Properties

Label 804.2.y.b.121.6
Level 804
Weight 2
Character 804.121
Analytic conductor 6.420
Analytic rank 0
Dimension 120
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.y (of order \(33\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(6\) over \(\Q(\zeta_{33})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

Embedding invariants

Embedding label 121.6
Character \(\chi\) = 804.121
Dual form 804.2.y.b.505.6

$q$-expansion

\(f(q)\) \(=\) \(q+(0.654861 - 0.755750i) q^{3} +(2.26427 - 1.45516i) q^{5} +(-0.275857 - 0.110437i) q^{7} +(-0.142315 - 0.989821i) q^{9} +O(q^{10})\) \(q+(0.654861 - 0.755750i) q^{3} +(2.26427 - 1.45516i) q^{5} +(-0.275857 - 0.110437i) q^{7} +(-0.142315 - 0.989821i) q^{9} +(-0.141549 - 2.97147i) q^{11} +(-2.35877 + 0.225236i) q^{13} +(0.383046 - 2.66414i) q^{15} +(-1.55999 - 6.43038i) q^{17} +(-0.0392194 + 0.0157011i) q^{19} +(-0.264111 + 0.136158i) q^{21} +(6.70108 + 1.29153i) q^{23} +(0.932347 - 2.04156i) q^{25} +(-0.841254 - 0.540641i) q^{27} +(-4.54404 + 7.87051i) q^{29} +(6.70820 + 0.640555i) q^{31} +(-2.33838 - 1.83893i) q^{33} +(-0.785317 + 0.151357i) q^{35} +(-3.58390 - 6.20750i) q^{37} +(-1.37445 + 1.93014i) q^{39} +(-1.14105 + 1.08799i) q^{41} +(-0.0911731 - 0.0267708i) q^{43} +(-1.76258 - 2.03413i) q^{45} +(1.33349 + 3.85286i) q^{47} +(-5.00224 - 4.76962i) q^{49} +(-5.88134 - 3.03204i) q^{51} +(9.92237 - 2.91347i) q^{53} +(-4.64446 - 6.52223i) q^{55} +(-0.0138171 + 0.0399220i) q^{57} +(0.805907 + 1.76469i) q^{59} +(-0.0570785 + 1.19823i) q^{61} +(-0.0700539 + 0.288766i) q^{63} +(-5.01314 + 3.94237i) q^{65} +(8.13460 - 0.910133i) q^{67} +(5.36435 - 4.21857i) q^{69} +(2.07959 - 8.57221i) q^{71} +(-0.527712 + 11.0780i) q^{73} +(-0.932347 - 2.04156i) q^{75} +(-0.289112 + 0.835335i) q^{77} +(-0.0496144 - 0.0696736i) q^{79} +(-0.959493 + 0.281733i) q^{81} +(5.57384 + 2.87352i) q^{83} +(-12.8894 - 12.2901i) q^{85} +(2.97242 + 8.58824i) q^{87} +(2.48587 + 2.86885i) q^{89} +(0.675559 + 0.198362i) q^{91} +(4.87703 - 4.65024i) q^{93} +(-0.0659556 + 0.0926216i) q^{95} +(-6.97782 - 12.0859i) q^{97} +(-2.92108 + 0.562993i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + O(q^{10}) \) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + 11q^{11} + 2q^{13} - 9q^{15} + 48q^{17} - 4q^{19} - q^{21} + 22q^{23} - 42q^{25} + 12q^{27} - q^{29} + 27q^{31} + 17q^{35} - 8q^{37} - 2q^{39} - 58q^{41} - 17q^{43} - 2q^{45} - 84q^{47} + 101q^{49} - 26q^{51} + 28q^{53} - 9q^{55} + 26q^{57} + 34q^{59} + 16q^{61} + 12q^{63} + 144q^{65} + 23q^{67} + 11q^{69} + 173q^{71} - 2q^{73} + 42q^{75} + 128q^{77} + 31q^{79} - 12q^{81} + 47q^{83} - 75q^{85} - 10q^{87} - 67q^{89} + 16q^{91} + 6q^{93} - 79q^{95} + 10q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(e\left(\frac{26}{33}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.654861 0.755750i 0.378084 0.436332i
\(4\) 0 0
\(5\) 2.26427 1.45516i 1.01261 0.650765i 0.0745429 0.997218i \(-0.476250\pi\)
0.938067 + 0.346453i \(0.112614\pi\)
\(6\) 0 0
\(7\) −0.275857 0.110437i −0.104264 0.0417411i 0.318944 0.947774i \(-0.396672\pi\)
−0.423208 + 0.906032i \(0.639096\pi\)
\(8\) 0 0
\(9\) −0.142315 0.989821i −0.0474383 0.329940i
\(10\) 0 0
\(11\) −0.141549 2.97147i −0.0426785 0.895933i −0.914123 0.405438i \(-0.867119\pi\)
0.871444 0.490495i \(-0.163184\pi\)
\(12\) 0 0
\(13\) −2.35877 + 0.225236i −0.654206 + 0.0624691i −0.416881 0.908961i \(-0.636877\pi\)
−0.237325 + 0.971430i \(0.576271\pi\)
\(14\) 0 0
\(15\) 0.383046 2.66414i 0.0989020 0.687878i
\(16\) 0 0
\(17\) −1.55999 6.43038i −0.378354 1.55960i −0.769119 0.639106i \(-0.779304\pi\)
0.390764 0.920491i \(-0.372211\pi\)
\(18\) 0 0
\(19\) −0.0392194 + 0.0157011i −0.00899754 + 0.00360207i −0.376157 0.926556i \(-0.622755\pi\)
0.367159 + 0.930158i \(0.380330\pi\)
\(20\) 0 0
\(21\) −0.264111 + 0.136158i −0.0576337 + 0.0297122i
\(22\) 0 0
\(23\) 6.70108 + 1.29153i 1.39727 + 0.269302i 0.831622 0.555343i \(-0.187413\pi\)
0.565651 + 0.824645i \(0.308625\pi\)
\(24\) 0 0
\(25\) 0.932347 2.04156i 0.186469 0.408311i
\(26\) 0 0
\(27\) −0.841254 0.540641i −0.161899 0.104046i
\(28\) 0 0
\(29\) −4.54404 + 7.87051i −0.843807 + 1.46152i 0.0428465 + 0.999082i \(0.486357\pi\)
−0.886653 + 0.462435i \(0.846976\pi\)
\(30\) 0 0
\(31\) 6.70820 + 0.640555i 1.20483 + 0.115047i 0.678089 0.734980i \(-0.262809\pi\)
0.526739 + 0.850027i \(0.323415\pi\)
\(32\) 0 0
\(33\) −2.33838 1.83893i −0.407060 0.320116i
\(34\) 0 0
\(35\) −0.785317 + 0.151357i −0.132743 + 0.0255841i
\(36\) 0 0
