Properties

Label 804.2.y.b.121.4
Level 804
Weight 2
Character 804.121
Analytic conductor 6.420
Analytic rank 0
Dimension 120
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.y (of order \(33\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(6\) over \(\Q(\zeta_{33})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

Embedding invariants

Embedding label 121.4
Character \(\chi\) = 804.121
Dual form 804.2.y.b.505.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.654861 - 0.755750i) q^{3} +(-0.192294 + 0.123580i) q^{5} +(-3.39999 - 1.36115i) q^{7} +(-0.142315 - 0.989821i) q^{9} +O(q^{10})\) \(q+(0.654861 - 0.755750i) q^{3} +(-0.192294 + 0.123580i) q^{5} +(-3.39999 - 1.36115i) q^{7} +(-0.142315 - 0.989821i) q^{9} +(0.270673 + 5.68213i) q^{11} +(-7.01139 + 0.669507i) q^{13} +(-0.0325305 + 0.226254i) q^{15} +(-0.521840 - 2.15105i) q^{17} +(3.17314 - 1.27033i) q^{19} +(-3.25521 + 1.67818i) q^{21} +(-5.32369 - 1.02606i) q^{23} +(-2.05537 + 4.50063i) q^{25} +(-0.841254 - 0.540641i) q^{27} +(-2.03892 + 3.53152i) q^{29} +(-4.18895 - 0.399996i) q^{31} +(4.47152 + 3.51644i) q^{33} +(0.822011 - 0.158430i) q^{35} +(5.38316 + 9.32391i) q^{37} +(-4.08551 + 5.73729i) q^{39} +(6.45714 - 6.15688i) q^{41} +(-0.315331 - 0.0925896i) q^{43} +(0.149689 + 0.172750i) q^{45} +(-3.08261 - 8.90661i) q^{47} +(4.64107 + 4.42526i) q^{49} +(-1.96739 - 1.01426i) q^{51} +(-4.04631 + 1.18810i) q^{53} +(-0.754248 - 1.05919i) q^{55} +(1.11791 - 3.22999i) q^{57} +(-4.67990 - 10.2476i) q^{59} +(-0.371752 + 7.80404i) q^{61} +(-0.863428 + 3.55910i) q^{63} +(1.26551 - 0.995212i) q^{65} +(-4.45180 + 6.86888i) q^{67} +(-4.26172 + 3.35145i) q^{69} +(0.0517593 - 0.213355i) q^{71} +(0.400351 - 8.40440i) q^{73} +(2.05537 + 4.50063i) q^{75} +(6.81396 - 19.6876i) q^{77} +(-0.176501 - 0.247860i) q^{79} +(-0.959493 + 0.281733i) q^{81} +(-11.5927 - 5.97647i) q^{83} +(0.366174 + 0.349146i) q^{85} +(1.33373 + 3.85356i) q^{87} +(10.8214 + 12.4886i) q^{89} +(24.7500 + 7.26725i) q^{91} +(-3.04547 + 2.90385i) q^{93} +(-0.453190 + 0.636416i) q^{95} +(-5.87348 - 10.1732i) q^{97} +(5.58578 - 1.07657i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + O(q^{10}) \) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + 11q^{11} + 2q^{13} - 9q^{15} + 48q^{17} - 4q^{19} - q^{21} + 22q^{23} - 42q^{25} + 12q^{27} - q^{29} + 27q^{31} + 17q^{35} - 8q^{37} - 2q^{39} - 58q^{41} - 17q^{43} - 2q^{45} - 84q^{47} + 101q^{49} - 26q^{51} + 28q^{53} - 9q^{55} + 26q^{57} + 34q^{59} + 16q^{61} + 12q^{63} + 144q^{65} + 23q^{67} + 11q^{69} + 173q^{71} - 2q^{73} + 42q^{75} + 128q^{77} + 31q^{79} - 12q^{81} + 47q^{83} - 75q^{85} - 10q^{87} - 67q^{89} + 16q^{91} + 6q^{93} - 79q^{95} + 10q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(e\left(\frac{26}{33}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.654861 0.755750i 0.378084 0.436332i
\(4\) 0 0
\(5\) −0.192294 + 0.123580i −0.0859967 + 0.0552667i −0.582933 0.812521i \(-0.698095\pi\)
0.496936 + 0.867787i \(0.334458\pi\)
\(6\) 0 0
\(7\) −3.39999 1.36115i −1.28508 0.514467i −0.374277 0.927317i \(-0.622109\pi\)
−0.910799 + 0.412850i \(0.864533\pi\)
\(8\) 0 0
\(9\) −0.142315 0.989821i −0.0474383 0.329940i
\(10\) 0 0
\(11\) 0.270673 + 5.68213i 0.0816111 + 1.71323i 0.554565 + 0.832140i \(0.312885\pi\)
−0.472954 + 0.881087i \(0.656812\pi\)
\(12\) 0 0
\(13\) −7.01139 + 0.669507i −1.94461 + 0.185688i −0.992693 0.120667i \(-0.961497\pi\)
−0.951917 + 0.306355i \(0.900891\pi\)
\(14\) 0 0
\(15\) −0.0325305 + 0.226254i −0.00839933 + 0.0584186i
\(16\) 0 0
\(17\) −0.521840 2.15105i −0.126565 0.521707i −0.999430 0.0337463i \(-0.989256\pi\)
0.872866 0.487960i \(-0.162259\pi\)
\(18\) 0 0
\(19\) 3.17314 1.27033i 0.727969 0.291435i 0.0220789 0.999756i \(-0.492971\pi\)
0.705890 + 0.708321i \(0.250547\pi\)
\(20\) 0 0
\(21\) −3.25521 + 1.67818i −0.710345 + 0.366208i
\(22\) 0 0
\(23\) −5.32369 1.02606i −1.11007 0.213948i −0.398916 0.916988i \(-0.630613\pi\)
−0.711150 + 0.703040i \(0.751825\pi\)
\(24\) 0 0
\(25\) −2.05537 + 4.50063i −0.411074 + 0.900126i
\(26\) 0 0
\(27\) −0.841254 0.540641i −0.161899 0.104046i
\(28\) 0 0
\(29\) −2.03892 + 3.53152i −0.378618 + 0.655786i −0.990861 0.134883i \(-0.956934\pi\)
0.612243 + 0.790669i \(0.290267\pi\)
\(30\) 0 0
\(31\) −4.18895 0.399996i −0.752357 0.0718414i −0.288171 0.957579i \(-0.593047\pi\)
−0.464186 + 0.885738i \(0.653653\pi\)
\(32\) 0 0
\(33\) 4.47152 + 3.51644i 0.778392 + 0.612134i
\(34\) 0 0
\(35\) 0.822011 0.158430i 0.138945 0.0267795i
\(36\) 0 0
