Properties

Label 804.2.s.b.5.4
Level 804
Weight 2
Character 804.5
Analytic conductor 6.420
Analytic rank 0
Dimension 200
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.s (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(200\)
Relative dimension: \(20\) over \(\Q(\zeta_{22})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 5.4
Character \(\chi\) = 804.5
Dual form 804.2.s.b.161.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.56138 + 0.749732i) q^{3} +(-3.06595 + 0.900243i) q^{5} +(0.591666 + 0.512682i) q^{7} +(1.87580 - 2.34123i) q^{9} +O(q^{10})\) \(q+(-1.56138 + 0.749732i) q^{3} +(-3.06595 + 0.900243i) q^{5} +(0.591666 + 0.512682i) q^{7} +(1.87580 - 2.34123i) q^{9} +(-4.86665 + 1.42898i) q^{11} +(-2.95958 - 4.60520i) q^{13} +(4.11216 - 3.70426i) q^{15} +(4.50325 + 0.647469i) q^{17} +(1.29471 + 1.49418i) q^{19} +(-1.30819 - 0.356899i) q^{21} +(2.56007 - 1.16914i) q^{23} +(4.38332 - 2.81699i) q^{25} +(-1.17354 + 5.06190i) q^{27} +4.91969i q^{29} +(3.39701 - 5.28586i) q^{31} +(6.52733 - 5.87985i) q^{33} +(-2.27555 - 1.03921i) q^{35} +3.77494 q^{37} +(8.07369 + 4.97156i) q^{39} +(-0.190364 + 1.32401i) q^{41} +(8.46946 + 1.21772i) q^{43} +(-3.64344 + 8.86676i) q^{45} +(-1.21808 + 0.556280i) q^{47} +(-0.908978 - 6.32208i) q^{49} +(-7.51670 + 2.36528i) q^{51} +(-1.69585 - 11.7949i) q^{53} +(13.6344 - 8.76233i) q^{55} +(-3.14176 - 1.36229i) q^{57} +(4.76970 - 7.42180i) q^{59} +(3.83621 - 13.0649i) q^{61} +(2.31016 - 0.423536i) q^{63} +(13.2197 + 11.4549i) q^{65} +(1.21150 + 8.09520i) q^{67} +(-3.12069 + 3.74484i) q^{69} +(4.49276 - 0.645961i) q^{71} +(2.01307 + 0.591090i) q^{73} +(-4.73203 + 7.68470i) q^{75} +(-3.61204 - 1.64956i) q^{77} +(2.99859 + 4.66590i) q^{79} +(-1.96272 - 8.78338i) q^{81} +(1.16155 + 3.95589i) q^{83} +(-14.3896 + 2.06891i) q^{85} +(-3.68845 - 7.68150i) q^{87} +(-14.3613 - 6.55861i) q^{89} +(0.609916 - 4.24206i) q^{91} +(-1.34105 + 10.8001i) q^{93} +(-5.31463 - 3.41551i) q^{95} +3.09130i q^{97} +(-5.78331 + 14.0744i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 200q - 10q^{9} + O(q^{10}) \) \( 200q - 10q^{9} + 2q^{15} + 6q^{19} - 10q^{21} - 20q^{25} - 44q^{31} - 5q^{33} + 78q^{39} - 22q^{43} - 22q^{45} - 16q^{49} + 36q^{55} + 66q^{57} + 176q^{61} + 132q^{63} + 46q^{67} - 26q^{73} - 165q^{75} - 44q^{79} + 42q^{81} - 66q^{87} - 20q^{91} + 84q^{93} - 55q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.56138 + 0.749732i −0.901462 + 0.432858i
\(4\) 0 0
\(5\) −3.06595 + 0.900243i −1.37113 + 0.402601i −0.882674 0.469986i \(-0.844259\pi\)
−0.488459 + 0.872587i \(0.662441\pi\)
\(6\) 0 0
\(7\) 0.591666 + 0.512682i 0.223629 + 0.193775i 0.759468 0.650545i \(-0.225459\pi\)
−0.535839 + 0.844320i \(0.680005\pi\)
\(8\) 0 0
\(9\) 1.87580 2.34123i 0.625268 0.780410i
\(10\) 0 0
\(11\) −4.86665 + 1.42898i −1.46735 + 0.430852i −0.915236 0.402917i \(-0.867996\pi\)
−0.552112 + 0.833770i \(0.686178\pi\)
\(12\) 0 0
\(13\) −2.95958 4.60520i −0.820840 1.27725i −0.958019 0.286705i \(-0.907440\pi\)
0.137179 0.990546i \(-0.456196\pi\)
\(14\) 0 0
\(15\) 4.11216 3.70426i 1.06176 0.956435i
\(16\) 0 0
\(17\) 4.50325 + 0.647469i 1.09220 + 0.157034i 0.664794 0.747027i \(-0.268519\pi\)
0.427403 + 0.904061i \(0.359428\pi\)
\(18\) 0 0
\(19\) 1.29471 + 1.49418i 0.297027 + 0.342787i 0.884572 0.466404i \(-0.154451\pi\)
−0.587545 + 0.809192i \(0.699905\pi\)
\(20\) 0 0
\(21\) −1.30819 0.356899i −0.285470 0.0778817i
\(22\) 0 0
\(23\) 2.56007 1.16914i 0.533812 0.243784i −0.130224 0.991485i \(-0.541570\pi\)
0.664036 + 0.747701i \(0.268842\pi\)
\(24\) 0 0
\(25\) 4.38332 2.81699i 0.876664 0.563398i
\(26\) 0 0
\(27\) −1.17354 + 5.06190i −0.225849 + 0.974162i
\(28\) 0 0
\(29\) 4.91969i 0.913564i 0.889579 + 0.456782i \(0.150998\pi\)
−0.889579 + 0.456782i \(0.849002\pi\)
\(30\) 0 0