\(37\) −3.58390 6.20750i −0.589190 1.02051i −0.994339 0.106256i \(-0.966114\pi\)
0.405149 0.914251i \(-0.367220\pi\)
\(38\) 0 0
\(39\) −1.37445 + 1.93014i −0.220088 + 0.309070i
\(40\) 0 0
\(41\) −1.14105 + 1.08799i −0.178203 + 0.169916i −0.773931 0.633270i \(-0.781712\pi\)
0.595728 + 0.803186i \(0.296864\pi\)
\(42\) 0 0
\(43\) −0.0911731 0.0267708i −0.0139038 0.00408252i 0.274773 0.961509i \(-0.411397\pi\)
−0.288677 + 0.957427i \(0.593215\pi\)
\(44\) 0 0
\(45\) −1.76258 2.03413i −0.262750 0.303230i
\(46\) 0 0
\(47\) 1.33349 + 3.85286i 0.194509 + 0.561997i 0.999511 0.0312755i \(-0.00995692\pi\)
−0.805002 + 0.593272i \(0.797836\pi\)
\(48\) 0 0
\(49\) −5.00224 4.76962i −0.714605 0.681375i
\(50\) 0 0
\(51\) −5.88134 3.03204i −0.823552 0.424571i
\(52\) 0 0
\(53\) 9.92237 2.91347i 1.36294 0.400196i 0.483143 0.875541i \(-0.339495\pi\)
0.879799 + 0.475346i \(0.157677\pi\)
\(54\) 0 0
\(55\) −4.64446 6.52223i −0.626258 0.879457i
\(56\) 0 0
\(57\) −0.0138171 + 0.0399220i −0.00183013 + 0.00528780i
\(58\) 0 0
\(59\) 0.805907 + 1.76469i 0.104920 + 0.229743i 0.954810 0.297218i \(-0.0960587\pi\)
−0.849890 + 0.526961i \(0.823331\pi\)
\(60\) 0 0
\(61\) −0.0570785 + 1.19823i −0.00730816 + 0.153417i 0.992263 + 0.124150i \(0.0396204\pi\)
−0.999572 + 0.0292672i \(0.990683\pi\)
\(62\) 0 0
\(63\) −0.0700539 + 0.288766i −0.00882597 + 0.0363811i
\(64\) 0 0
\(65\) −5.01314 + 3.94237i −0.621803 + 0.488991i
\(66\) 0 0
\(67\) 8.13460 0.910133i 0.993799 0.111190i
\(68\) 0 0
\(69\) 5.36435 4.21857i 0.645792 0.507856i
\(70\) 0 0
\(71\) 2.07959 8.57221i 0.246802 1.01733i −0.704654 0.709551i \(-0.748898\pi\)
0.951457 0.307783i \(-0.0995870\pi\)
\(72\) 0 0
\(73\) −0.527712 + 11.0780i −0.0617640 + 1.29659i 0.729021 + 0.684492i \(0.239976\pi\)
−0.790785 + 0.612094i \(0.790327\pi\)
\(74\) 0 0
\(75\) −0.932347 2.04156i −0.107658 0.235738i
\(76\) 0 0
\(77\) −0.289112 + 0.835335i −0.0329474 + 0.0951952i
\(78\) 0 0
\(79\) −0.0496144 0.0696736i −0.00558205 0.00783889i 0.811775 0.583970i \(-0.198501\pi\)
−0.817358 + 0.576131i \(0.804562\pi\)
\(80\) 0 0
\(81\) −0.959493 + 0.281733i −0.106610 + 0.0313036i
\(82\) 0 0
\(83\) 5.57384 + 2.87352i 0.611809 + 0.315409i 0.736138 0.676832i \(-0.236647\pi\)
−0.124329 + 0.992241i \(0.539678\pi\)
\(84\) 0 0
\(85\) −12.8894 12.2901i −1.39806 1.33304i
\(86\) 0 0
\(87\) 2.97242 + 8.58824i 0.318677 + 0.920756i
\(88\) 0 0
\(89\) 2.48587 + 2.86885i 0.263502 + 0.304097i 0.872047 0.489422i \(-0.162792\pi\)
−0.608546 + 0.793519i \(0.708247\pi\)
\(90\) 0 0
\(91\) 0.675559 + 0.198362i 0.0708178 + 0.0207940i
\(92\) 0 0
\(93\) 4.87703 4.65024i 0.505725 0.482208i
\(94\) 0 0
\(95\) −0.0659556 + 0.0926216i −0.00676690 + 0.00950278i
\(96\) 0 0
\(97\) −6.97782 12.0859i −0.708490 1.22714i −0.965417 0.260710i \(-0.916043\pi\)
0.256927 0.966431i \(-0.417290\pi\)
\(98\) 0 0
\(99\) −2.92108 + 0.562993i −0.293580 + 0.0565829i
\(100\) 0 0
\(101\) 7.14022 + 5.61513i 0.710479 + 0.558727i 0.906671 0.421839i \(-0.138615\pi\)
−0.196192 + 0.980565i \(0.562858\pi\)
\(102\) 0 0
\(103\) −10.9460 1.04521i −1.07854 0.102988i −0.459369 0.888246i \(-0.651924\pi\)
−0.619169 + 0.785258i \(0.712530\pi\)
\(104\) 0 0
\(105\) −0.399885 + 0.692621i −0.0390248 + 0.0675929i
\(106\) 0 0
\(107\) 15.0236 + 9.65507i 1.45238 + 0.933391i 0.999117 + 0.0420157i \(0.0133780\pi\)
0.453267 + 0.891375i \(0.350258\pi\)
\(108\) 0 0
\(109\) −1.58087 + 3.46162i −0.151420 + 0.331563i −0.970107 0.242676i \(-0.921975\pi\)
0.818688 + 0.574239i \(0.194702\pi\)
\(110\) 0 0
\(111\) −7.03827 1.35652i −0.668043 0.128755i
\(112\) 0 0
\(113\) 2.63705 1.35949i 0.248072 0.127890i −0.329707 0.944083i \(-0.606950\pi\)
0.577779 + 0.816193i \(0.303920\pi\)
\(114\) 0 0
\(115\) 17.0524 6.82675i 1.59014 0.636598i
\(116\) 0 0
\(117\) 0.558631 + 2.30271i 0.0516455 + 0.212886i
\(118\) 0 0
\(119\) −0.279814 + 1.94615i −0.0256505 + 0.178403i
\(120\) 0 0
\(121\) 2.14058 0.204401i 0.194598 0.0185819i
\(122\) 0 0
\(123\) 0.0750186 + 1.57483i 0.00676419 + 0.141998i
\(124\) 0 0
\(125\) 1.05553 + 7.34138i 0.0944095 + 0.656633i
\(126\) 0 0
\(127\) −8.85591 3.54537i −0.785835 0.314601i −0.0561840 0.998420i \(-0.517893\pi\)
−0.729651 + 0.683819i \(0.760318\pi\)
\(128\) 0 0
\(129\) −0.0799378 + 0.0513729i −0.00703813 + 0.00452313i
\(130\) 0 0
\(131\) −9.30270 + 10.7359i −0.812781 + 0.937999i −0.999009 0.0445073i \(-0.985828\pi\)
0.186228 + 0.982507i \(0.440374\pi\)
\(132\) 0 0
\(133\) 0.0125529 0.00108848
\(134\) 0 0
\(135\) −2.69154 −0.231651
\(136\) 0 0
\(137\) −11.9976 + 13.8459i −1.02502 + 1.18294i −0.0420631 + 0.999115i \(0.513393\pi\)