\(37\) 5.38316 + 9.32391i 0.884986 + 1.53284i 0.845729 + 0.533612i \(0.179166\pi\)
0.0392567 + 0.999229i \(0.487501\pi\)
\(38\) 0 0
\(39\) −4.08551 + 5.73729i −0.654205 + 0.918702i
\(40\) 0 0
\(41\) 6.45714 6.15688i 1.00844 0.961542i 0.00917473 0.999958i \(-0.497080\pi\)
0.999262 + 0.0384156i \(0.0122311\pi\)
\(42\) 0 0
\(43\) −0.315331 0.0925896i −0.0480876 0.0141198i 0.257600 0.966252i \(-0.417068\pi\)
−0.305688 + 0.952132i \(0.598886\pi\)
\(44\) 0 0
\(45\) 0.149689 + 0.172750i 0.0223143 + 0.0257520i
\(46\) 0 0
\(47\) −3.08261 8.90661i −0.449644 1.29916i −0.911168 0.412034i \(-0.864818\pi\)
0.461524 0.887128i \(-0.347303\pi\)
\(48\) 0 0
\(49\) 4.64107 + 4.42526i 0.663011 + 0.632179i
\(50\) 0 0
\(51\) −1.96739 1.01426i −0.275490 0.142025i
\(52\) 0 0
\(53\) −4.04631 + 1.18810i −0.555804 + 0.163199i −0.547559 0.836767i \(-0.684443\pi\)
−0.00824496 + 0.999966i \(0.502624\pi\)
\(54\) 0 0
\(55\) −0.754248 1.05919i −0.101703 0.142822i
\(56\) 0 0
\(57\) 1.11791 3.22999i 0.148071 0.427823i
\(58\) 0 0
\(59\) −4.67990 10.2476i −0.609271 1.33412i −0.923071 0.384629i \(-0.874329\pi\)
0.313800 0.949489i \(-0.398398\pi\)
\(60\) 0 0
\(61\) −0.371752 + 7.80404i −0.0475980 + 0.999205i 0.841148 + 0.540805i \(0.181880\pi\)
−0.888746 + 0.458400i \(0.848423\pi\)
\(62\) 0 0
\(63\) −0.863428 + 3.55910i −0.108782 + 0.448404i
\(64\) 0 0
\(65\) 1.26551 0.995212i 0.156968 0.123441i
\(66\) 0 0
\(67\) −4.45180 + 6.86888i −0.543874 + 0.839167i
\(68\) 0 0
\(69\) −4.26172 + 3.35145i −0.513050 + 0.403467i
\(70\) 0 0
\(71\) 0.0517593 0.213355i 0.00614270 0.0253206i −0.968658 0.248399i \(-0.920096\pi\)
0.974800 + 0.223079i \(0.0716107\pi\)
\(72\) 0 0
\(73\) 0.400351 8.40440i 0.0468575 0.983661i −0.845961 0.533245i \(-0.820973\pi\)
0.892819 0.450416i \(-0.148724\pi\)
\(74\) 0 0
\(75\) 2.05537 + 4.50063i 0.237334 + 0.519688i
\(76\) 0 0
\(77\) 6.81396 19.6876i 0.776522 2.24361i
\(78\) 0 0
\(79\) −0.176501 0.247860i −0.0198579 0.0278865i 0.804528 0.593915i \(-0.202419\pi\)
−0.824386 + 0.566029i \(0.808479\pi\)
\(80\) 0 0
\(81\) −0.959493 + 0.281733i −0.106610 + 0.0313036i
\(82\) 0 0
\(83\) −11.5927 5.97647i −1.27247 0.656002i −0.316254 0.948675i \(-0.602425\pi\)
−0.956213 + 0.292672i \(0.905456\pi\)
\(84\) 0 0
\(85\) 0.366174 + 0.349146i 0.0397172 + 0.0378702i
\(86\) 0 0
\(87\) 1.33373 + 3.85356i 0.142991 + 0.413146i
\(88\) 0 0
\(89\) 10.8214 + 12.4886i 1.14707 + 1.32379i 0.938298 + 0.345826i \(0.112401\pi\)
0.208773 + 0.977964i \(0.433053\pi\)
\(90\) 0 0
\(91\) 24.7500 + 7.26725i 2.59450 + 0.761815i
\(92\) 0 0
\(93\) −3.04547 + 2.90385i −0.315801 + 0.301115i
\(94\) 0 0
\(95\) −0.453190 + 0.636416i −0.0464963 + 0.0652949i
\(96\) 0 0
\(97\) −5.87348 10.1732i −0.596361 1.03293i −0.993353 0.115106i \(-0.963279\pi\)
0.396992 0.917822i \(-0.370054\pi\)
\(98\) 0 0
\(99\) 5.58578 1.07657i 0.561392 0.108199i
\(100\) 0 0
\(101\) 9.35267 + 7.35502i 0.930626 + 0.731852i 0.963528 0.267607i \(-0.0862327\pi\)
−0.0329027 + 0.999459i \(0.510475\pi\)
\(102\) 0 0
\(103\) −12.9779 1.23924i −1.27875 0.122106i −0.566516 0.824051i \(-0.691709\pi\)
−0.712231 + 0.701945i \(0.752315\pi\)
\(104\) 0 0
\(105\) 0.418570 0.724984i 0.0408482 0.0707512i
\(106\) 0 0
\(107\) 1.31009 + 0.841943i 0.126651 + 0.0813937i 0.602432 0.798170i \(-0.294198\pi\)
−0.475781 + 0.879564i \(0.657835\pi\)
\(108\) 0 0
\(109\) −1.31313 + 2.87536i −0.125775 + 0.275409i −0.962036 0.272923i \(-0.912010\pi\)
0.836261 + 0.548332i \(0.184737\pi\)
\(110\) 0 0
\(111\) 10.5718 + 2.03754i 1.00343 + 0.193395i
\(112\) 0 0
\(113\) −3.85416 + 1.98696i −0.362569 + 0.186917i −0.629879 0.776693i \(-0.716896\pi\)
0.267310 + 0.963611i \(0.413865\pi\)
\(114\) 0 0
\(115\) 1.15052 0.460597i 0.107286 0.0429509i
\(116\) 0 0
\(117\) 1.66052 + 6.84475i 0.153515 + 0.632797i
\(118\) 0 0
\(119\) −1.15366 + 8.02386i −0.105756 + 0.735546i
\(120\) 0 0
\(121\) −21.2632 + 2.03039i −1.93302 + 0.184581i
\(122\) 0 0
\(123\) −0.424525 8.91188i −0.0382781 0.803557i
\(124\) 0 0
\(125\) −0.323605 2.25072i −0.0289441 0.201311i
\(126\) 0 0
\(127\) 5.98973 + 2.39792i 0.531502 + 0.212781i 0.621861 0.783128i \(-0.286377\pi\)
−0.0903584 + 0.995909i \(0.528801\pi\)
\(128\) 0 0
\(129\) −0.276473 + 0.177678i −0.0243421 + 0.0156437i
\(130\) 0 0
\(131\) 3.82785 4.41758i 0.334441 0.385965i −0.563474 0.826133i \(-0.690536\pi\)
0.897915 + 0.440168i \(0.145081\pi\)
\(132\) 0 0
\(133\) −12.5178 −1.08543
\(134\) 0 0
\(135\) 0.228581 0.0196731
\(136\) 0 0
\(137\) −1.14328 + 1.31942i −0.0976771 + 0.112725i −0.802483 0.596674i \(-0.796488\pi\)