\(31\) 3.39701 5.28586i 0.610122 0.949368i −0.389477 0.921036i \(-0.627344\pi\)
0.999599 0.0283318i \(-0.00901950\pi\)
\(32\) 0 0
\(33\) 6.52733 5.87985i 1.13626 1.02355i
\(34\) 0 0
\(35\) −2.27555 1.03921i −0.384639 0.175659i
\(36\) 0 0
\(37\) 3.77494 0.620596 0.310298 0.950639i \(-0.399571\pi\)
0.310298 + 0.950639i \(0.399571\pi\)
\(38\) 0 0
\(39\) 8.07369 + 4.97156i 1.29282 + 0.796087i
\(40\) 0 0
\(41\) −0.190364 + 1.32401i −0.0297299 + 0.206776i −0.999272 0.0381483i \(-0.987854\pi\)
0.969542 + 0.244924i \(0.0787632\pi\)
\(42\) 0 0
\(43\) 8.46946 + 1.21772i 1.29158 + 0.185701i 0.753643 0.657284i \(-0.228295\pi\)
0.537937 + 0.842985i \(0.319204\pi\)
\(44\) 0 0
\(45\) −3.64344 + 8.86676i −0.543132 + 1.32178i
\(46\) 0 0
\(47\) −1.21808 + 0.556280i −0.177676 + 0.0811417i −0.502267 0.864713i \(-0.667501\pi\)
0.324591 + 0.945854i \(0.394773\pi\)
\(48\) 0 0
\(49\) −0.908978 6.32208i −0.129854 0.903154i
\(50\) 0 0
\(51\) −7.51670 + 2.36528i −1.05255 + 0.331206i
\(52\) 0 0
\(53\) −1.69585 11.7949i −0.232943 1.62016i −0.685259 0.728299i \(-0.740311\pi\)
0.452316 0.891858i \(-0.350598\pi\)
\(54\) 0 0
\(55\) 13.6344 8.76233i 1.83847 1.18151i
\(56\) 0 0
\(57\) −3.14176 1.36229i −0.416137 0.180439i
\(58\) 0 0
\(59\) 4.76970 7.42180i 0.620963 0.966237i −0.378216 0.925717i \(-0.623462\pi\)
0.999179 0.0405193i \(-0.0129012\pi\)
\(60\) 0 0
\(61\) 3.83621 13.0649i 0.491176 1.67279i −0.224590 0.974453i \(-0.572104\pi\)
0.715766 0.698340i \(-0.246078\pi\)
\(62\) 0 0
\(63\) 2.31016 0.423536i 0.291052 0.0533605i
\(64\) 0 0
\(65\) 13.2197 + 11.4549i 1.63970 + 1.42081i
\(66\) 0 0
\(67\) 1.21150 + 8.09520i 0.148008 + 0.988986i
\(68\) 0 0
\(69\) −3.12069 + 3.74484i −0.375687 + 0.450826i
\(70\) 0 0
\(71\) 4.49276 0.645961i 0.533192 0.0766614i 0.129540 0.991574i \(-0.458650\pi\)
0.403652 + 0.914913i \(0.367741\pi\)
\(72\) 0 0
\(73\) 2.01307 + 0.591090i 0.235612 + 0.0691818i 0.397407 0.917643i \(-0.369910\pi\)
−0.161795 + 0.986824i \(0.551728\pi\)
\(74\) 0 0
\(75\) −4.73203 + 7.68470i −0.546408 + 0.887353i
\(76\) 0 0
\(77\) −3.61204 1.64956i −0.411630 0.187985i
\(78\) 0 0
\(79\) 2.99859 + 4.66590i 0.337368 + 0.524955i 0.967942 0.251175i \(-0.0808168\pi\)
−0.630574 + 0.776129i \(0.717180\pi\)
\(80\) 0 0
\(81\) −1.96272 8.78338i −0.218080 0.975931i
\(82\) 0 0
\(83\) 1.16155 + 3.95589i 0.127497 + 0.434215i 0.998356 0.0573178i \(-0.0182548\pi\)
−0.870859 + 0.491533i \(0.836437\pi\)
\(84\) 0 0
\(85\) −14.3896 + 2.06891i −1.56077 + 0.224405i
\(86\) 0 0
\(87\) −3.68845 7.68150i −0.395443 0.823543i
\(88\) 0 0
\(89\) −14.3613 6.55861i −1.52230 0.695211i −0.533685 0.845683i \(-0.679193\pi\)
−0.988614 + 0.150472i \(0.951921\pi\)
\(90\) 0 0
\(91\) 0.609916 4.24206i 0.0639366 0.444689i
\(92\) 0 0
\(93\) −1.34105 + 10.8001i −0.139060 + 1.11992i
\(94\) 0 0
\(95\) −5.31463 3.41551i −0.545270 0.350424i
\(96\) 0 0
\(97\) 3.09130i 0.313874i 0.987609 + 0.156937i \(0.0501619\pi\)
−0.987609 + 0.156937i \(0.949838\pi\)
\(98\) 0 0
\(99\) −5.78331 + 14.0744i −0.581245 + 1.41453i
\(100\) 0 0
\(101\) 2.16124 + 2.49420i 0.215051 + 0.248182i 0.853018 0.521882i \(-0.174770\pi\)
−0.637967 + 0.770064i \(0.720224\pi\)
\(102\) 0 0
\(103\) −4.11999 2.64776i −0.405955 0.260891i 0.321691 0.946845i \(-0.395749\pi\)
−0.727645 + 0.685954i \(0.759385\pi\)
\(104\) 0 0
\(105\) 4.33213 0.0834544i 0.422773 0.00814432i
\(106\) 0 0
\(107\) −3.05837 + 10.4159i −0.295664 + 1.00694i 0.668958 + 0.743300i \(0.266741\pi\)
−0.964622 + 0.263638i \(0.915077\pi\)
\(108\) 0 0
\(109\) 3.72176 + 5.79117i 0.356480 + 0.554693i 0.972460 0.233068i \(-0.0748765\pi\)
−0.615981 + 0.787761i \(0.711240\pi\)
\(110\) 0 0
\(111\) −5.89411 + 2.83019i −0.559444 + 0.268630i
\(112\) 0 0
\(113\) −13.7712 4.04358i −1.29548 0.380388i −0.439896 0.898049i \(-0.644985\pi\)
−0.855586 + 0.517661i \(0.826803\pi\)