−0.982959 + 0.183824i \(0.941152\pi\)
\(138\) 0 0
\(139\) 11.7475 7.54968i 0.996413 0.640356i 0.0625707 0.998041i \(-0.480070\pi\)
0.933842 + 0.357685i \(0.116434\pi\)
\(140\) 0 0
\(141\) 3.78504 + 1.51530i 0.318758 + 0.127611i
\(142\) 0 0
\(143\) 1.00316 + 6.97715i 0.0838887 + 0.583458i
\(144\) 0 0
\(145\) 1.16390 + 24.4332i 0.0966564 + 2.02907i
\(146\) 0 0
\(147\) −6.88041 + 0.656999i −0.567487 + 0.0541884i
\(148\) 0 0
\(149\) −0.0543944 + 0.378321i −0.00445616 + 0.0309933i −0.991928 0.126801i \(-0.959529\pi\)
0.987472 + 0.157794i \(0.0504382\pi\)
\(150\) 0 0
\(151\) −0.358180 1.47644i −0.0291483 0.120151i 0.955379 0.295383i \(-0.0954474\pi\)
−0.984527 + 0.175233i \(0.943932\pi\)
\(152\) 0 0
\(153\) −6.14292 + 2.45925i −0.496626 + 0.198819i
\(154\) 0 0
\(155\) 16.1212 8.31108i 1.29489 0.667562i
\(156\) 0 0
\(157\) 12.0651 + 2.32536i 0.962900 + 0.185584i 0.646391 0.763006i \(-0.276277\pi\)
0.316508 + 0.948590i \(0.397489\pi\)
\(158\) 0 0
\(159\) 4.29592 9.40674i 0.340688 0.746003i
\(160\) 0 0
\(161\) −1.70591 1.09632i −0.134445 0.0864023i
\(162\) 0 0
\(163\) −9.69566 + 16.7934i −0.759422 + 1.31536i 0.183723 + 0.982978i \(0.441185\pi\)
−0.943146 + 0.332380i \(0.892148\pi\)
\(164\) 0 0
\(165\) −7.97064 0.761104i −0.620514 0.0592519i
\(166\) 0 0
\(167\) 12.0511 + 9.47713i 0.932546 + 0.733362i 0.963933 0.266145i \(-0.0857501\pi\)
−0.0313873 + 0.999507i \(0.509993\pi\)
\(168\) 0 0
\(169\) −7.25199 + 1.39771i −0.557846 + 0.107516i
\(170\) 0 0
\(171\) 0.0211228 + 0.0365857i 0.00161530 + 0.00279778i
\(172\) 0 0
\(173\) −7.31617 + 10.2741i −0.556238 + 0.781127i −0.992958 0.118471i \(-0.962201\pi\)
0.436719 + 0.899598i \(0.356140\pi\)
\(174\) 0 0
\(175\) −0.482657 + 0.460213i −0.0364855 + 0.0347888i
\(176\) 0 0
\(177\) 1.86142 + 0.546562i 0.139913 + 0.0410821i
\(178\) 0 0
\(179\) 2.10417 + 2.42834i 0.157273 + 0.181503i 0.828918 0.559371i \(-0.188957\pi\)
−0.671644 + 0.740874i \(0.734412\pi\)
\(180\) 0 0
\(181\) −2.57303 7.43429i −0.191252 0.552586i 0.808082 0.589070i \(-0.200506\pi\)
−0.999334 + 0.0364834i \(0.988384\pi\)
\(182\) 0 0
\(183\) 0.868180 + 0.827808i 0.0641777 + 0.0611933i
\(184\) 0 0
\(185\) −17.1478 8.84030i −1.26073 0.649952i
\(186\) 0 0
\(187\) −18.8869 + 5.54569i −1.38115 + 0.405541i
\(188\) 0 0
\(189\) 0.172359 + 0.242045i 0.0125373 + 0.0176062i
\(190\) 0 0
\(191\) −0.573925 + 1.65825i −0.0415277 + 0.119987i −0.963858 0.266415i \(-0.914161\pi\)
0.922331 + 0.386401i \(0.126282\pi\)
\(192\) 0 0
\(193\) −0.218531 0.478517i −0.0157302 0.0344444i 0.901604 0.432563i \(-0.142391\pi\)
−0.917334 + 0.398118i \(0.869663\pi\)
\(194\) 0 0
\(195\) −0.303459 + 6.37038i −0.0217311 + 0.456192i
\(196\) 0 0
\(197\) −2.94312 + 12.1317i −0.209689 + 0.864349i 0.765582 + 0.643338i \(0.222451\pi\)
−0.975271 + 0.221011i \(0.929064\pi\)
\(198\) 0 0
\(199\) 5.46650 4.29891i 0.387510 0.304741i −0.405331 0.914170i \(-0.632844\pi\)
0.792841 + 0.609429i \(0.208601\pi\)
\(200\) 0 0
\(201\) 4.63920 6.74373i 0.327224 0.475666i
\(202\) 0 0
\(203\) 2.12270 1.66931i 0.148984 0.117163i
\(204\) 0 0
\(205\) −1.00045 + 4.12391i −0.0698745 + 0.288026i
\(206\) 0 0
\(207\) 0.324718 6.81668i 0.0225695 0.473792i
\(208\) 0 0
\(209\) 0.0522067 + 0.114317i 0.00361122 + 0.00790746i
\(210\) 0 0
\(211\) −7.10028 + 20.5149i −0.488803 + 1.41230i 0.383592 + 0.923503i \(0.374687\pi\)
−0.872395 + 0.488801i \(0.837434\pi\)
\(212\) 0 0
\(213\) −5.11660 7.18525i −0.350583 0.492326i
\(214\) 0 0
\(215\) −0.245396 + 0.0720547i −0.0167359 + 0.00491409i
\(216\) 0 0
\(217\) −1.77976 0.917532i −0.120818 0.0622862i
\(218\) 0 0
\(219\) 8.02664 + 7.65339i 0.542390 + 0.517168i
\(220\) 0 0
\(221\) 5.12802 + 14.8164i 0.344948 + 0.996662i
\(222\) 0 0
\(223\) 14.0955 + 16.2671i 0.943908 + 1.08933i 0.995880 + 0.0906790i \(0.0289037\pi\)
−0.0519725 + 0.998649i \(0.516551\pi\)
\(224\) 0 0
\(225\) −2.15346 0.632313i −0.143564 0.0421542i
\(226\) 0 0
\(227\) 6.74633 6.43261i 0.447770 0.426947i −0.432345 0.901708i \(-0.642314\pi\)
0.880115 + 0.474761i \(0.157465\pi\)
\(228\) 0 0
\(229\) 4.59014 6.44595i 0.303325 0.425961i −0.634577 0.772859i \(-0.718826\pi\)
0.937903 + 0.346899i \(0.112765\pi\)
\(230\) 0 0
\(231\) 0.441976 + 0.765524i 0.0290799 + 0.0503678i
\(232\) 0 0
\(233\) 19.4646 3.75149i 1.27517 0.245768i 0.493654 0.869658i \(-0.335661\pi\)
0.781512 + 0.623890i \(0.214449\pi\)
\(234\) 0 0
\(235\) 8.62587 + 6.78346i 0.562690 + 0.442504i
\(236\) 0 0
\(237\) −0.0851463 0.00813048i −0.00553085 0.000528132i
\(238\) 0 0
\(239\) 7.87749 13.6442i 0.509553 0.882571i −0.490386 0.871505i \(-0.663144\pi\)