0.704806 + 0.709400i \(0.251034\pi\)
\(138\) 0 0
\(139\) 0.395379 0.254094i 0.0335356 0.0215520i −0.523766 0.851862i \(-0.675473\pi\)
0.557301 + 0.830310i \(0.311837\pi\)
\(140\) 0 0
\(141\) −8.74984 3.50291i −0.736870 0.294998i
\(142\) 0 0
\(143\) −5.70202 39.6584i −0.476827 3.31641i
\(144\) 0 0
\(145\) −0.0443519 0.931061i −0.00368323 0.0773204i
\(146\) 0 0
\(147\) 6.38364 0.609564i 0.526514 0.0502760i
\(148\) 0 0
\(149\) 0.596556 4.14914i 0.0488718 0.339911i −0.950685 0.310157i \(-0.899618\pi\)
0.999557 0.0297541i \(-0.00947241\pi\)
\(150\) 0 0
\(151\) −1.95586 8.06216i −0.159165 0.656089i −0.994353 0.106124i \(-0.966156\pi\)
0.835187 0.549965i \(-0.185359\pi\)
\(152\) 0 0
\(153\) −2.05489 + 0.822655i −0.166128 + 0.0665077i
\(154\) 0 0
\(155\) 0.854943 0.440754i 0.0686706 0.0354022i
\(156\) 0 0
\(157\) 6.76380 + 1.30362i 0.539810 + 0.104040i 0.451866 0.892086i \(-0.350758\pi\)
0.0879436 + 0.996125i \(0.471970\pi\)
\(158\) 0 0
\(159\) −1.75186 + 3.83604i −0.138932 + 0.304218i
\(160\) 0 0
\(161\) 16.7039 + 10.7349i 1.31645 + 0.846031i
\(162\) 0 0
\(163\) −3.51253 + 6.08388i −0.275123 + 0.476527i −0.970166 0.242441i \(-0.922052\pi\)
0.695043 + 0.718968i \(0.255385\pi\)
\(164\) 0 0
\(165\) −1.29441 0.123601i −0.100770 0.00962235i
\(166\) 0 0
\(167\) 6.71923 + 5.28406i 0.519950 + 0.408893i 0.843346 0.537371i \(-0.180582\pi\)
−0.323397 + 0.946264i \(0.604825\pi\)
\(168\) 0 0
\(169\) 35.9463 6.92809i 2.76510 0.532930i
\(170\) 0 0
\(171\) −1.70899 2.96006i −0.130690 0.226361i
\(172\) 0 0
\(173\) 14.2849 20.0603i 1.08606 1.52516i 0.256657 0.966503i \(-0.417379\pi\)
0.829401 0.558653i \(-0.188682\pi\)
\(174\) 0 0
\(175\) 13.1143 12.5044i 0.991347 0.945247i
\(176\) 0 0
\(177\) −10.8093 3.17389i −0.812475 0.238564i
\(178\) 0 0
\(179\) −11.8448 13.6696i −0.885321 1.02172i −0.999600 0.0282665i \(-0.991001\pi\)
0.114279 0.993449i \(-0.463544\pi\)
\(180\) 0 0
\(181\) −3.72342 10.7581i −0.276759 0.799644i −0.994633 0.103470i \(-0.967005\pi\)
0.717873 0.696174i \(-0.245116\pi\)
\(182\) 0 0
\(183\) 5.65445 + 5.39151i 0.417989 + 0.398552i
\(184\) 0 0
\(185\) −2.18740 1.12768i −0.160821 0.0829090i
\(186\) 0 0
\(187\) 12.0813 3.54739i 0.883473 0.259411i
\(188\) 0 0
\(189\) 2.12436 + 2.98325i 0.154525 + 0.216999i
\(190\) 0 0
\(191\) 7.76347 22.4311i 0.561745 1.62306i −0.203327 0.979111i \(-0.565176\pi\)
0.765072 0.643945i \(-0.222703\pi\)
\(192\) 0 0
\(193\) 6.46555 + 14.1576i 0.465401 + 1.01909i 0.986223 + 0.165420i \(0.0528981\pi\)
−0.520823 + 0.853665i \(0.674375\pi\)
\(194\) 0 0
\(195\) 0.0766050 1.60814i 0.00548580 0.115161i
\(196\) 0 0
\(197\) −1.93808 + 7.98889i −0.138083 + 0.569185i 0.860165 + 0.510016i \(0.170360\pi\)
−0.998248 + 0.0591694i \(0.981155\pi\)
\(198\) 0 0
\(199\) −13.5724 + 10.6734i −0.962121 + 0.756620i −0.969939 0.243349i \(-0.921754\pi\)
0.00781775 + 0.999969i \(0.497512\pi\)
\(200\) 0 0
\(201\) 2.27584 + 7.86260i 0.160525 + 0.554585i
\(202\) 0 0
\(203\) 11.7392 9.23184i 0.823933 0.647948i
\(204\) 0 0
\(205\) −0.480806 + 1.98191i −0.0335809 + 0.138422i
\(206\) 0 0
\(207\) −0.257973 + 5.41552i −0.0179304 + 0.376405i
\(208\) 0 0
\(209\) 8.07710 + 17.6864i 0.558704 + 1.22339i
\(210\) 0 0
\(211\) 5.76778 16.6649i 0.397071 1.14726i −0.552448 0.833548i \(-0.686306\pi\)
0.949518 0.313712i \(-0.101573\pi\)
\(212\) 0 0
\(213\) −0.127348 0.178835i −0.00872572 0.0122536i
\(214\) 0 0
\(215\) 0.0720787 0.0211642i 0.00491573 0.00144339i
\(216\) 0 0
\(217\) 13.6979 + 7.06177i 0.929876 + 0.479384i
\(218\) 0 0
\(219\) −6.08945 5.80628i −0.411487 0.392352i
\(220\) 0 0
\(221\) 5.09897 + 14.7325i 0.342994 + 0.991015i
\(222\) 0 0
\(223\) 12.0872 + 13.9493i 0.809416 + 0.934116i 0.998858 0.0477763i \(-0.0152134\pi\)
−0.189442 + 0.981892i \(0.560668\pi\)
\(224\) 0 0
\(225\) 4.74733 + 1.39394i 0.316489 + 0.0929295i
\(226\) 0 0
\(227\) −12.0572 + 11.4965i −0.800266 + 0.763052i −0.975152 0.221537i \(-0.928893\pi\)
0.174886 + 0.984589i \(0.444044\pi\)
\(228\) 0 0
\(229\) −13.8206 + 19.4083i −0.913291 + 1.28254i 0.0456568 + 0.998957i \(0.485462\pi\)
−0.958948 + 0.283581i \(0.908477\pi\)
\(230\) 0 0
\(231\) −10.4167 18.0423i −0.685370 1.18710i
\(232\) 0 0
\(233\) −10.9347 + 2.10748i −0.716353 + 0.138066i −0.534388 0.845239i \(-0.679458\pi\)
−0.181965 + 0.983305i \(0.558246\pi\)
\(234\) 0 0
\(235\) 1.69345 + 1.33174i 0.110468 + 0.0868733i
\(236\) 0 0
\(237\) −0.302904 0.0289238i −0.0196757 0.00187880i
\(238\) 0 0
\(239\) −1.39913 + 2.42337i −0.0905025 + 0.156755i −0.907723 0.419571i \(-0.862181\pi\)