\(114\) 0 0
\(115\) −6.79652 + 5.88922i −0.633779 + 0.549173i
\(116\) 0 0
\(117\) −16.3334 1.70939i −1.51003 0.158033i
\(118\) 0 0
\(119\) 2.33247 + 2.69182i 0.213817 + 0.246758i
\(120\) 0 0
\(121\) 12.3885 7.96159i 1.12622 0.723781i
\(122\) 0 0
\(123\) −0.695424 2.21001i −0.0627043 0.199270i
\(124\) 0 0
\(125\) −0.440399 + 0.508248i −0.0393905 + 0.0454590i
\(126\) 0 0
\(127\) −9.03409 + 10.4259i −0.801646 + 0.925149i −0.998470 0.0552898i \(-0.982392\pi\)
0.196824 + 0.980439i \(0.436937\pi\)
\(128\) 0 0
\(129\) −14.1370 + 4.44849i −1.24469 + 0.391668i
\(130\) 0 0
\(131\) 14.8926 6.80123i 1.30117 0.594226i 0.360253 0.932854i \(-0.382690\pi\)
0.940920 + 0.338628i \(0.109963\pi\)
\(132\) 0 0
\(133\) 1.54783i 0.134214i
\(134\) 0 0
\(135\) −0.958911 16.5760i −0.0825299 1.42663i
\(136\) 0 0
\(137\) −6.25736 13.7017i −0.534603 1.17062i −0.963609 0.267315i \(-0.913863\pi\)
0.429006 0.903301i \(-0.358864\pi\)
\(138\) 0 0
\(139\) −1.64168 5.59103i −0.139245 0.474225i 0.860111 0.510107i \(-0.170394\pi\)
−0.999356 + 0.0358817i \(0.988576\pi\)
\(140\) 0 0
\(141\) 1.48483 1.78180i 0.125045 0.150055i
\(142\) 0 0
\(143\) 20.9839 + 18.1827i 1.75477 + 1.52051i
\(144\) 0 0
\(145\) −4.42892 15.0835i −0.367801 1.25262i
\(146\) 0 0
\(147\) 6.15912 + 9.18967i 0.507996 + 0.757951i
\(148\) 0 0
\(149\) 15.6118 13.5277i 1.27897 1.10823i 0.290492 0.956877i \(-0.406181\pi\)
0.988479 0.151358i \(-0.0483645\pi\)
\(150\) 0 0
\(151\) −0.471751 + 3.28110i −0.0383906 + 0.267012i −0.999972 0.00750825i \(-0.997610\pi\)
0.961581 + 0.274521i \(0.0885191\pi\)
\(152\) 0 0
\(153\) 9.96308 9.32861i 0.805467 0.754173i
\(154\) 0 0
\(155\) −5.65651 + 19.2643i −0.454342 + 1.54735i
\(156\) 0 0
\(157\) −8.02015 17.5617i −0.640077 1.40157i −0.899977 0.435938i \(-0.856417\pi\)
0.259899 0.965636i \(-0.416311\pi\)
\(158\) 0 0
\(159\) 11.4909 + 17.1449i 0.911287 + 1.35968i
\(160\) 0 0
\(161\) 2.11411 + 0.620757i 0.166615 + 0.0489225i
\(162\) 0 0
\(163\) −18.4910 −1.44833 −0.724165 0.689627i \(-0.757775\pi\)
−0.724165 + 0.689627i \(0.757775\pi\)
\(164\) 0 0
\(165\) −14.7191 + 23.9035i −1.14588 + 1.86088i
\(166\) 0 0
\(167\) 4.74561 4.11209i 0.367226 0.318203i −0.451627 0.892207i \(-0.649156\pi\)
0.818853 + 0.574004i \(0.194611\pi\)
\(168\) 0 0
\(169\) −7.04833 + 15.4337i −0.542179 + 1.18721i
\(170\) 0 0
\(171\) 5.92683 0.228435i 0.453236 0.0174688i
\(172\) 0 0
\(173\) 11.1237 17.3088i 0.845718 1.31596i −0.101325 0.994853i \(-0.532308\pi\)
0.947042 0.321109i \(-0.104056\pi\)
\(174\) 0 0
\(175\) 4.03768 + 0.580531i 0.305220 + 0.0438840i
\(176\) 0 0
\(177\) −1.88295 + 15.1642i −0.141531 + 1.13981i
\(178\) 0 0
\(179\) 9.19948 20.1440i 0.687601 1.50564i −0.166782 0.985994i \(-0.553338\pi\)
0.854384 0.519643i \(-0.173935\pi\)
\(180\) 0 0
\(181\) 0.297134 + 0.650633i 0.0220858 + 0.0483612i 0.920353 0.391088i \(-0.127901\pi\)
−0.898268 + 0.439449i \(0.855174\pi\)
\(182\) 0 0
\(183\) 3.80542 + 23.2754i 0.281305 + 1.72057i
\(184\) 0 0
\(185\) −11.5738 + 3.39836i −0.850919 + 0.249853i
\(186\) 0 0
\(187\) −22.8409 + 3.28403i −1.67029 + 0.240152i
\(188\) 0 0
\(189\) −3.28949 + 2.39330i −0.239275 + 0.174087i
\(190\) 0 0
\(191\) −7.89553 + 17.2888i −0.571300 + 1.25097i 0.374802 + 0.927105i \(0.377711\pi\)
−0.946102 + 0.323868i \(0.895016\pi\)
\(192\) 0 0
\(193\) 0.0158178 + 0.0101655i 0.00113859 + 0.000731725i 0.541210 0.840887i \(-0.317966\pi\)
−0.540071 + 0.841619i \(0.681603\pi\)
\(194\) 0 0
\(195\) −29.2291 7.97426i −2.09314 0.571049i
\(196\) 0 0
\(197\) 1.71963 + 11.9603i 0.122518 + 0.852135i 0.954687 + 0.297612i \(0.0961901\pi\)
−0.832168 + 0.554523i \(0.812901\pi\)
\(198\) 0 0
\(199\) 5.58649 6.44716i 0.396016 0.457027i −0.522366 0.852721i \(-0.674951\pi\)
0.918382 + 0.395694i \(0.129496\pi\)
\(200\) 0 0
\(201\) −7.96083 11.7314i −0.561514 0.827467i