0.999939 0.0110656i \(-0.00352237\pi\)
\(240\) 0 0
\(241\) −5.97485 3.83980i −0.384874 0.247344i 0.333869 0.942620i \(-0.391646\pi\)
−0.718743 + 0.695276i \(0.755282\pi\)
\(242\) 0 0
\(243\) −0.415415 + 0.909632i −0.0266489 + 0.0583529i
\(244\) 0 0
\(245\) −18.2669 3.52066i −1.16703 0.224927i
\(246\) 0 0
\(247\) 0.0889732 0.0458688i 0.00566123 0.00291856i
\(248\) 0 0
\(249\) 5.82175 2.33068i 0.368938 0.147701i
\(250\) 0 0
\(251\) 4.54948 + 18.7532i 0.287160 + 1.18369i 0.914383 + 0.404851i \(0.132677\pi\)
−0.627222 + 0.778840i \(0.715808\pi\)
\(252\) 0 0
\(253\) 2.88921 20.0949i 0.181643 1.26336i
\(254\) 0 0
\(255\) −17.7290 + 1.69291i −1.11023 + 0.106014i
\(256\) 0 0
\(257\) −1.16130 24.3787i −0.0724401 1.52070i −0.683986 0.729495i \(-0.739755\pi\)
0.611546 0.791209i \(-0.290548\pi\)
\(258\) 0 0
\(259\) 0.303110 + 2.10818i 0.0188344 + 0.130996i
\(260\) 0 0
\(261\) 8.43708 + 3.37770i 0.522242 + 0.209074i
\(262\) 0 0
\(263\) 17.8888 11.4964i 1.10307 0.708900i 0.143298 0.989680i \(-0.454229\pi\)
0.959772 + 0.280780i \(0.0905930\pi\)
\(264\) 0 0
\(265\) 18.2273 21.0355i 1.11970 1.29220i
\(266\) 0 0
\(267\) 3.79603 0.232313
\(268\) 0 0
\(269\) −6.01851 −0.366955 −0.183478 0.983024i \(-0.558735\pi\)
−0.183478 + 0.983024i \(0.558735\pi\)
\(270\) 0 0
\(271\) −13.8059 + 15.9329i −0.838648 + 0.967852i −0.999818 0.0190749i \(-0.993928\pi\)
0.161170 + 0.986927i \(0.448473\pi\)
\(272\) 0 0
\(273\) 0.592309 0.380654i 0.0358482 0.0230382i
\(274\) 0 0
\(275\) −6.19840 2.48146i −0.373777 0.149638i
\(276\) 0 0
\(277\) −2.46135 17.1191i −0.147888 1.02859i −0.919668 0.392697i \(-0.871542\pi\)
0.771780 0.635890i \(-0.219367\pi\)
\(278\) 0 0
\(279\) −0.320641 6.73108i −0.0191963 0.402979i
\(280\) 0 0
\(281\) −30.9658 + 2.95687i −1.84726 + 0.176392i −0.959087 0.283112i \(-0.908633\pi\)
−0.888175 + 0.459505i \(0.848027\pi\)
\(282\) 0 0
\(283\) −3.61930 + 25.1728i −0.215145 + 1.49637i 0.540478 + 0.841358i \(0.318243\pi\)
−0.755623 + 0.655007i \(0.772666\pi\)
\(284\) 0 0
\(285\) 0.0268071 + 0.110500i 0.00158791 + 0.00654547i
\(286\) 0 0
\(287\) 0.434922 0.174116i 0.0256726 0.0102778i
\(288\) 0 0
\(289\) −23.8060 + 12.2729i −1.40035 + 0.721933i
\(290\) 0 0
\(291\) −13.7034 2.64112i −0.803310 0.154825i
\(292\) 0 0
\(293\) −4.05857 + 8.88703i −0.237104 + 0.519186i −0.990356 0.138546i \(-0.955757\pi\)
0.753252 + 0.657732i \(0.228484\pi\)
\(294\) 0 0
\(295\) 4.39269 + 2.82301i 0.255752 + 0.164362i
\(296\) 0 0
\(297\) −1.48742 + 2.57629i −0.0863089 + 0.149491i
\(298\) 0 0
\(299\) −16.0972 1.53710i −0.930927 0.0888927i
\(300\) 0 0
\(301\) 0.0221943 + 0.0174538i 0.00127926 + 0.00100602i
\(302\) 0 0
\(303\) 8.91949 1.71909i 0.512411 0.0987592i
\(304\) 0 0
\(305\) 1.61436 + 2.79616i 0.0924382 + 0.160108i
\(306\) 0 0
\(307\) 6.50803 9.13926i 0.371433 0.521605i −0.585980 0.810325i \(-0.699290\pi\)
0.957413 + 0.288720i \(0.0932298\pi\)
\(308\) 0 0
\(309\) −7.95800 + 7.58794i −0.452715 + 0.431663i
\(310\) 0 0
\(311\) −11.4158 3.35197i −0.647328 0.190073i −0.0584447 0.998291i \(-0.518614\pi\)
−0.588884 + 0.808218i \(0.700432\pi\)
\(312\) 0 0
\(313\) 21.2257 + 24.4957i 1.19974 + 1.38458i 0.903010 + 0.429620i \(0.141352\pi\)
0.296735 + 0.954960i \(0.404102\pi\)
\(314\) 0 0
\(315\) 0.261579 + 0.755783i 0.0147383 + 0.0425835i
\(316\) 0 0
\(317\) −18.3447 17.4916i −1.03034 0.982426i −0.0304847 0.999535i \(-0.509705\pi\)
−0.999854 + 0.0171096i \(0.994554\pi\)
\(318\) 0 0
\(319\) 24.0302 + 12.3884i 1.34543 + 0.693619i
\(320\) 0 0
\(321\) 17.1352 5.03134i 0.956392 0.280822i
\(322\) 0 0
\(323\) 0.162146 + 0.227702i 0.00902204 + 0.0126697i
\(324\) 0 0
\(325\) −1.73936 + 5.02556i −0.0964826 + 0.278768i
\(326\) 0 0
\(327\) 1.58087 + 3.46162i 0.0874223 + 0.191428i
\(328\) 0 0
\(329\) 0.0576444 1.21010i 0.00317804 0.0667152i
\(330\) 0 0
\(331\) 1.08624 4.47755i 0.0597052 0.246108i −0.934137 0.356915i \(-0.883828\pi\)
0.993842 + 0.110807i \(0.0353436\pi\)
\(332\) 0 0
\(333\) −5.63428 + 4.43084i −0.308756 + 0.242809i
\(334\) 0 0
\(335\) 17.0945 13.8979i 0.933972 0.759322i
\(336\) 0 0
\(337\) −9.08847 + 7.14725i −0.495080 + 0.389336i −0.834247 0.551391i \(-0.814097\pi\)
0.339167 + 0.940726i \(0.389855\pi\)
\(338\) 0 0
\(339\) 0.699462 2.88322i 0.0379896 0.156595i
\(340\) 0 0
\(341\) 0.953855 20.0239i 0.0516542 1.08435i
\(342\) 0 0
\(343\) 1.71722 + 3.76020i 0.0927214 + 0.203032i
\(344\) 0 0
\(345\) 6.00763 17.3579i 0.323440 0.934519i
\(346\) 0 0
\(347\) −10.7769 15.1341i −0.578535 0.812439i 0.416792 0.909002i \(-0.363154\pi\)