0.817220 + 0.576326i \(0.195514\pi\)
\(240\) 0 0
\(241\) 3.42546 + 2.20141i 0.220653 + 0.141805i 0.646298 0.763085i \(-0.276316\pi\)
−0.425645 + 0.904890i \(0.639953\pi\)
\(242\) 0 0
\(243\) −0.415415 + 0.909632i −0.0266489 + 0.0583529i
\(244\) 0 0
\(245\) −1.43933 0.277407i −0.0919552 0.0177229i
\(246\) 0 0
\(247\) −21.3977 + 11.0313i −1.36150 + 0.701902i
\(248\) 0 0
\(249\) −12.1083 + 4.84744i −0.767334 + 0.307194i
\(250\) 0 0
\(251\) 2.88084 + 11.8750i 0.181837 + 0.749543i 0.987559 + 0.157249i \(0.0502625\pi\)
−0.805722 + 0.592294i \(0.798222\pi\)
\(252\) 0 0
\(253\) 4.38921 30.5276i 0.275947 1.91926i
\(254\) 0 0
\(255\) 0.503660 0.0480937i 0.0315404 0.00301175i
\(256\) 0 0
\(257\) 1.09210 + 22.9260i 0.0681233 + 1.43008i 0.731522 + 0.681817i \(0.238810\pi\)
−0.663399 + 0.748266i \(0.730887\pi\)
\(258\) 0 0
\(259\) −5.61145 39.0285i −0.348679 2.42511i
\(260\) 0 0
\(261\) 3.78574 + 1.51558i 0.234331 + 0.0938121i
\(262\) 0 0
\(263\) 17.3623 11.1581i 1.07061 0.688036i 0.118237 0.992985i \(-0.462276\pi\)
0.952369 + 0.304949i \(0.0986394\pi\)
\(264\) 0 0
\(265\) 0.631257 0.728510i 0.0387778 0.0447520i
\(266\) 0 0
\(267\) 16.5248 1.01130
\(268\) 0 0
\(269\) 23.7344 1.44711 0.723555 0.690266i \(-0.242507\pi\)
0.723555 + 0.690266i \(0.242507\pi\)
\(270\) 0 0
\(271\) −1.86909 + 2.15705i −0.113539 + 0.131031i −0.809674 0.586880i \(-0.800356\pi\)
0.696135 + 0.717911i \(0.254902\pi\)
\(272\) 0 0
\(273\) 21.7000 13.9458i 1.31334 0.844035i
\(274\) 0 0
\(275\) −26.1295 10.4607i −1.57567 0.630803i
\(276\) 0 0
\(277\) 2.46889 + 17.1715i 0.148342 + 1.03174i 0.918934 + 0.394410i \(0.129051\pi\)
−0.770593 + 0.637328i \(0.780040\pi\)
\(278\) 0 0
\(279\) 0.200225 + 4.20323i 0.0119871 + 0.251641i
\(280\) 0 0
\(281\) −28.1409 + 2.68713i −1.67875 + 0.160301i −0.890477 0.455028i \(-0.849629\pi\)
−0.788270 + 0.615329i \(0.789023\pi\)
\(282\) 0 0
\(283\) −1.10135 + 7.66009i −0.0654687 + 0.455345i 0.930547 + 0.366172i \(0.119332\pi\)
−0.996016 + 0.0891736i \(0.971577\pi\)
\(284\) 0 0
\(285\) 0.184195 + 0.759262i 0.0109108 + 0.0449748i
\(286\) 0 0
\(287\) −30.3347 + 12.1442i −1.79060 + 0.716848i
\(288\) 0 0
\(289\) 10.7555 5.54484i 0.632676 0.326167i
\(290\) 0 0
\(291\) −11.5347 2.22313i −0.676174 0.130322i
\(292\) 0 0
\(293\) 6.67704 14.6207i 0.390077 0.854149i −0.608104 0.793857i \(-0.708070\pi\)
0.998181 0.0602914i \(-0.0192030\pi\)
\(294\) 0 0
\(295\) 2.16631 + 1.39221i 0.126128 + 0.0810573i
\(296\) 0 0
\(297\) 2.84429 4.92645i 0.165042 0.285862i
\(298\) 0 0
\(299\) 38.0134 + 3.62984i 2.19837 + 0.209919i
\(300\) 0 0
\(301\) 0.946095 + 0.744017i 0.0545320 + 0.0428845i
\(302\) 0 0
\(303\) 11.6833 2.25176i 0.671185 0.129360i
\(304\) 0 0
\(305\) −0.892938 1.54661i −0.0511295 0.0885589i
\(306\) 0 0
\(307\) −1.84084 + 2.58510i −0.105062 + 0.147539i −0.863760 0.503904i \(-0.831897\pi\)
0.758698 + 0.651443i \(0.225836\pi\)
\(308\) 0 0
\(309\) −9.43524 + 8.99649i −0.536752 + 0.511792i
\(310\) 0 0
\(311\) −5.21350 1.53082i −0.295631 0.0868050i 0.130554 0.991441i \(-0.458324\pi\)
−0.426185 + 0.904636i \(0.640143\pi\)
\(312\) 0 0
\(313\) 7.22066 + 8.33309i 0.408136 + 0.471014i 0.922186 0.386746i \(-0.126401\pi\)
−0.514050 + 0.857760i \(0.671856\pi\)
\(314\) 0 0
\(315\) −0.273801 0.791097i −0.0154270 0.0445733i
\(316\) 0 0
\(317\) −15.8346 15.0982i −0.889359 0.848002i 0.0997768 0.995010i \(-0.468187\pi\)
−0.989135 + 0.147008i \(0.953036\pi\)
\(318\) 0 0
\(319\) −20.6184 10.6295i −1.15441 0.595140i
\(320\) 0 0
\(321\) 1.49422 0.438744i 0.0833995 0.0244883i
\(322\) 0 0
\(323\) −4.38843 6.16269i −0.244179 0.342901i
\(324\) 0 0
\(325\) 11.3978 32.9318i 0.632236 1.82673i
\(326\) 0 0
\(327\) 1.31313 + 2.87536i 0.0726163 + 0.159008i
\(328\) 0 0
\(329\) −1.64240 + 34.4783i −0.0905486 + 1.90085i
\(330\) 0 0
\(331\) −2.93978 + 12.1179i −0.161585 + 0.666062i 0.832174 + 0.554515i \(0.187096\pi\)
−0.993759 + 0.111548i \(0.964419\pi\)
\(332\) 0 0
\(333\) 8.46290 6.65530i 0.463764 0.364708i
\(334\) 0 0
\(335\) 0.00720021 1.87100i 0.000393390 0.102224i
\(336\) 0 0
\(337\) −25.7858 + 20.2782i −1.40464 + 1.10462i −0.424702 + 0.905333i \(0.639621\pi\)
−0.979941 + 0.199289i \(0.936137\pi\)
\(338\) 0 0
\(339\) −1.02230 + 4.21396i −0.0555235 + 0.228871i
\(340\) 0 0
\(341\) 1.13899 23.9104i 0.0616799 1.29482i
\(342\) 0 0
\(343\) 0.893543 + 1.95659i 0.0482468 + 0.105646i
\(344\) 0 0
\(345\) 0.405332 1.17113i 0.0218223 0.0630515i
\(346\) 0 0
\(347\) 16.8965 + 23.7278i 0.907050 + 1.27377i 0.961373 + 0.275249i \(0.0887604\pi\)
−0.0543233 + 0.998523i \(0.517300\pi\)