\(202\) 0 0
\(203\) −2.52223 + 2.91081i −0.177026 + 0.204299i
\(204\) 0 0
\(205\) −0.608287 4.23073i −0.0424846 0.295487i
\(206\) 0 0
\(207\) 2.06495 8.18680i 0.143524 0.569022i
\(208\) 0 0
\(209\) −8.43604 5.42151i −0.583533 0.375014i
\(210\) 0 0
\(211\) 0.888906 1.94643i 0.0611948 0.133998i −0.876564 0.481286i \(-0.840170\pi\)
0.937759 + 0.347288i \(0.112897\pi\)
\(212\) 0 0
\(213\) −6.53059 + 4.37695i −0.447469 + 0.299904i
\(214\) 0 0
\(215\) −27.0631 + 3.89109i −1.84569 + 0.265370i
\(216\) 0 0
\(217\) 4.71986 1.38588i 0.320405 0.0940794i
\(218\) 0 0
\(219\) −3.58632 + 0.586346i −0.242341 + 0.0396216i
\(220\) 0 0
\(221\) −10.3460 22.6546i −0.695947 1.52391i
\(222\) 0 0
\(223\) −0.873755 + 1.91326i −0.0585110 + 0.128121i −0.936629 0.350323i \(-0.886072\pi\)
0.878118 + 0.478444i \(0.158799\pi\)
\(224\) 0 0
\(225\) 1.62703 15.5465i 0.108469 1.03643i
\(226\) 0 0
\(227\) −12.1107 1.74126i −0.803815 0.115571i −0.271853 0.962339i \(-0.587636\pi\)
−0.531963 + 0.846768i \(0.678545\pi\)
\(228\) 0 0
\(229\) −2.95346 + 4.59567i −0.195170 + 0.303691i −0.925021 0.379916i \(-0.875953\pi\)
0.729851 + 0.683606i \(0.239589\pi\)
\(230\) 0 0
\(231\) 6.87649 0.132469i 0.452440 0.00871583i
\(232\) 0 0
\(233\) −11.4074 + 24.9786i −0.747320 + 1.63640i 0.0238023 + 0.999717i \(0.492423\pi\)
−0.771123 + 0.636687i \(0.780304\pi\)
\(234\) 0 0
\(235\) 3.23379 2.80209i 0.210949 0.182788i
\(236\) 0 0
\(237\) −8.18011 5.03709i −0.531355 0.327194i
\(238\) 0 0
\(239\) 19.7308 1.27628 0.638139 0.769921i \(-0.279705\pi\)
0.638139 + 0.769921i \(0.279705\pi\)
\(240\) 0 0
\(241\) 24.5144 + 7.19807i 1.57911 + 0.463668i 0.949636 0.313354i \(-0.101453\pi\)
0.629473 + 0.777023i \(0.283271\pi\)
\(242\) 0 0
\(243\) 9.64972 + 12.2427i 0.619030 + 0.785367i
\(244\) 0 0
\(245\) 8.47828 + 18.5648i 0.541658 + 1.18606i
\(246\) 0 0
\(247\) 3.04917 10.3845i 0.194014 0.660752i
\(248\) 0 0
\(249\) −4.77948 5.30579i −0.302887 0.336241i
\(250\) 0 0
\(251\) 1.52185 10.5847i 0.0960585 0.668102i −0.883720 0.468016i \(-0.844969\pi\)
0.979778 0.200086i \(-0.0641220\pi\)
\(252\) 0 0
\(253\) −10.7883 + 9.34809i −0.678253 + 0.587710i
\(254\) 0 0
\(255\) 20.9165 14.0187i 1.30984 0.877884i
\(256\) 0 0
\(257\) 1.85895 + 6.33100i 0.115958 + 0.394917i 0.996934 0.0782437i \(-0.0249312\pi\)
−0.880976 + 0.473161i \(0.843113\pi\)
\(258\) 0 0
\(259\) 2.23350 + 1.93534i 0.138783 + 0.120256i
\(260\) 0 0
\(261\) 11.5181 + 9.22838i 0.712954 + 0.571222i
\(262\) 0 0
\(263\) −5.30404 18.0639i −0.327061 1.11387i −0.944845 0.327519i \(-0.893787\pi\)
0.617784 0.786348i \(-0.288031\pi\)
\(264\) 0 0
\(265\) 15.8177 + 34.6359i 0.971673 + 2.12767i
\(266\) 0 0
\(267\) 27.3407 0.526693i 1.67322 0.0322331i
\(268\) 0 0
\(269\) 6.99643i 0.426580i −0.976989 0.213290i \(-0.931582\pi\)
0.976989 0.213290i \(-0.0684179\pi\)
\(270\) 0 0
\(271\) 19.7238 9.00755i 1.19813 0.547170i 0.286464 0.958091i \(-0.407520\pi\)
0.911671 + 0.410921i \(0.134793\pi\)
\(272\) 0 0
\(273\) 2.22810 + 7.08074i 0.134851 + 0.428546i
\(274\) 0 0
\(275\) −17.3067 + 19.9729i −1.04363 + 1.20441i
\(276\) 0 0
\(277\) 2.37514 2.74106i 0.142708 0.164694i −0.679896 0.733309i \(-0.737975\pi\)
0.822604 + 0.568615i \(0.192520\pi\)
\(278\) 0 0
\(279\) −6.00328 17.8684i −0.359407 1.06975i
\(280\) 0 0
\(281\) 3.31710 2.13177i 0.197882 0.127171i −0.437948 0.899000i \(-0.644295\pi\)
0.635829 + 0.771830i \(0.280658\pi\)
\(282\) 0 0
\(283\) −7.98123 9.21083i −0.474435 0.547527i 0.467205 0.884149i \(-0.345261\pi\)
−0.941640 + 0.336622i \(0.890716\pi\)
\(284\) 0 0
\(285\) 10.8589 + 1.34835i 0.643224 + 0.0798693i
\(286\) 0 0
\(287\) −0.791429 + 0.685777i −0.0467166 + 0.0404802i
\(288\) 0 0
\(289\) 3.54863 + 1.04197i 0.208743 + 0.0612924i
\(290\) 0 0
\(291\) −2.31765 4.82669i −0.135863 0.282945i
\(292\) 0 0