−0.995327 + 0.0965630i \(0.969215\pi\)
\(348\) 0 0
\(349\) 8.64492 2.53838i 0.462752 0.135876i −0.0420424 0.999116i \(-0.513386\pi\)
0.504794 + 0.863240i \(0.331568\pi\)
\(350\) 0 0
\(351\) 2.10610 + 1.08577i 0.112415 + 0.0579541i
\(352\) 0 0
\(353\) −1.51712 1.44657i −0.0807480 0.0769930i 0.648630 0.761104i \(-0.275342\pi\)
−0.729378 + 0.684111i \(0.760191\pi\)
\(354\) 0 0
\(355\) −7.76514 22.4359i −0.412131 1.19077i
\(356\) 0 0
\(357\) 1.28756 + 1.48593i 0.0681450 + 0.0786435i
\(358\) 0 0
\(359\) 14.4101 + 4.23118i 0.760535 + 0.223313i 0.638930 0.769265i \(-0.279377\pi\)
0.121606 + 0.992578i \(0.461196\pi\)
\(360\) 0 0
\(361\) −13.7497 + 13.1103i −0.723666 + 0.690014i
\(362\) 0 0
\(363\) 1.24731 1.75160i 0.0654666 0.0919349i
\(364\) 0 0
\(365\) 14.9254 + 25.8515i 0.781230 + 1.35313i
\(366\) 0 0
\(367\) −15.8262 + 3.05024i −0.826119 + 0.159221i −0.584751 0.811213i \(-0.698808\pi\)
−0.241367 + 0.970434i \(0.577596\pi\)
\(368\) 0 0
\(369\) 1.23931 + 0.974601i 0.0645157 + 0.0507357i
\(370\) 0 0
\(371\) −3.05891 0.292091i −0.158811 0.0151646i
\(372\) 0 0
\(373\) 19.0432 32.9839i 0.986022 1.70784i 0.348715 0.937229i \(-0.386618\pi\)
0.637306 0.770611i \(-0.280049\pi\)
\(374\) 0 0
\(375\) 6.23947 + 4.00986i 0.322205 + 0.207068i
\(376\) 0 0
\(377\) 8.94564 19.5882i 0.460724 1.00884i
\(378\) 0 0
\(379\) −15.9401 3.07219i −0.818786 0.157808i −0.237375 0.971418i \(-0.576287\pi\)
−0.581411 + 0.813610i \(0.697499\pi\)
\(380\) 0 0
\(381\) −8.47880 + 4.37113i −0.434382 + 0.223940i
\(382\) 0 0
\(383\) 18.7714 7.51492i 0.959172 0.383995i 0.161356 0.986896i \(-0.448413\pi\)
0.797815 + 0.602902i \(0.205989\pi\)
\(384\) 0 0
\(385\) 0.560915 + 2.31212i 0.0285869 + 0.117837i
\(386\) 0 0
\(387\) −0.0135231 + 0.0940550i −0.000687416 + 0.00478108i
\(388\) 0 0
\(389\) −13.3604 + 1.27576i −0.677398 + 0.0646837i −0.428084 0.903739i \(-0.640811\pi\)
−0.249314 + 0.968423i \(0.580205\pi\)
\(390\) 0 0
\(391\) −2.14863 45.1053i −0.108661 2.28107i
\(392\) 0 0
\(393\) 2.02167 + 14.0610i 0.101980 + 0.709285i
\(394\) 0 0
\(395\) −0.213726 0.0855630i −0.0107537 0.00430514i
\(396\) 0 0
\(397\) 23.3424 15.0012i 1.17152 0.752891i 0.197712 0.980260i \(-0.436649\pi\)
0.973809 + 0.227369i \(0.0730125\pi\)
\(398\) 0 0
\(399\) 0.00822042 0.00948687i 0.000411536 0.000474937i
\(400\) 0 0
\(401\) 14.9125 0.744694 0.372347 0.928094i \(-0.378553\pi\)
0.372347 + 0.928094i \(0.378553\pi\)
\(402\) 0 0
\(403\) −15.9674 −0.795392
\(404\) 0 0
\(405\) −1.76258 + 2.03413i −0.0875834 + 0.101077i
\(406\) 0 0
\(407\) −17.9381 + 11.5281i −0.889160 + 0.571428i
\(408\) 0 0
\(409\) −12.8898 5.16031i −0.637361 0.255161i 0.0303985 0.999538i \(-0.490322\pi\)
−0.667760 + 0.744377i \(0.732747\pi\)
\(410\) 0 0
\(411\) 2.60732 + 18.1343i 0.128610 + 0.894501i
\(412\) 0 0
\(413\) −0.0274289 0.575804i −0.00134969 0.0283335i
\(414\) 0 0
\(415\) 16.8021 1.60440i 0.824782 0.0787571i
\(416\) 0 0
\(417\) 1.98733 13.8222i 0.0973200 0.676875i
\(418\) 0 0
\(419\) −1.50817 6.21674i −0.0736787 0.303708i 0.923035 0.384717i \(-0.125701\pi\)
−0.996713 + 0.0810091i \(0.974186\pi\)
\(420\) 0 0
\(421\) −10.9904 + 4.39989i −0.535639 + 0.214437i −0.623680 0.781679i \(-0.714363\pi\)
0.0880417 + 0.996117i \(0.471939\pi\)
\(422\) 0 0
\(423\) 3.62387 1.86823i 0.176198 0.0908366i
\(424\) 0 0
\(425\) −14.5824 2.81053i −0.707352 0.136331i
\(426\) 0 0
\(427\) 0.148074 0.324236i 0.00716578 0.0156909i
\(428\) 0 0
\(429\) 5.92991 + 3.81092i 0.286299 + 0.183993i
\(430\) 0 0
\(431\) 14.3244 24.8105i 0.689980 1.19508i −0.281864 0.959454i \(-0.590953\pi\)
0.971844 0.235626i \(-0.0757140\pi\)
\(432\) 0 0
\(433\) 21.0509 + 2.01012i 1.01164 + 0.0966002i 0.587692 0.809085i \(-0.300037\pi\)
0.423951 + 0.905685i \(0.360643\pi\)
\(434\) 0 0
\(435\) 19.2276 + 15.1207i 0.921891 + 0.724983i
\(436\) 0 0
\(437\) −0.283091 + 0.0545612i −0.0135421 + 0.00261002i
\(438\) 0 0
\(439\) −19.3266 33.4747i −0.922409 1.59766i −0.795675 0.605723i \(-0.792884\pi\)
−0.126734 0.991937i \(-0.540449\pi\)
\(440\) 0 0
\(441\) −4.00918 + 5.63011i −0.190913 + 0.268100i
\(442\) 0 0
\(443\) 8.00732 7.63496i 0.380439 0.362748i −0.475598 0.879663i \(-0.657768\pi\)
0.856037 + 0.516915i \(0.172920\pi\)
\(444\) 0 0
\(445\) 9.80328 + 2.87850i 0.464720 + 0.136454i
\(446\) 0 0
\(447\) 0.250295 + 0.288856i 0.0118386 + 0.0136624i
\(448\) 0 0
\(449\) −9.91990 28.6617i −0.468149 1.35263i −0.894094 0.447879i \(-0.852180\pi\)
0.425945 0.904749i \(-0.359942\pi\)
\(450\) 0 0
\(451\) 3.39445 + 3.23660i 0.159838 + 0.152406i
\(452\) 0 0