\(348\) 0 0
\(349\) −23.7187 + 6.96445i −1.26964 + 0.372798i −0.846072 0.533068i \(-0.821039\pi\)
−0.423563 + 0.905867i \(0.639221\pi\)
\(350\) 0 0
\(351\) 6.26032 + 3.22742i 0.334151 + 0.172267i
\(352\) 0 0
\(353\) −14.7119 14.0278i −0.783037 0.746624i 0.188867 0.982003i \(-0.439519\pi\)
−0.971904 + 0.235378i \(0.924367\pi\)
\(354\) 0 0
\(355\) 0.0164134 + 0.0474234i 0.000871133 + 0.00251697i
\(356\) 0 0
\(357\) 5.30855 + 6.12639i 0.280958 + 0.324243i
\(358\) 0 0
\(359\) 9.95788 + 2.92390i 0.525557 + 0.154317i 0.533739 0.845649i \(-0.320786\pi\)
−0.00818237 + 0.999967i \(0.502605\pi\)
\(360\) 0 0
\(361\) −5.29586 + 5.04959i −0.278729 + 0.265768i
\(362\) 0 0
\(363\) −12.3900 + 17.3993i −0.650304 + 0.913224i
\(364\) 0 0
\(365\) 0.961632 + 1.66560i 0.0503341 + 0.0871813i
\(366\) 0 0
\(367\) −3.80279 + 0.732928i −0.198504 + 0.0382585i −0.287534 0.957770i \(-0.592835\pi\)
0.0890299 + 0.996029i \(0.471623\pi\)
\(368\) 0 0
\(369\) −7.01315 5.51521i −0.365090 0.287110i
\(370\) 0 0
\(371\) 15.3746 + 1.46810i 0.798210 + 0.0762198i
\(372\) 0 0
\(373\) −2.17804 + 3.77248i −0.112775 + 0.195332i −0.916888 0.399144i \(-0.869307\pi\)
0.804113 + 0.594476i \(0.202641\pi\)
\(374\) 0 0
\(375\) −1.91290 1.22934i −0.0987816 0.0634831i
\(376\) 0 0
\(377\) 11.9313 26.1259i 0.614494 1.34555i
\(378\) 0 0
\(379\) −9.54134 1.83894i −0.490106 0.0944601i −0.0617898 0.998089i \(-0.519681\pi\)
−0.428316 + 0.903629i \(0.640893\pi\)
\(380\) 0 0
\(381\) 5.73467 2.95643i 0.293796 0.151462i
\(382\) 0 0
\(383\) −21.6934 + 8.68471i −1.10848 + 0.443768i −0.852401 0.522888i \(-0.824854\pi\)
−0.256077 + 0.966656i \(0.582430\pi\)
\(384\) 0 0
\(385\) 1.12271 + 4.62789i 0.0572188 + 0.235859i
\(386\) 0 0
\(387\) −0.0467709 + 0.325298i −0.00237750 + 0.0165358i
\(388\) 0 0
\(389\) 4.49564 0.429282i 0.227938 0.0217655i 0.0195381 0.999809i \(-0.493780\pi\)
0.208400 + 0.978044i \(0.433174\pi\)
\(390\) 0 0
\(391\) 0.571010 + 11.9870i 0.0288772 + 0.606207i
\(392\) 0 0
\(393\) −0.831872 5.78580i −0.0419624 0.291855i
\(394\) 0 0
\(395\) 0.0645707 + 0.0258502i 0.00324890 + 0.00130067i
\(396\) 0 0
\(397\) −17.5893 + 11.3040i −0.882782 + 0.567329i −0.901637 0.432493i \(-0.857634\pi\)
0.0188555 + 0.999822i \(0.493998\pi\)
\(398\) 0 0
\(399\) −8.19740 + 9.46031i −0.410383 + 0.473608i
\(400\) 0 0
\(401\) −24.4977 −1.22336 −0.611680 0.791106i \(-0.709506\pi\)
−0.611680 + 0.791106i \(0.709506\pi\)
\(402\) 0 0
\(403\) 29.6381 1.47638
\(404\) 0 0
\(405\) 0.149689 0.172750i 0.00743809 0.00858401i
\(406\) 0 0
\(407\) −51.5226 + 33.1116i −2.55388 + 1.64128i
\(408\) 0 0
\(409\) −21.1623 8.47213i −1.04641 0.418920i −0.216188 0.976352i \(-0.569362\pi\)
−0.830223 + 0.557432i \(0.811787\pi\)
\(410\) 0 0
\(411\) 0.248459 + 1.72807i 0.0122556 + 0.0852393i
\(412\) 0 0
\(413\) 1.96315 + 41.2117i 0.0966005 + 2.02789i
\(414\) 0 0
\(415\) 2.96779 0.283390i 0.145683 0.0139110i
\(416\) 0 0
\(417\) 0.0668862 0.465204i 0.00327543 0.0227811i
\(418\) 0 0
\(419\) 0.737170 + 3.03866i 0.0360131 + 0.148448i 0.986979 0.160846i \(-0.0514223\pi\)
−0.950966 + 0.309294i \(0.899907\pi\)
\(420\) 0 0
\(421\) −13.4190 + 5.37215i −0.654001 + 0.261822i −0.674844 0.737960i \(-0.735789\pi\)
0.0208434 + 0.999783i \(0.493365\pi\)
\(422\) 0 0
\(423\) −8.37725 + 4.31877i −0.407316 + 0.209986i
\(424\) 0 0
\(425\) 10.7537 + 2.07260i 0.521629 + 0.100536i
\(426\) 0 0
\(427\) 11.8864 26.0277i 0.575225 1.25957i
\(428\) 0 0
\(429\) −33.7059 21.6615i −1.62734 1.04582i
\(430\) 0 0
\(431\) 0.380773 0.659518i 0.0183412 0.0317679i −0.856709 0.515800i \(-0.827495\pi\)
0.875050 + 0.484032i \(0.160828\pi\)
\(432\) 0 0
\(433\) −15.8036 1.50906i −0.759472 0.0725208i −0.291868 0.956459i \(-0.594277\pi\)
−0.467604 + 0.883938i \(0.654883\pi\)
\(434\) 0 0
\(435\) −0.732693 0.576197i −0.0351300 0.0276265i
\(436\) 0 0
\(437\) −18.1963 + 3.50704i −0.870445 + 0.167765i
\(438\) 0 0
\(439\) −17.3067 29.9760i −0.826002 1.43068i −0.901151 0.433505i \(-0.857277\pi\)
0.0751496 0.997172i \(-0.476057\pi\)
\(440\) 0 0
\(441\) 3.71972 5.22361i 0.177129 0.248744i
\(442\) 0 0
\(443\) 5.91125 5.63636i 0.280852 0.267792i −0.536539 0.843876i \(-0.680268\pi\)
0.817390 + 0.576084i \(0.195420\pi\)
\(444\) 0 0
\(445\) −3.62425 1.06418i −0.171806 0.0504468i
\(446\) 0 0
\(447\) −2.74505 3.16796i −0.129836 0.149839i
\(448\) 0 0
\(449\) 2.57737 + 7.44683i 0.121634 + 0.351438i 0.989337 0.145645i \(-0.0465258\pi\)
−0.867703 + 0.497083i \(0.834405\pi\)
\(450\) 0 0
\(451\) 36.7320 + 35.0238i 1.72964 + 1.64921i
\(452\) 0 0