\(293\) −0.657398 1.02293i −0.0384056 0.0597603i 0.821520 0.570180i \(-0.193126\pi\)
−0.859926 + 0.510420i \(0.829490\pi\)
\(294\) 0 0
\(295\) −7.94223 + 27.0487i −0.462414 + 1.57484i
\(296\) 0 0
\(297\) −1.52210 26.3114i −0.0883213 1.52674i
\(298\) 0 0
\(299\) −12.9609 8.32945i −0.749547 0.481704i
\(300\) 0 0
\(301\) 4.38678 + 5.06262i 0.252850 + 0.291805i
\(302\) 0 0
\(303\) −5.24449 2.27404i −0.301288 0.130640i
\(304\) 0 0
\(305\) 43.5099i 2.49137i
\(306\) 0 0
\(307\) 12.7095 + 8.16791i 0.725370 + 0.466167i 0.850501 0.525973i \(-0.176299\pi\)
−0.125131 + 0.992140i \(0.539935\pi\)
\(308\) 0 0
\(309\) 8.41797 + 1.04526i 0.478882 + 0.0594629i
\(310\) 0 0
\(311\) 1.95696 13.6110i 0.110969 0.771807i −0.856011 0.516957i \(-0.827065\pi\)
0.966981 0.254850i \(-0.0820261\pi\)
\(312\) 0 0
\(313\) −8.14747 3.72083i −0.460522 0.210314i 0.171624 0.985163i \(-0.445099\pi\)
−0.632146 + 0.774849i \(0.717826\pi\)
\(314\) 0 0
\(315\) −6.70153 + 3.37824i −0.377588 + 0.190342i
\(316\) 0 0
\(317\) 19.4743 2.79998i 1.09379 0.157263i 0.428273 0.903649i \(-0.359122\pi\)
0.665513 + 0.746387i \(0.268213\pi\)
\(318\) 0 0
\(319\) −7.03012 23.9424i −0.393611 1.34052i
\(320\) 0 0
\(321\) −3.03382 18.5560i −0.169332 1.03570i
\(322\) 0 0
\(323\) 4.86297 + 7.56692i 0.270583 + 0.421035i
\(324\) 0 0
\(325\) −25.9456 11.8489i −1.43920 0.657261i
\(326\) 0 0
\(327\) −10.1529 6.25188i −0.561456 0.345730i
\(328\) 0 0
\(329\) −1.00589 0.295357i −0.0554567 0.0162835i
\(330\) 0 0
\(331\) 25.6433 3.68695i 1.40948 0.202653i 0.604809 0.796371i \(-0.293249\pi\)
0.804673 + 0.593718i \(0.202340\pi\)
\(332\) 0 0
\(333\) 7.08104 8.83800i 0.388039 0.484319i
\(334\) 0 0
\(335\) −11.0020 23.7288i −0.601105 1.29644i
\(336\) 0 0
\(337\) 11.4752 + 9.94335i 0.625096 + 0.541649i 0.908784 0.417268i \(-0.137012\pi\)
−0.283687 + 0.958917i \(0.591558\pi\)
\(338\) 0 0
\(339\) 24.5336 4.01112i 1.33248 0.217854i
\(340\) 0 0
\(341\) −8.97870 + 30.5786i −0.486224 + 1.65593i
\(342\) 0 0
\(343\) 5.66622 8.81682i 0.305947 0.476063i
\(344\) 0 0
\(345\) 6.19661 14.2909i 0.333614 0.769395i
\(346\) 0 0
\(347\) 27.2097 17.4866i 1.46069 0.938731i 0.462041 0.886859i \(-0.347117\pi\)
0.998654 0.0518726i \(-0.0165190\pi\)
\(348\) 0 0
\(349\) 2.47093 + 17.1857i 0.132266 + 0.919931i 0.942591 + 0.333950i \(0.108382\pi\)
−0.810325 + 0.585981i \(0.800709\pi\)
\(350\) 0 0
\(351\) 26.7842 9.57668i 1.42964 0.511166i
\(352\) 0 0
\(353\) 3.94534 + 27.4404i 0.209989 + 1.46051i 0.773183 + 0.634183i \(0.218663\pi\)
−0.563194 + 0.826325i \(0.690428\pi\)
\(354\) 0 0
\(355\) −13.1930 + 6.02505i −0.700213 + 0.319777i
\(356\) 0 0
\(357\) −5.66001 2.45421i −0.299560 0.129891i
\(358\) 0 0
\(359\) 1.35152 + 0.194319i 0.0713305 + 0.0102558i 0.177888 0.984051i \(-0.443074\pi\)
−0.106557 + 0.994307i \(0.533983\pi\)
\(360\) 0 0
\(361\) 2.14770 14.9376i 0.113037 0.786187i
\(362\) 0 0
\(363\) −13.3740 + 21.7191i −0.701955 + 1.13996i
\(364\) 0 0
\(365\) −6.70408 −0.350908
\(366\) 0 0
\(367\) −28.9579 13.2246i −1.51159 0.690320i −0.524636 0.851327i \(-0.675798\pi\)
−0.986953 + 0.161007i \(0.948526\pi\)
\(368\) 0 0
\(369\) 2.74273 + 2.92928i 0.142781 + 0.152492i
\(370\) 0 0
\(371\) 5.04366 7.84809i 0.261854 0.407452i
\(372\) 0 0
\(373\) 8.07461i 0.418088i −0.977906 0.209044i \(-0.932965\pi\)
0.977906 0.209044i \(-0.0670351\pi\)
\(374\) 0 0
\(375\) 0.306580 1.12375i 0.0158317 0.0580301i
\(376\) 0 0
\(377\) 22.6561 14.5602i 1.16685 0.749889i
\(378\) 0 0
\(379\) −23.4477 + 10.7082i −1.20443 + 0.550044i −0.913554 0.406717i \(-0.866674\pi\)
−0.290875 + 0.956761i \(0.593946\pi\)
\(380\) 0 0
\(381\) 6.28901 23.0519i 0.322196 1.18099i
\(382\) 0 0
\(383\) −11.4000 13.1564i −0.582515 0.672259i 0.385628 0.922654i \(-0.373985\pi\)
−0.968144 + 0.250396i \(0.919439\pi\)
\(384\) 0 0
\(385\) 12.5593 + 1.80576i 0.640082 + 0.0920299i
\(386\) 0 0