\(453\) −1.35038 0.696167i −0.0634462 0.0327088i
\(454\) 0 0
\(455\) 1.81829 0.533899i 0.0852429 0.0250296i
\(456\) 0 0
\(457\) −5.71117 8.02021i −0.267157 0.375170i 0.659104 0.752052i \(-0.270936\pi\)
−0.926261 + 0.376882i \(0.876996\pi\)
\(458\) 0 0
\(459\) −2.16418 + 6.25298i −0.101015 + 0.291864i
\(460\) 0 0
\(461\) −0.144120 0.315578i −0.00671232 0.0146979i 0.906246 0.422750i \(-0.138935\pi\)
−0.912958 + 0.408052i \(0.866208\pi\)
\(462\) 0 0
\(463\) 1.06877 22.4362i 0.0496699 1.04270i −0.827181 0.561936i \(-0.810057\pi\)
0.876851 0.480763i \(-0.159640\pi\)
\(464\) 0 0
\(465\) 4.27607 17.6262i 0.198298 0.817396i
\(466\) 0 0
\(467\) −4.61756 + 3.63129i −0.213675 + 0.168036i −0.719260 0.694741i \(-0.755519\pi\)
0.505585 + 0.862777i \(0.331277\pi\)
\(468\) 0 0
\(469\) −2.34450 0.647290i −0.108259 0.0298891i
\(470\) 0 0
\(471\) 9.65835 7.59541i 0.445033 0.349978i
\(472\) 0 0
\(473\) −0.0666434 + 0.274708i −0.00306427 + 0.0126311i
\(474\) 0 0
\(475\) −0.00451147 + 0.0947073i −0.000207000 + 0.00434547i
\(476\) 0 0
\(477\) −4.29592 9.40674i −0.196696 0.430705i
\(478\) 0 0
\(479\) 3.16234 9.13697i 0.144491 0.417479i −0.849413 0.527729i \(-0.823044\pi\)
0.993904 + 0.110250i \(0.0351651\pi\)
\(480\) 0 0
\(481\) 9.85176 + 13.8349i 0.449202 + 0.630816i
\(482\) 0 0
\(483\) −1.94568 + 0.571303i −0.0885315 + 0.0259952i
\(484\) 0 0
\(485\) −33.3865 17.2120i −1.51600 0.781555i
\(486\) 0 0
\(487\) −6.84929 6.53078i −0.310371 0.295938i 0.518843 0.854870i \(-0.326363\pi\)
−0.829214 + 0.558932i \(0.811211\pi\)
\(488\) 0 0
\(489\) 6.34228 + 18.3248i 0.286808 + 0.828676i
\(490\) 0 0
\(491\) −6.32110 7.29494i −0.285267 0.329216i 0.594972 0.803747i \(-0.297163\pi\)
−0.880239 + 0.474531i \(0.842618\pi\)
\(492\) 0 0
\(493\) 57.6990 + 16.9420i 2.59863 + 0.763028i
\(494\) 0 0
\(495\) −5.79487 + 5.52539i −0.260460 + 0.248348i
\(496\) 0 0
\(497\) −1.52036 + 2.13504i −0.0681973 + 0.0957698i
\(498\) 0 0
\(499\) −4.74041 8.21064i −0.212210 0.367559i 0.740196 0.672391i \(-0.234733\pi\)
−0.952406 + 0.304833i \(0.901399\pi\)
\(500\) 0 0
\(501\) 15.0542 2.90145i 0.672570 0.129627i
\(502\) 0 0
\(503\) −21.2390 16.7025i −0.946999 0.744728i 0.0199229 0.999802i \(-0.493658\pi\)
−0.966922 + 0.255073i \(0.917900\pi\)
\(504\) 0 0
\(505\) 24.3383 + 2.32402i 1.08304 + 0.103418i
\(506\) 0 0
\(507\) −3.69273 + 6.39599i −0.164000 + 0.284056i
\(508\) 0 0
\(509\) 12.5107 + 8.04012i 0.554526 + 0.356372i 0.787696 0.616064i \(-0.211274\pi\)
−0.233171 + 0.972436i \(0.574910\pi\)
\(510\) 0 0
\(511\) 1.36899 2.99768i 0.0605607 0.132609i
\(512\) 0 0
\(513\) 0.0414821 + 0.00799501i 0.00183148 + 0.000352988i
\(514\) 0 0
\(515\) −26.3055 + 13.5614i −1.15916 + 0.597588i
\(516\) 0 0
\(517\) 11.2599 4.50779i 0.495210 0.198252i
\(518\) 0 0
\(519\) 2.97359 + 12.2573i 0.130526 + 0.538036i
\(520\) 0 0
\(521\) −0.131499 + 0.914597i −0.00576109 + 0.0400692i −0.992499 0.122251i \(-0.960989\pi\)
0.986738 + 0.162320i \(0.0518978\pi\)
\(522\) 0 0
\(523\) −43.9974 + 4.20124i −1.92387 + 0.183707i −0.986401 0.164357i \(-0.947445\pi\)
−0.937471 + 0.348064i \(0.886839\pi\)
\(524\) 0 0
\(525\) 0.0317323 + 0.666143i 0.00138491 + 0.0290729i
\(526\) 0 0
\(527\) −6.34573 44.1355i −0.276424 1.92257i
\(528\) 0 0
\(529\) 21.8840 + 8.76103i 0.951478 + 0.380915i
\(530\) 0 0
\(531\) 1.63204 1.04885i 0.0708243 0.0455160i
\(532\) 0 0
\(533\) 2.44643 2.82333i 0.105967 0.122292i
\(534\) 0 0
\(535\) 48.0670 2.07812
\(536\) 0 0
\(537\) 3.21316 0.138658
\(538\) 0 0
\(539\) −13.4647 + 15.5391i −0.579968 + 0.669318i
\(540\) 0 0
\(541\) −4.94705 + 3.17928i −0.212690 + 0.136688i −0.642649 0.766161i \(-0.722165\pi\)
0.429959 + 0.902849i \(0.358528\pi\)
\(542\) 0 0
\(543\) −7.30344 2.92385i −0.313420 0.125475i
\(544\) 0 0
\(545\) 1.45769 + 10.1384i 0.0624405 + 0.434283i
\(546\) 0 0
\(547\) 0.321351 + 6.74599i 0.0137400 + 0.288438i 0.995271 + 0.0971354i \(0.0309680\pi\)
−0.981531 + 0.191302i \(0.938729\pi\)
\(548\) 0 0
\(549\) 1.19415 0.114028i 0.0509652 0.00486659i
\(550\) 0 0
\(551\) 0.0546390 0.380023i 0.00232770 0.0161895i
\(552\) 0 0
\(553\) 0.00599197 + 0.0246992i 0.000254804 + 0.00105032i
\(554\) 0 0
\(555\) −17.9105 + 7.17027i −0.760257 + 0.304361i
\(556\) 0 0
\(557\) −11.1265 + 5.73612i −0.471446 + 0.243047i −0.677541 0.735485i \(-0.736955\pi\)
0.206096 + 0.978532i \(0.433924\pi\)
\(558\) 0 0
\(559\) 0.221086 + 0.0426109i 0.00935096 + 0.00180225i
\(560\) 0 0
\(561\) −8.17713 + 17.9054i −0.345239 + 0.755967i
\(562\) 0 0
\(563\) 24.9620 + 16.0421i 1.05202 + 0.676094i 0.947932 0.318474i \(-0.103170\pi\)