\(453\) −7.37379 3.80145i −0.346451 0.178608i
\(454\) 0 0
\(455\) −5.65737 + 1.66115i −0.265222 + 0.0778761i
\(456\) 0 0
\(457\) 5.15137 + 7.23408i 0.240971 + 0.338396i 0.917295 0.398208i \(-0.130368\pi\)
−0.676325 + 0.736604i \(0.736428\pi\)
\(458\) 0 0
\(459\) −0.723947 + 2.09171i −0.0337910 + 0.0976326i
\(460\) 0 0
\(461\) −6.47087 14.1692i −0.301379 0.659927i 0.696987 0.717084i \(-0.254524\pi\)
−0.998365 + 0.0571572i \(0.981796\pi\)
\(462\) 0 0
\(463\) 0.264913 5.56121i 0.0123116 0.258451i −0.984317 0.176408i \(-0.943552\pi\)
0.996629 0.0820436i \(-0.0261447\pi\)
\(464\) 0 0
\(465\) 0.226769 0.934755i 0.0105162 0.0433482i
\(466\) 0 0
\(467\) −27.4547 + 21.5906i −1.27045 + 0.999094i −0.271119 + 0.962546i \(0.587394\pi\)
−0.999332 + 0.0365483i \(0.988364\pi\)
\(468\) 0 0
\(469\) 24.4857 17.2945i 1.13064 0.798588i
\(470\) 0 0
\(471\) 5.41456 4.25805i 0.249490 0.196201i
\(472\) 0 0
\(473\) 0.440755 1.81682i 0.0202659 0.0835372i
\(474\) 0 0
\(475\) −0.804673 + 16.8922i −0.0369209 + 0.775065i
\(476\) 0 0
\(477\) 1.75186 + 3.83604i 0.0802122 + 0.175640i
\(478\) 0 0
\(479\) −7.98142 + 23.0608i −0.364680 + 1.05367i 0.602178 + 0.798362i \(0.294300\pi\)
−0.966858 + 0.255313i \(0.917821\pi\)
\(480\) 0 0
\(481\) −43.9859 61.7695i −2.00558 2.81645i
\(482\) 0 0
\(483\) 19.0516 5.59406i 0.866879 0.254539i
\(484\) 0 0
\(485\) 2.38664 + 1.23040i 0.108372 + 0.0558695i
\(486\) 0 0
\(487\) 18.9213 + 18.0414i 0.857404 + 0.817533i 0.984687 0.174333i \(-0.0557770\pi\)
−0.127283 + 0.991866i \(0.540626\pi\)
\(488\) 0 0
\(489\) 2.29767 + 6.63869i 0.103904 + 0.300212i
\(490\) 0 0
\(491\) 0.739602 + 0.853546i 0.0333778 + 0.0385200i 0.772193 0.635388i \(-0.219160\pi\)
−0.738815 + 0.673908i \(0.764614\pi\)
\(492\) 0 0
\(493\) 8.66046 + 2.54294i 0.390048 + 0.114528i
\(494\) 0 0
\(495\) −0.941071 + 0.897309i −0.0422980 + 0.0403311i
\(496\) 0 0
\(497\) −0.466390 + 0.654953i −0.0209204 + 0.0293786i
\(498\) 0 0
\(499\) 2.73128 + 4.73072i 0.122269 + 0.211776i 0.920662 0.390360i \(-0.127650\pi\)
−0.798393 + 0.602137i \(0.794316\pi\)
\(500\) 0 0
\(501\) 8.39359 1.61773i 0.374998 0.0722749i
\(502\) 0 0
\(503\) 1.73112 + 1.36137i 0.0771869 + 0.0607005i 0.656007 0.754755i \(-0.272244\pi\)
−0.578820 + 0.815455i \(0.696487\pi\)
\(504\) 0 0
\(505\) −2.70740 0.258526i −0.120478 0.0115042i
\(506\) 0 0
\(507\) 18.3039 31.7033i 0.812906 1.40800i
\(508\) 0 0
\(509\) 17.6650 + 11.3526i 0.782988 + 0.503196i 0.870024 0.493009i \(-0.164103\pi\)
−0.0870359 + 0.996205i \(0.527739\pi\)
\(510\) 0 0
\(511\) −12.8009 + 28.0300i −0.566276 + 1.23997i
\(512\) 0 0
\(513\) −3.35621 0.646857i −0.148180 0.0285594i
\(514\) 0 0
\(515\) 2.64872 1.36551i 0.116716 0.0601715i
\(516\) 0 0
\(517\) 49.7741 19.9266i 2.18906 0.876369i
\(518\) 0 0
\(519\) −5.80596 23.9325i −0.254853 1.05052i
\(520\) 0 0
\(521\) −5.76208 + 40.0761i −0.252441 + 1.75577i 0.331017 + 0.943625i \(0.392608\pi\)
−0.583458 + 0.812143i \(0.698301\pi\)
\(522\) 0 0
\(523\) −5.01652 + 0.479019i −0.219357 + 0.0209461i −0.204156 0.978938i \(-0.565445\pi\)
−0.0152012 + 0.999884i \(0.504839\pi\)
\(524\) 0 0
\(525\) −0.862199 18.0998i −0.0376294 0.789939i
\(526\) 0 0
\(527\) 1.32555 + 9.21937i 0.0577417 + 0.401602i
\(528\) 0 0
\(529\) 5.93640 + 2.37658i 0.258104 + 0.103329i
\(530\) 0 0
\(531\) −9.47723 + 6.09065i −0.411277 + 0.264312i
\(532\) 0 0
\(533\) −41.1515 + 47.4914i −1.78247 + 2.05708i
\(534\) 0 0
\(535\) −0.355970 −0.0153899
\(536\) 0 0
\(537\) −18.0875 −0.780533
\(538\) 0 0
\(539\) −23.8887 + 27.5690i −1.02896 + 1.18748i
\(540\) 0 0
\(541\) 1.60667 1.03254i 0.0690760 0.0443925i −0.505647 0.862740i \(-0.668746\pi\)
0.574723 + 0.818348i \(0.305110\pi\)
\(542\) 0 0
\(543\) −10.5688 4.23109i −0.453549 0.181573i
\(544\) 0 0
\(545\) −0.102829 0.715192i −0.00440471 0.0306355i
\(546\) 0 0
\(547\) −1.06223 22.2990i −0.0454178 0.953436i −0.900476 0.434905i \(-0.856782\pi\)
0.855059 0.518531i \(-0.173521\pi\)
\(548\) 0 0
\(549\) 7.77751 0.742662i 0.331936 0.0316960i
\(550\) 0 0
\(551\) −1.98358 + 13.7961i −0.0845034 + 0.587734i
\(552\) 0 0
\(553\) 0.262725 + 1.08297i 0.0111722 + 0.0460524i
\(554\) 0 0
\(555\) −2.28469 + 0.914652i −0.0969797 + 0.0388248i
\(556\) 0 0
\(557\) 27.8732 14.3696i 1.18103 0.608861i 0.248031 0.968752i \(-0.420217\pi\)
0.932994 + 0.359891i \(0.117186\pi\)
\(558\) 0 0
\(559\) 2.27290 + 0.438066i 0.0961334 + 0.0185282i
\(560\) 0 0
\(561\) 5.23064 11.4535i 0.220838 0.483567i
\(562\) 0 0
\(563\) 34.5485 + 22.2030i 1.45604 + 0.935743i 0.998926 + 0.0463377i \(0.0147550\pi\)