\(387\) 18.7380 17.5447i 0.952507 0.891849i
\(388\) 0 0
\(389\) −11.8584 18.4520i −0.601245 0.935555i −0.999830 0.0184238i \(-0.994135\pi\)
0.398586 0.917131i \(-0.369501\pi\)
\(390\) 0 0
\(391\) 12.2856 3.60738i 0.621310 0.182433i
\(392\) 0 0
\(393\) −18.1539 + 21.7848i −0.915743 + 1.09890i
\(394\) 0 0
\(395\) −13.3940 11.6059i −0.673923 0.583958i
\(396\) 0 0
\(397\) 21.6056 6.34398i 1.08436 0.318395i 0.309736 0.950823i \(-0.399759\pi\)
0.774620 + 0.632427i \(0.217941\pi\)
\(398\) 0 0
\(399\) −1.16046 2.41674i −0.0580954 0.120989i
\(400\) 0 0
\(401\) 23.7844 1.18774 0.593868 0.804563i \(-0.297600\pi\)
0.593868 + 0.804563i \(0.297600\pi\)
\(402\) 0 0
\(403\) −34.3962 −1.71339
\(404\) 0 0
\(405\) 13.9248 + 25.1624i 0.691927 + 1.25033i
\(406\) 0 0
\(407\) −18.3713 + 5.39430i −0.910631 + 0.267385i
\(408\) 0 0
\(409\) −17.0685 14.7899i −0.843983 0.731316i 0.121273 0.992619i \(-0.461302\pi\)
−0.965257 + 0.261303i \(0.915848\pi\)
\(410\) 0 0
\(411\) 20.0427 + 16.7022i 0.988635 + 0.823860i
\(412\) 0 0
\(413\) 6.62709 1.94589i 0.326098 0.0957510i
\(414\) 0 0
\(415\) −7.12252 11.0829i −0.349631 0.544036i
\(416\) 0 0
\(417\) 6.75505 + 7.49890i 0.330796 + 0.367223i
\(418\) 0 0
\(419\) −3.62622 0.521372i −0.177153 0.0254707i 0.0531675 0.998586i \(-0.483068\pi\)
−0.230320 + 0.973115i \(0.573977\pi\)
\(420\) 0 0
\(421\) 5.73664 + 6.62044i 0.279587 + 0.322660i 0.878123 0.478436i \(-0.158796\pi\)
−0.598536 + 0.801096i \(0.704251\pi\)
\(422\) 0 0
\(423\) −0.982506 + 3.89528i −0.0477711 + 0.189395i
\(424\) 0 0
\(425\) 21.5631 9.84753i 1.04596 0.477675i
\(426\) 0 0
\(427\) 8.96791 5.76332i 0.433987 0.278907i
\(428\) 0 0
\(429\) −46.3960 12.6577i −2.24002 0.611121i
\(430\) 0 0
\(431\) 18.3086i 0.881892i 0.897534 + 0.440946i \(0.145357\pi\)
−0.897534 + 0.440946i \(0.854643\pi\)
\(432\) 0 0
\(433\) −21.6063 + 33.6201i −1.03833 + 1.61568i −0.284424 + 0.958698i \(0.591802\pi\)
−0.753909 + 0.656979i \(0.771834\pi\)
\(434\) 0 0
\(435\) 18.2238 + 20.2306i 0.873764 + 0.969981i
\(436\) 0 0
\(437\) 5.06146 + 2.31149i 0.242122 + 0.110574i
\(438\) 0 0
\(439\) 31.7813 1.51684 0.758418 0.651768i \(-0.225972\pi\)
0.758418 + 0.651768i \(0.225972\pi\)
\(440\) 0 0
\(441\) −16.5065 9.73085i −0.786024 0.463374i
\(442\) 0 0
\(443\) 0.346201 2.40788i 0.0164485 0.114402i −0.979943 0.199278i \(-0.936140\pi\)
0.996392 + 0.0848761i \(0.0270494\pi\)
\(444\) 0 0
\(445\) 49.9354 + 7.17963i 2.36717 + 0.340347i
\(446\) 0 0
\(447\) −14.2338 + 32.8266i −0.673236 + 1.55264i
\(448\) 0 0
\(449\) 37.8266 17.2748i 1.78515 0.815250i 0.812504 0.582956i \(-0.198104\pi\)
0.972646 0.232294i \(-0.0746232\pi\)
\(450\) 0 0
\(451\) −0.965547 6.71553i −0.0454658 0.316222i
\(452\) 0 0
\(453\) −1.72336 5.47673i −0.0809707 0.257319i
\(454\) 0 0
\(455\) 1.94892 + 13.5550i 0.0913665 + 0.635468i
\(456\) 0 0
\(457\) 6.94117 4.46082i 0.324694 0.208668i −0.368131 0.929774i \(-0.620002\pi\)
0.692825 + 0.721106i \(0.256366\pi\)
\(458\) 0 0
\(459\) −8.56218 + 22.0351i −0.399648 + 1.02851i
\(460\) 0 0
\(461\) 17.1945 26.7552i 0.800828 1.24611i −0.164837 0.986321i \(-0.552710\pi\)
0.965665 0.259791i \(-0.0836538\pi\)
\(462\) 0 0
\(463\) −1.35839 + 4.62626i −0.0631298 + 0.215000i −0.985017 0.172458i \(-0.944829\pi\)
0.921887 + 0.387459i \(0.126647\pi\)
\(464\) 0 0
\(465\) −5.61111 34.3197i −0.260209 1.59154i
\(466\) 0 0
\(467\) −1.76214 1.52691i −0.0815423 0.0706568i 0.613136 0.789977i \(-0.289908\pi\)
−0.694678 + 0.719321i \(0.744453\pi\)
\(468\) 0 0
\(469\) −3.43346 + 5.41077i −0.158542 + 0.249846i
\(470\) 0 0
\(471\) 25.6890 + 21.4075i 1.18369 + 0.986403i
\(472\) 0 0
\(473\) −42.9579 + 6.17642i −1.97521 + 0.283992i
\(474\) 0 0
\(475\) 9.88421 + 2.90226i 0.453518 + 0.133165i
\(476\) 0 0
\(477\) −30.7957 18.1546i −1.41004 0.831241i
\(478\) 0 0
