850i 1.48436 + 1.16731i 0.945810 + 0.324721i \(0.105270\pi\)
0.538551 + 0.842593i \(0.318972\pi\)
\(692\) 0 0
\(693\) 0.158019 3.31722i 0.00600264 0.126011i
\(694\) 0 0
\(695\) −72.1546 + 21.1865i −2.73698 + 0.803650i
\(696\) 0 0
\(697\) 0.267885 1.86318i 0.0101469 0.0705731i
\(698\) 0 0
\(699\) −13.9947 + 24.2395i −0.529327 + 0.916821i
\(700\) 0 0
\(701\) −9.69625 + 9.24536i −0.366222 + 0.349192i −0.850738 0.525590i \(-0.823844\pi\)
0.484515 + 0.874783i \(0.338996\pi\)
\(702\) 0 0
\(703\) −2.22960 3.13104i −0.0840910 0.118089i
\(704\) 0 0
\(705\) 2.00190 + 42.0251i 0.0753959 + 1.58276i
\(706\) 0 0
\(707\) 3.65209 + 6.32560i 0.137351 + 0.237899i
\(708\) 0 0
\(709\) −3.62762 14.9532i −0.136238 0.561581i −0.998482 0.0550870i \(-0.982456\pi\)
0.862243 0.506494i \(-0.169059\pi\)
\(710\) 0 0
\(711\) 3.83144 0.738450i 0.143690 0.0276940i
\(712\) 0 0
\(713\) −51.8233 59.8072i −1.94080 2.23980i
\(714\) 0 0
\(715\) 11.5763 7.43961i 0.432928 0.278226i
\(716\) 0 0
\(717\) −5.98549 + 3.08574i −0.223532 + 0.115239i
\(718\) 0 0
\(719\) 14.5522 + 2.80471i 0.542707 + 0.104598i 0.453235 0.891391i \(-0.350270\pi\)
0.0894720 + 0.995989i \(0.471482\pi\)
\(720\) 0 0
\(721\) −22.5200 + 17.7099i −0.838689 + 0.659553i
\(722\) 0 0
\(723\) 17.6332 20.3498i 0.655784 0.756815i
\(724\) 0 0
\(725\) −10.2065 + 42.0719i −0.379061 + 1.56251i
\(726\) 0 0
\(727\) 4.01009 + 2.06735i 0.148726 + 0.0766736i 0.530983 0.847382i \(-0.321823\pi\)
−0.382257 + 0.924056i \(0.624853\pi\)
\(728\) 0 0
\(729\) −0.959493 0.281733i −0.0355368 0.0104345i
\(730\) 0 0
\(731\) −4.82584 + 1.93198i −0.178490 + 0.0714567i
\(732\) 0 0
\(733\) −7.48676 21.6316i −0.276530 0.798980i −0.994673 0.103084i \(-0.967129\pi\)
0.718143 0.695896i \(-0.244992\pi\)
\(734\) 0 0
\(735\) 24.0774 33.8119i 0.888107 1.24717i
\(736\) 0 0
\(737\) −1.56391 + 6.32572i −0.0576075 + 0.233011i
\(738\) 0 0
\(739\) 5.16284 7.25019i 0.189918 0.266703i −0.708628 0.705583i \(-0.750685\pi\)
0.898546 + 0.438880i \(0.144625\pi\)
\(740\) 0 0
\(741\) −3.24253 9.36868i −0.119117 0.344167i
\(742\) 0 0
\(743\) 26.2717 10.5176i 0.963816 0.385854i 0.164241 0.986420i \(-0.447482\pi\)
0.799575 + 0.600566i \(0.205058\pi\)
\(744\) 0 0
\(745\) 63.1285 + 18.5362i 2.31285 + 0.679114i
\(746\) 0 0
\(747\) −8.10589 4.17887i −0.296579 0.152897i
\(748\) 0 0
\(749\) 5.58219 23.0101i 0.203969 0.840771i
\(750\) 0 0
\(751\) 4.52676 5.22416i 0.165184 0.190632i −0.667123 0.744948i \(-0.732474\pi\)
0.832307 + 0.554315i \(0.187020\pi\)
\(752\) 0 0
\(753\) −6.58407 + 5.17777i −0.239937 + 0.188688i
\(754\) 0 0
\(755\) −68.8062 13.2613i −2.50412 0.482629i
\(756\) 0 0
\(757\) 6.13858 3.16466i 0.223110 0.115021i −0.343048 0.939318i \(-0.611459\pi\)
0.566158 + 0.824296i \(0.308429\pi\)
\(758\) 0 0
\(759\) −4.83796 + 3.10917i −0.175607 + 0.112856i
\(760\) 0 0
\(761\) 31.5078 + 36.3619i 1.14216 + 1.31812i 0.940941 + 0.338572i \(0.109944\pi\)
0.201216 + 0.979547i \(0.435511\pi\)
\(762\) 0 0
\(763\) 40.2406 7.75575i 1.45681 0.280777i
\(764\) 0 0
\(765\) 1.03512 + 4.26684i 0.0374250 + 0.154268i
\(766\) 0 0
\(767\) 15.6434 + 27.0951i 0.564849 + 0.978347i
\(768\) 0 0
\(769\) −0.875196 18.3726i −0.0315604 0.662534i −0.958117 0.286378i \(-0.907549\pi\)
0.926556 0.376156i \(-0.122754\pi\)
\(770\) 0 0
\(771\) −6.71551 9.43061i −0.241853 0.339635i
\(772\) 0 0
\(773\) 37.4587 35.7168i 1.34729 1.28464i 0.421393 0.906878i \(-0.361541\pi\)
0.925902 0.377764i \(-0.123307\pi\)
\(774\) 0 0
\(775\) −59.8165 + 103.605i −2.14867 + 3.72161i
\(776\) 0 0
\(777\) −0.997183 + 6.93556i −0.0357737 + 0.248812i
\(778\)