0.457119 + 0.889406i \(0.348881\pi\)
\(564\) 0 0
\(565\) 0.495585 0.858379i 0.0208494 0.0361123i
\(566\) 0 0
\(567\) 3.64575 + 0.348127i 0.153107 + 0.0146200i
\(568\) 0 0
\(569\) 7.05286 + 5.54643i 0.295671 + 0.232518i 0.754964 0.655767i \(-0.227655\pi\)
−0.459292 + 0.888285i \(0.651897\pi\)
\(570\) 0 0
\(571\) 26.7533 5.15628i 1.11959 0.215784i 0.404311 0.914621i \(-0.367511\pi\)
0.715280 + 0.698838i \(0.246299\pi\)
\(572\) 0 0
\(573\) −11.8683 20.5565i −0.495805 0.858759i
\(574\) 0 0
\(575\) 15.5601 21.8510i 0.648899 0.911251i
\(576\) 0 0
\(577\) −12.8764 + 12.2776i −0.536051 + 0.511123i −0.909038 0.416713i \(-0.863182\pi\)
0.372987 + 0.927836i \(0.378333\pi\)
\(578\) 0 0
\(579\) 14.9336 + 4.38491i 0.620620 + 0.182231i
\(580\) 0 0
\(581\) 31.2803 + 36.0994i 1.29773 + 1.49766i
\(582\) 0 0
\(583\) −7.84619 22.6701i −0.324956 0.938899i
\(584\) 0 0
\(585\) −1.16518 1.11100i −0.0481744 0.0459342i
\(586\) 0 0
\(587\) 0.313976 + 0.161866i 0.0129592 + 0.00668093i 0.464694 0.885471i \(-0.346164\pi\)
−0.451735 + 0.892152i \(0.649195\pi\)
\(588\) 0 0
\(589\) −13.8003 + 4.05212i −0.568629 + 0.166965i
\(590\) 0 0
\(591\) 4.76843 + 6.69632i 0.196147 + 0.275450i
\(592\) 0 0
\(593\) 10.7471 31.0517i 0.441331 1.27514i −0.476851 0.878984i \(-0.658222\pi\)
0.918182 0.396158i \(-0.129657\pi\)
\(594\) 0 0
\(595\) −0.769748 1.68551i −0.0315566 0.0690993i
\(596\) 0 0
\(597\) −0.821573 + 17.2469i −0.0336248 + 0.705870i
\(598\) 0 0
\(599\) −4.80614 + 19.8112i −0.196374 + 0.809464i 0.785334 + 0.619072i \(0.212491\pi\)
−0.981708 + 0.190392i \(0.939024\pi\)
\(600\) 0 0
\(601\) −13.4079 + 10.5441i −0.546919 + 0.430102i −0.853006 0.521902i \(-0.825223\pi\)
0.306086 + 0.952004i \(0.400980\pi\)
\(602\) 0 0
\(603\) 7.43252 + 3.42895i 0.302676 + 0.139637i
\(604\) 0 0
\(605\) 3.83787 3.01814i 0.156032 0.122705i
\(606\) 0 0
\(607\) 9.42281 38.8414i 0.382460 1.57652i −0.377155 0.926150i \(-0.623098\pi\)
0.759615 0.650373i \(-0.225387\pi\)
\(608\) 0 0
\(609\) 0.710608 14.9175i 0.0287953 0.604488i
\(610\) 0 0
\(611\) 27.5764 + 60.3839i 1.11562 + 2.44287i
\(612\) 0 0
\(613\) 8.47496 24.4868i 0.342301 0.989012i −0.634139 0.773219i \(-0.718645\pi\)
0.976439 0.215793i \(-0.0692336\pi\)
\(614\) 0 0
\(615\) 1.18297 + 1.66124i 0.0477018 + 0.0669878i
\(616\) 0 0
\(617\) 23.4726 6.89218i 0.944972 0.277469i 0.227280 0.973829i \(-0.427017\pi\)
0.717692 + 0.696361i \(0.245199\pi\)
\(618\) 0 0
\(619\) −16.0169 8.25728i −0.643773 0.331888i 0.105237 0.994447i \(-0.466440\pi\)
−0.749010 + 0.662559i \(0.769470\pi\)
\(620\) 0 0
\(621\) 3.92384 + 3.74138i 0.157458 + 0.150136i
\(622\) 0 0
\(623\) −19.7939 57.1908i −0.793027 2.29130i
\(624\) 0 0
\(625\) −15.8601 18.3035i −0.634403 0.732140i
\(626\) 0 0
\(627\) 18.6558 + 5.47785i 0.745043 + 0.218764i
\(628\) 0 0
\(629\) 17.2471 16.4450i 0.687685 0.655707i
\(630\) 0 0
\(631\) −16.0708 + 22.5683i −0.639768 + 0.898429i −0.999399 0.0346661i \(-0.988963\pi\)
0.359631 + 0.933095i \(0.382903\pi\)
\(632\) 0 0
\(633\) −8.81741 15.2722i −0.350460 0.607015i
\(634\) 0 0
\(635\) −1.44813 + 0.279104i −0.0574672 + 0.0110759i
\(636\) 0 0
\(637\) −35.5031 27.9200i −1.40669 1.10623i
\(638\) 0 0
\(639\) −0.218549 0.0208689i −0.00864568 0.000825562i
\(640\) 0 0
\(641\) 15.0278 26.0290i 0.593563 1.02808i −0.400185 0.916435i \(-0.631054\pi\)
0.993748 0.111647i \(-0.0356127\pi\)
\(642\) 0 0
\(643\) −18.7388 12.0427i −0.738988 0.474919i 0.116207 0.993225i \(-0.462926\pi\)
−0.855195 + 0.518306i \(0.826563\pi\)
\(644\) 0 0
\(645\) 0.0312067 0.0683331i 0.00122876 0.00269061i
\(646\) 0 0
\(647\) −29.1811 5.62419i −1.14723 0.221110i −0.420011 0.907519i \(-0.637974\pi\)
−0.727216 + 0.686409i \(0.759186\pi\)
\(648\) 0 0
\(649\) 56.9612 29.3656i 2.23592 1.15270i
\(650\) 0 0
\(651\) 14.3072 5.72772i 0.560742 0.224487i
\(652\) 0 0
\(653\) 0.444747 + 1.83327i 0.0174043 + 0.0717415i 0.979851 0.199728i \(-0.0640057\pi\)
−0.962447 + 0.271469i \(0.912491\pi\)
\(654\) 0 0
\(655\) −0.190150 + 1.32252i −0.00742978 + 0.0516752i
\(656\) 0 0
\(657\) −8.37583 + 0.799795i −0.326772 + 0.0312030i
\(658\) 0 0
\(659\) −1.95056 40.9473i −0.0759830 1.59508i −0.639379 0.768892i \(-0.720808\pi\)
0.563396 0.826187i \(-0.309495\pi\)
\(660\) 0 0
\(661\) 6.06496 + 42.1827i 0.235899 + 1.64072i 0.671808 + 0.740725i \(0.265518\pi\)
−0.435908 + 0.899991i \(0.643573\pi\)
\(662\) 0 0
\(663\) 14.4732 + 5.79419i 0.562092 + 0.225028i
\(664\) 0 0
\(665\) 2.40710 1.54695i 0.0933433 0.0599881i
\(666\) 0 0
\(667\) 14.4781 16.7086i 0.560595 0.646961i
\(668\) 0 0