\(479\) 5.85237 + 2.67269i 0.267402 + 0.122118i 0.544604 0.838693i \(-0.316680\pi\)
−0.277202 + 0.960812i \(0.589407\pi\)
\(480\) 0 0
\(481\) −11.1722 17.3843i −0.509410 0.792657i
\(482\) 0 0
\(483\) −3.76632 + 0.615775i −0.171374 + 0.0280187i
\(484\) 0 0
\(485\) −2.78292 9.47776i −0.126366 0.430363i
\(486\) 0 0
\(487\) −14.0502 + 2.02011i −0.636675 + 0.0915400i −0.453091 0.891464i \(-0.649679\pi\)
−0.183583 + 0.983004i \(0.558770\pi\)
\(488\) 0 0
\(489\) 28.8715 13.8633i 1.30561 0.626921i
\(490\) 0 0
\(491\) −16.6419 7.60010i −0.751038 0.342988i 0.00284517 0.999996i \(-0.499094\pi\)
−0.753883 + 0.657008i \(0.771822\pi\)
\(492\) 0 0
\(493\) −3.18535 + 22.1546i −0.143461 + 0.997792i
\(494\) 0 0
\(495\) 5.06093 48.3578i 0.227472 2.17352i
\(496\) 0 0
\(497\) 2.98938 + 1.92116i 0.134092 + 0.0861758i
\(498\) 0 0
\(499\) 39.6955i 1.77702i 0.458862 + 0.888508i \(0.348257\pi\)
−0.458862 + 0.888508i \(0.651743\pi\)
\(500\) 0 0
\(501\) −4.32672 + 9.97846i −0.193304 + 0.445805i
\(502\) 0 0
\(503\) 0.907942 + 1.04782i 0.0404831 + 0.0467200i 0.775630 0.631188i \(-0.217432\pi\)
−0.735147 + 0.677908i \(0.762887\pi\)
\(504\) 0 0
\(505\) −8.87162 5.70144i −0.394782 0.253711i
\(506\) 0 0
\(507\) −0.566020 29.3822i −0.0251378 1.30491i
\(508\) 0 0
\(509\) −6.46433 + 22.0155i −0.286526 + 0.975819i 0.682915 + 0.730498i \(0.260712\pi\)
−0.969442 + 0.245322i \(0.921106\pi\)
\(510\) 0 0
\(511\) 0.888023 + 1.38179i 0.0392838 + 0.0611268i
\(512\) 0 0
\(513\) −9.08276 + 4.80021i −0.401014 + 0.211934i
\(514\) 0 0
\(515\) 15.0153 + 4.40889i 0.661653 + 0.194279i
\(516\) 0 0
\(517\) 5.13307 4.44783i 0.225752 0.195615i
\(518\) 0 0
\(519\) −4.39132 + 35.3653i −0.192758 + 1.55237i
\(520\) 0 0
\(521\) −24.3956 28.1540i −1.06879 1.23345i −0.971210 0.238224i \(-0.923435\pi\)
−0.0975814 0.995228i \(-0.531111\pi\)
\(522\) 0 0
\(523\) −13.5444 + 8.70448i −0.592257 + 0.380621i −0.802167 0.597100i \(-0.796319\pi\)
0.209909 + 0.977721i \(0.432683\pi\)
\(524\) 0 0
\(525\) −6.73959 + 2.12075i −0.294140 + 0.0925571i
\(526\) 0 0
\(527\) 18.7200 21.6041i 0.815457 0.941087i
\(528\) 0 0
\(529\) −9.87474 + 11.3961i −0.429336 + 0.495481i
\(530\) 0 0
\(531\) −8.42912 25.0888i −0.365793 1.08876i
\(532\) 0 0
\(533\) 6.66074 3.04186i 0.288509 0.131757i
\(534\) 0 0
\(535\) 34.6877i 1.49968i
\(536\) 0 0
\(537\) 0.738769 + 38.3496i 0.0318803 + 1.65491i
\(538\) 0 0
\(539\) 13.4578 + 29.4684i 0.579667 + 1.26929i
\(540\) 0 0
\(541\) −4.89120 16.6579i −0.210289 0.716179i −0.995312 0.0967127i \(-0.969167\pi\)
0.785023 0.619466i \(-0.212651\pi\)
\(542\) 0 0
\(543\) −0.951740 0.793114i −0.0408431 0.0340358i
\(544\) 0 0
\(545\) −16.6242 14.4049i −0.712101 0.617039i
\(546\) 0 0
\(547\) 9.47920 + 32.2832i 0.405301 + 1.38033i 0.869209 + 0.494446i \(0.164629\pi\)
−0.463907 + 0.885884i \(0.653553\pi\)
\(548\) 0 0
\(549\) −23.3920 33.4887i −0.998348 1.42926i
\(550\) 0 0
\(551\) −7.35088 + 6.36957i −0.313158 + 0.271353i
\(552\) 0 0
\(553\) −0.617956 + 4.29798i −0.0262781 + 0.182769i
\(554\) 0 0
\(555\) 15.5232 13.9833i 0.658921 0.593560i
\(556\) 0 0
\(557\) −11.2361 + 38.2666i −0.476088 + 1.62141i 0.275168 + 0.961396i \(0.411267\pi\)
−0.751256 + 0.660011i \(0.770552\pi\)
\(558\) 0 0
\(559\) −19.4582 42.6075i −0.822993 1.80210i
\(560\) 0 0
\(561\) 33.2012 22.2522i 1.40175 0.939488i
\(562\) 0 0
\(563\) 28.2902 + 8.30676i 1.19229 + 0.350088i 0.816901 0.576778i \(-0.195690\pi\)
0.375391 + 0.926867i \(0.377509\pi\)
\(564\) 0 0
\(565\) 45.8618 1.92942
\(566\) 0 0
\(567\) 3.34180 6.20308i 0.140343 0.260505i
\(568\) 0 0
\(569\) 4.57891 3.96765i 0.191958 0.166332i −0.553579 0.832796i \(-0.686738\pi\)
0.745537 + 0.666464i \(0.232193\pi\)
\(570\) 0 0
\(571\) −4.09520 + 8.96724i −0.171379 + 0.375267i −0.975759 0.218848i \(-0.929770\pi\)
0.804380 + 0.594115i \(0.202498\pi\)
\(572\) 0 0