0.104091 + 0.994568i \(0.466807\pi\)
\(564\) 0 0
\(565\) 3.99270 6.91556i 0.167974 0.290940i
\(566\) 0 0
\(567\) 0.295797 + 0.0282452i 0.0124223 + 0.00118619i
\(568\) 0 0
\(569\) −4.46152 3.50858i −0.187037 0.147087i 0.520250 0.854014i \(-0.325839\pi\)
−0.707287 + 0.706927i \(0.750081\pi\)
\(570\) 0 0
\(571\) −33.7473 + 6.50425i −1.41228 + 0.272194i −0.837645 0.546216i \(-0.816068\pi\)
−0.574634 + 0.818410i \(0.694856\pi\)
\(572\) 0 0
\(573\) 0.877378 + 1.51966i 0.0366530 + 0.0634849i
\(574\) 0 0
\(575\) 8.88446 12.4765i 0.370508 0.520305i
\(576\) 0 0
\(577\) −12.6343 + 12.0467i −0.525971 + 0.501513i −0.905893 0.423506i \(-0.860799\pi\)
0.379922 + 0.925018i \(0.375951\pi\)
\(578\) 0 0
\(579\) −0.504746 0.148207i −0.0209765 0.00615927i
\(580\) 0 0
\(581\) −1.22024 1.40824i −0.0506243 0.0584235i
\(582\) 0 0
\(583\) −10.0618 29.0716i −0.416717 1.20402i
\(584\) 0 0
\(585\) 4.61569 + 4.40105i 0.190835 + 0.181961i
\(586\) 0 0
\(587\) −1.41461 0.729281i −0.0583871 0.0301006i 0.428786 0.903406i \(-0.358942\pi\)
−0.487173 + 0.873306i \(0.661972\pi\)
\(588\) 0 0
\(589\) −0.273149 + 0.0802037i −0.0112549 + 0.00330473i
\(590\) 0 0
\(591\) 7.24121 + 10.1689i 0.297863 + 0.418291i
\(592\) 0 0
\(593\) 1.74353 5.03759i 0.0715980 0.206869i −0.903524 0.428537i \(-0.859029\pi\)
0.975122 + 0.221668i \(0.0711502\pi\)
\(594\) 0 0
\(595\) 2.19838 + 4.81377i 0.0901246 + 0.197345i
\(596\) 0 0
\(597\) 0.330902 6.94649i 0.0135429 0.284301i
\(598\) 0 0
\(599\) 1.85595 7.65034i 0.0758322 0.312584i −0.921245 0.388982i \(-0.872827\pi\)
0.997077 + 0.0763978i \(0.0243419\pi\)
\(600\) 0 0
\(601\) −13.2581 + 10.4263i −0.540808 + 0.425296i −0.850836 0.525431i \(-0.823904\pi\)
0.310028 + 0.950727i \(0.399662\pi\)
\(602\) 0 0
\(603\) −2.05854 7.92227i −0.0838304 0.322620i
\(604\) 0 0
\(605\) 4.54941 3.57769i 0.184960 0.145454i
\(606\) 0 0
\(607\) −4.98495 + 20.5483i −0.202333 + 0.834028i 0.776624 + 0.629964i \(0.216930\pi\)
−0.978957 + 0.204064i \(0.934585\pi\)
\(608\) 0 0
\(609\) 0.128493 2.69739i 0.00520679 0.109304i
\(610\) 0 0
\(611\) −4.01319 8.78767i −0.162356 0.355511i
\(612\) 0 0
\(613\) −11.9400 + 34.4984i −0.482252 + 1.39338i 0.397350 + 0.917667i \(0.369930\pi\)
−0.879602 + 0.475710i \(0.842191\pi\)
\(614\) 0 0
\(615\) 2.46149 + 3.45668i 0.0992568 + 0.139387i
\(616\) 0 0
\(617\) −35.8824 + 10.5360i −1.44457 + 0.424165i −0.907743 0.419526i \(-0.862196\pi\)
−0.536829 + 0.843691i \(0.680378\pi\)
\(618\) 0 0
\(619\) −4.39433 2.26543i −0.176623 0.0910555i 0.367648 0.929965i \(-0.380163\pi\)
−0.544271 + 0.838910i \(0.683194\pi\)
\(620\) 0 0
\(621\) −4.93906 4.70938i −0.198198 0.188981i
\(622\) 0 0
\(623\) −0.368920 1.06592i −0.0147805 0.0427053i
\(624\) 0 0
\(625\) 20.4216 + 23.5678i 0.816864 + 0.942712i
\(626\) 0 0
\(627\) 0.120583 + 0.0354064i 0.00481562 + 0.00141399i
\(628\) 0 0
\(629\) −34.3257 + 32.7295i −1.36866 + 1.30501i
\(630\) 0 0
\(631\) −21.9484 + 30.8222i −0.873751 + 1.22701i 0.0989835 + 0.995089i \(0.468441\pi\)
−0.972734 + 0.231922i \(0.925498\pi\)
\(632\) 0 0
\(633\) 10.8544 + 18.8004i 0.431425 + 0.747250i
\(634\) 0 0
\(635\) −25.2112 + 4.85906i −1.00048 + 0.192826i
\(636\) 0 0
\(637\) 12.8734 + 10.1238i 0.510064 + 0.401119i
\(638\) 0 0
\(639\) −8.78091 0.838475i −0.347367 0.0331696i
\(640\) 0 0
\(641\) 3.55679 6.16053i 0.140485 0.243326i −0.787195 0.616705i \(-0.788467\pi\)
0.927679 + 0.373378i \(0.121801\pi\)
\(642\) 0 0
\(643\) −9.32470 5.99262i −0.367730 0.236326i 0.343705 0.939078i \(-0.388318\pi\)
−0.711435 + 0.702752i \(0.751954\pi\)
\(644\) 0 0
\(645\) −0.106245 + 0.232644i −0.00418338 + 0.00916034i
\(646\) 0 0
\(647\) −6.59795 1.27165i −0.259392 0.0499937i 0.0578971 0.998323i \(-0.481560\pi\)
−0.317289 + 0.948329i \(0.602773\pi\)
\(648\) 0 0
\(649\) 5.12965 2.64452i 0.201356 0.103806i
\(650\) 0 0
\(651\) −1.85892 + 0.744200i −0.0728569 + 0.0291675i
\(652\) 0 0
\(653\) 5.64483 + 23.2683i 0.220899 + 0.910559i 0.969017 + 0.246993i \(0.0794426\pi\)
−0.748118 + 0.663566i \(0.769042\pi\)
\(654\) 0 0
\(655\) −5.44140 + 37.8458i −0.212613 + 1.47876i
\(656\) 0 0
\(657\) 11.0404 1.05423i 0.430726 0.0411294i
\(658\) 0 0
\(659\) 0.116293 + 2.44129i 0.00453013 + 0.0950992i 1.00000 2.16420e-5i \(6.88887e-6\pi\)
−0.995470 + 0.0950776i \(0.969690\pi\)
\(660\) 0 0
\(661\) −6.57117 45.7035i −0.255589 1.77766i −0.563371 0.826204i \(-0.690496\pi\)
0.307782 0.951457i \(-0.400413\pi\)
\(662\) 0 0
\(663\) 14.5557 + 5.82721i 0.565295 + 0.226310i
\(664\) 0 0
\(665\) 0.0284232 0.0182665i 0.00110220 0.000708343i
\(666\) 0 0
\(667\) −40.6150 + 46.8722i −1.57262 + 1.81490i