\(669\) 18.4576 0.713612
\(670\) 0 0
\(671\) −44.4442 −1.71575
\(672\) 0 0
\(673\) 11.4697 13.2367i 0.442125 0.510239i −0.490325 0.871540i \(-0.663122\pi\)
0.932449 + 0.361301i \(0.117667\pi\)
\(674\) 0 0
\(675\) 4.16231 2.67496i 0.160207 0.102959i
\(676\) 0 0
\(677\) 21.4876 + 8.60235i 0.825837 + 0.330615i 0.745794 0.666176i \(-0.232070\pi\)
0.0800424 + 0.996791i \(0.474494\pi\)
\(678\) 0 0
\(679\) 6.12256 + 42.5834i 0.234962 + 1.63420i
\(680\) 0 0
\(681\) 0.792702 + 16.6409i 0.0303764 + 0.637680i
\(682\) 0 0
\(683\) −16.1770 + 1.54472i −0.618996 + 0.0591069i −0.399843 0.916584i \(-0.630935\pi\)
−0.219153 + 0.975691i \(0.570329\pi\)
\(684\) 0 0
\(685\) 0.0567929 0.395003i 0.00216995 0.0150923i
\(686\) 0 0
\(687\) 5.61726 + 23.1547i 0.214312 + 0.883406i
\(688\) 0 0
\(689\) 27.5748 11.0393i 1.05052 0.420564i
\(690\) 0 0
\(691\) −7.35152 + 3.78997i −0.279665 + 0.144177i −0.592353 0.805679i \(-0.701801\pi\)
0.312688 + 0.949856i \(0.398771\pi\)
\(692\) 0 0
\(693\) −20.4570 3.94276i −0.777096 0.149773i
\(694\) 0 0
\(695\) −0.0446281 + 0.0977219i −0.00169284 + 0.00370680i
\(696\) 0 0
\(697\) −16.6134 10.6768i −0.629276 0.404411i
\(698\) 0 0
\(699\) −5.56795 + 9.64397i −0.210599 + 0.364768i
\(700\) 0 0
\(701\) 25.1333 + 2.39994i 0.949271 + 0.0906444i 0.558191 0.829712i \(-0.311496\pi\)
0.391080 + 0.920357i \(0.372102\pi\)
\(702\) 0 0
\(703\) 28.9260 + 22.7477i 1.09097 + 0.857945i
\(704\) 0 0
\(705\) 2.11544 0.407717i 0.0796719 0.0153555i
\(706\) 0 0
\(707\) −21.7877 37.7374i −0.819411 1.41926i
\(708\) 0 0
\(709\) −2.11022 + 2.96339i −0.0792509 + 0.111292i −0.852299 0.523056i \(-0.824792\pi\)
0.773048 + 0.634348i \(0.218731\pi\)
\(710\) 0 0
\(711\) −0.220219 + 0.209978i −0.00825885 + 0.00787480i
\(712\) 0 0
\(713\) 21.8902 + 6.42755i 0.819795 + 0.240714i
\(714\) 0 0
\(715\) 5.99746 + 6.92144i 0.224292 + 0.258847i
\(716\) 0 0
\(717\) 0.915224 + 2.64437i 0.0341797 + 0.0987557i
\(718\) 0 0
\(719\) −19.7626 18.8436i −0.737019 0.702747i 0.225414 0.974263i \(-0.427626\pi\)
−0.962434 + 0.271516i \(0.912475\pi\)
\(720\) 0 0
\(721\) 42.4378 + 21.8782i 1.58047 + 0.814788i
\(722\) 0 0
\(723\) 3.90692 1.14717i 0.145300 0.0426639i
\(724\) 0 0
\(725\) −11.7033 16.4350i −0.434650 0.610381i
\(726\) 0 0
\(727\) −14.5109 + 41.9264i −0.538179 + 1.55496i 0.268077 + 0.963398i \(0.413612\pi\)
−0.806256 + 0.591567i \(0.798509\pi\)
\(728\) 0 0
\(729\) 0.415415 + 0.909632i 0.0153857 + 0.0336901i
\(730\) 0 0
\(731\) −0.0346127 + 0.726611i −0.00128020 + 0.0268747i
\(732\) 0 0
\(733\) −2.33023 + 9.60532i −0.0860689 + 0.354781i −0.998519 0.0544076i \(-0.982673\pi\)
0.912450 + 0.409188i \(0.134188\pi\)
\(734\) 0 0
\(735\) −1.15221 + 0.906107i −0.0424999 + 0.0334223i
\(736\) 0 0
\(737\) −40.2348 23.4365i −1.48207 0.863295i
\(738\) 0 0
\(739\) −6.62363 + 5.20888i −0.243654 + 0.191612i −0.732517 0.680749i \(-0.761654\pi\)
0.488862 + 0.872361i \(0.337412\pi\)
\(740\) 0 0
\(741\) −5.67562 + 23.3952i −0.208499 + 0.859444i
\(742\) 0 0
\(743\) −1.12796 + 23.6787i −0.0413807 + 0.868688i 0.878799 + 0.477192i \(0.158345\pi\)
−0.920180 + 0.391496i \(0.871958\pi\)
\(744\) 0 0
\(745\) 0.398037 + 0.871579i 0.0145829 + 0.0319322i
\(746\) 0 0
\(747\) −4.26582 + 12.3253i −0.156078 + 0.450958i
\(748\) 0 0
\(749\) −3.30828 4.64583i −0.120882 0.169755i
\(750\) 0 0
\(751\) −7.00887 + 2.05799i −0.255757 + 0.0750971i −0.407098 0.913385i \(-0.633459\pi\)
0.151341 + 0.988482i \(0.451641\pi\)
\(752\) 0 0
\(753\) 10.8611 + 5.59927i 0.395800 + 0.204049i
\(754\) 0 0
\(755\) 1.37242 + 1.30860i 0.0499476 + 0.0476249i
\(756\) 0 0
\(757\) 0.805633 + 2.32772i 0.0292812 + 0.0846026i 0.958694 0.284439i \(-0.0918073\pi\)
−0.929413 + 0.369041i \(0.879686\pi\)
\(758\) 0 0
\(759\) −20.1969 23.3085i −0.733102 0.846044i
\(760\) 0 0
\(761\) −31.9093 9.36941i −1.15671 0.339641i −0.353557 0.935413i \(-0.615028\pi\)
−0.803153 + 0.595772i \(0.796846\pi\)
\(762\) 0 0
\(763\) 8.37843 7.98882i 0.303320 0.289215i
\(764\) 0 0
\(765\) 0.293481 0.412136i 0.0106108 0.0149008i
\(766\) 0 0
\(767\) 39.6734 + 68.7164i 1.43252 + 2.48121i
\(768\) 0 0
\(769\) −23.7915 + 4.58544i −0.857944 + 0.165355i −0.599208 0.800593i \(-0.704518\pi\)
−0.258735 + 0.965948i \(0.583306\pi\)
\(770\) 0 0
\(771\) 18.0415 + 14.1880i 0.649748 + 0.510967i
\(772\) 0 0
\(773\) 1.15417 + 0.110210i 0.0415126 + 0.00396398i 0.115792 0.993274i \(-0.463059\pi\)
−0.0742791 + 0.997237i \(0.523666\pi\)
\(774\) 0 0
\(775\) 10.4101 18.0308i 0.373941 0.647684i
\(776\) 0 0
\(777\) −33.1705 21.3174i −1.18999 0.764757i
\(778\) 0