\(668\) 0 0
\(669\) 21.5245 0.832185
\(670\) 0 0
\(671\) 3.56857 0.137763
\(672\) 0 0
\(673\) 27.1195 31.2975i 1.04538 1.20643i 0.0673997 0.997726i \(-0.478530\pi\)
0.977979 0.208705i \(-0.0669248\pi\)
\(674\) 0 0
\(675\) −1.88809 + 1.21340i −0.0726726 + 0.0467038i
\(676\) 0 0
\(677\) 38.0618 + 15.2377i 1.46284 + 0.585631i 0.960311 0.278932i \(-0.0899804\pi\)
0.502525 + 0.864563i \(0.332405\pi\)
\(678\) 0 0
\(679\) 0.590153 + 4.10460i 0.0226480 + 0.157520i
\(680\) 0 0
\(681\) −0.443538 9.31100i −0.0169964 0.356798i
\(682\) 0 0
\(683\) −19.1149 + 1.82525i −0.731411 + 0.0698413i −0.454115 0.890943i \(-0.650044\pi\)
−0.277296 + 0.960784i \(0.589438\pi\)
\(684\) 0 0
\(685\) −7.01771 + 48.8092i −0.268133 + 1.86490i
\(686\) 0 0
\(687\) −1.86562 7.69020i −0.0711779 0.293399i
\(688\) 0 0
\(689\) −22.7484 + 9.10709i −0.866645 + 0.346952i
\(690\) 0 0
\(691\) −4.23109 + 2.18128i −0.160958 + 0.0829798i −0.536823 0.843695i \(-0.680376\pi\)
0.375865 + 0.926674i \(0.377346\pi\)
\(692\) 0 0
\(693\) 0.867977 + 0.167289i 0.0329717 + 0.00635478i
\(694\) 0 0
\(695\) 15.6136 34.1890i 0.592257 1.29686i
\(696\) 0 0
\(697\) 8.77624 + 5.64015i 0.332424 + 0.213636i
\(698\) 0 0
\(699\) 9.91139 17.1670i 0.374883 0.649317i
\(700\) 0 0
\(701\) 12.4905 + 1.19269i 0.471758 + 0.0450475i 0.328228 0.944598i \(-0.393549\pi\)
0.143530 + 0.989646i \(0.454155\pi\)
\(702\) 0 0
\(703\) 0.238023 + 0.187183i 0.00897720 + 0.00705975i
\(704\) 0 0
\(705\) 10.7753 2.07678i 0.405823 0.0782159i
\(706\) 0 0
\(707\) −1.34957 2.33752i −0.0507557 0.0879114i
\(708\) 0 0
\(709\) 2.17964 3.06088i 0.0818582 0.114954i −0.771617 0.636088i \(-0.780552\pi\)
0.853475 + 0.521134i \(0.174491\pi\)
\(710\) 0 0
\(711\) −0.0619036 + 0.0590249i −0.00232157 + 0.00221361i
\(712\) 0 0
\(713\) 44.1249 + 12.9562i 1.65249 + 0.485215i
\(714\) 0 0
\(715\) 12.4243 + 14.3384i 0.464641 + 0.536224i
\(716\) 0 0
\(717\) −5.15295 14.8885i −0.192440 0.556020i
\(718\) 0 0
\(719\) −6.32323 6.02919i −0.235817 0.224851i 0.562951 0.826490i \(-0.309666\pi\)
−0.798768 + 0.601639i \(0.794514\pi\)
\(720\) 0 0
\(721\) 2.90409 + 1.49716i 0.108154 + 0.0557573i
\(722\) 0 0
\(723\) −6.81463 + 2.00095i −0.253439 + 0.0744163i
\(724\) 0 0
\(725\) 11.8315 + 16.6149i 0.439409 + 0.617064i
\(726\) 0 0
\(727\) 5.83749 16.8663i 0.216501 0.625538i −0.783491 0.621403i \(-0.786563\pi\)
0.999991 0.00413415i \(-0.00131594\pi\)
\(728\) 0 0
\(729\) 0.415415 + 0.909632i 0.0153857 + 0.0336901i
\(730\) 0 0
\(731\) −0.0299173 + 0.628040i −0.00110653 + 0.0232289i
\(732\) 0 0
\(733\) −8.60731 + 35.4798i −0.317918 + 1.31048i 0.558732 + 0.829348i \(0.311288\pi\)
−0.876650 + 0.481128i \(0.840227\pi\)
\(734\) 0 0
\(735\) −14.6230 + 11.4997i −0.539379 + 0.424172i
\(736\) 0 0
\(737\) −3.85588 24.0429i −0.142033 0.885632i
\(738\) 0 0
\(739\) −32.1761 + 25.3035i −1.18362 + 0.930806i −0.998650 0.0519388i \(-0.983460\pi\)
−0.184966 + 0.982745i \(0.559218\pi\)
\(740\) 0 0
\(741\) 0.0235997 0.0972791i 0.000866955 0.00357364i
\(742\) 0 0
\(743\) 1.55407 32.6240i 0.0570134 1.19686i −0.771255 0.636527i \(-0.780371\pi\)
0.828268 0.560332i \(-0.189326\pi\)
\(744\) 0 0
\(745\) 0.427353 + 0.935772i 0.0156570 + 0.0342840i
\(746\) 0 0
\(747\) 2.05103 5.92606i 0.0750432 0.216823i
\(748\) 0 0
\(749\) −3.07809 4.32257i −0.112471 0.157943i
\(750\) 0 0
\(751\) 26.0880 7.66011i 0.951963 0.279522i 0.231359 0.972868i \(-0.425683\pi\)
0.720604 + 0.693347i \(0.243865\pi\)
\(752\) 0 0
\(753\) 17.1520 + 8.84247i 0.625053 + 0.322237i
\(754\) 0 0
\(755\) −2.95946 2.82184i −0.107706 0.102697i
\(756\) 0 0
\(757\) 15.3664 + 44.3984i 0.558502 + 1.61369i 0.771217 + 0.636572i \(0.219648\pi\)
−0.212715 + 0.977114i \(0.568231\pi\)
\(758\) 0 0
\(759\) −13.2947 15.3429i −0.482566 0.556911i
\(760\) 0 0
\(761\) −34.9199 10.2534i −1.26585 0.371686i −0.421179 0.906977i \(-0.638384\pi\)
−0.844668 + 0.535291i \(0.820202\pi\)
\(762\) 0 0
\(763\) 0.818384 0.780328i 0.0296275 0.0282498i
\(764\) 0 0
\(765\) −10.3306 + 14.5073i −0.373504 + 0.524513i
\(766\) 0 0
\(767\) −2.29842 3.98098i −0.0829912 0.143745i
\(768\) 0 0
\(769\) 16.8482 3.24722i 0.607560 0.117098i 0.123813 0.992306i \(-0.460488\pi\)
0.483747 + 0.875208i \(0.339276\pi\)
\(770\) 0 0
\(771\) −19.1847 15.0870i −0.690921 0.543346i
\(772\) 0 0
\(773\) 0.392881 + 0.0375156i 0.0141309 + 0.00134934i 0.102119 0.994772i \(-0.467438\pi\)
−0.0879882 + 0.996122i \(0.528044\pi\)
\(774\) 0 0
\(775\) 7.56209 13.0979i 0.271638 0.470492i
\(776\) 0 0
\(777\) 1.79175 + 1.15149i 0.0642787 + 0.0413094i
\(778\)