\(573\) −0.634055 32.9139i −0.0264880 1.37500i
\(574\) 0 0
\(575\) 7.92814 12.3364i 0.330626 0.514464i
\(576\) 0 0
\(577\) 17.6365 + 2.53574i 0.734217 + 0.105564i 0.499273 0.866445i \(-0.333600\pi\)
0.234943 + 0.972009i \(0.424510\pi\)
\(578\) 0 0
\(579\) −0.0323189 0.00401304i −0.00134313 0.000166776i
\(580\) 0 0
\(581\) −1.34086 + 2.93607i −0.0556282 + 0.121809i
\(582\) 0 0
\(583\) 25.1078 + 54.9784i 1.03986 + 2.27697i
\(584\) 0 0
\(585\) 51.6162 9.46315i 2.13407 0.391253i
\(586\) 0 0
\(587\) −31.0273 + 9.11042i −1.28063 + 0.376027i −0.850135 0.526565i \(-0.823480\pi\)
−0.430497 + 0.902592i \(0.641662\pi\)
\(588\) 0 0
\(589\) 12.2962 1.76792i 0.506654 0.0728459i
\(590\) 0 0
\(591\) −11.6520 17.3853i −0.479299 0.715134i
\(592\) 0 0
\(593\) 0.791302 1.73271i 0.0324949 0.0711538i −0.892689 0.450674i \(-0.851184\pi\)
0.925183 + 0.379520i \(0.123911\pi\)
\(594\) 0 0
\(595\) −9.57452 6.15317i −0.392517 0.252255i
\(596\) 0 0
\(597\) −3.88899 + 14.2548i −0.159166 + 0.583411i
\(598\) 0 0
\(599\) 1.67155 + 11.6259i 0.0682976 + 0.475021i 0.995052 + 0.0993532i \(0.0316774\pi\)
−0.926755 + 0.375667i \(0.877414\pi\)
\(600\) 0 0
\(601\) 2.88118 3.32506i 0.117526 0.135632i −0.693938 0.720035i \(-0.744126\pi\)
0.811464 + 0.584403i \(0.198671\pi\)
\(602\) 0 0
\(603\) 21.2253 + 12.3486i 0.864359 + 0.502875i
\(604\) 0 0
\(605\) −30.8150 + 35.5624i −1.25281 + 1.44582i
\(606\) 0 0
\(607\) −4.10078 28.5216i −0.166446 1.15766i −0.886158 0.463383i \(-0.846635\pi\)
0.719713 0.694272i \(-0.244274\pi\)
\(608\) 0 0
\(609\) 1.75583 6.43588i 0.0711499 0.260795i
\(610\) 0 0
\(611\) 6.16679 + 3.96316i 0.249482 + 0.160332i
\(612\) 0 0
\(613\) −2.51281 + 5.50228i −0.101491 + 0.222235i −0.953565 0.301186i \(-0.902617\pi\)
0.852074 + 0.523421i \(0.175345\pi\)
\(614\) 0 0
\(615\) 4.12168 + 6.14971i 0.166202 + 0.247980i
\(616\) 0 0
\(617\) 14.1110 2.02885i 0.568087 0.0816785i 0.147714 0.989030i \(-0.452808\pi\)
0.420373 + 0.907352i \(0.361899\pi\)
\(618\) 0 0
\(619\) −29.7888 + 8.74678i −1.19731 + 0.351563i −0.818825 0.574044i \(-0.805374\pi\)
−0.378488 + 0.925606i \(0.623556\pi\)
\(620\) 0 0
\(621\) 2.91373 + 14.3309i 0.116924 + 0.575077i
\(622\) 0 0
\(623\) −5.13464 11.2433i −0.205715 0.450453i
\(624\) 0 0
\(625\) −9.92983 + 21.7433i −0.397193 + 0.869732i
\(626\) 0 0
\(627\) 17.2365 + 2.14026i 0.688361 + 0.0854739i
\(628\) 0 0
\(629\) 16.9995 + 2.44416i 0.677813 + 0.0974549i
\(630\) 0 0
\(631\) 7.97701 12.4125i 0.317560 0.494132i −0.645375 0.763865i \(-0.723299\pi\)
0.962935 + 0.269733i \(0.0869354\pi\)
\(632\) 0 0
\(633\) 0.0713841 + 3.70556i 0.00283726 + 0.147283i
\(634\) 0 0
\(635\) 18.3122 40.0981i 0.726697 1.59125i
\(636\) 0 0
\(637\) −26.4242 + 22.8967i −1.04697 + 0.907201i
\(638\) 0 0
\(639\) 6.91519 11.7303i 0.273561 0.464042i
\(640\) 0 0
\(641\) 22.0231 0.869862 0.434931 0.900464i \(-0.356773\pi\)
0.434931 + 0.900464i \(0.356773\pi\)
\(642\) 0 0
\(643\) −0.988101 0.290133i −0.0389669 0.0114417i 0.262191 0.965016i \(-0.415555\pi\)
−0.301158 + 0.953574i \(0.597373\pi\)
\(644\) 0 0
\(645\) 39.3385 26.3656i 1.54895 1.03814i
\(646\) 0 0
\(647\) −18.3102 40.0937i −0.719847 1.57625i −0.814118 0.580699i \(-0.802779\pi\)
0.0942711 0.995547i \(-0.469948\pi\)
\(648\) 0 0
\(649\) −12.6069 + 42.9351i −0.494863 + 1.68535i
\(650\) 0 0
\(651\) −6.33045 + 5.70251i −0.248110 + 0.223499i
\(652\) 0 0
\(653\) 3.35191 23.3131i 0.131171 0.912311i −0.812861 0.582457i \(-0.802091\pi\)
0.944032 0.329854i \(-0.107000\pi\)
\(654\) 0 0
\(655\) −39.5372 + 34.2592i −1.54485 + 1.33862i
\(656\) 0 0
\(657\) 5.16000 3.60428i 0.201311 0.140617i
\(658\) 0 0
\(659\) −2.20150 7.49761i −0.0857582 0.292066i 0.905436 0.424483i \(-0.139544\pi\)
−0.991194 + 0.132418i \(0.957726\pi\)
\(660\) 0 0
\(661\) −37.9559 32.8889i −1.47631 1.27923i −0.878634 0.477496i \(-0.841545\pi\)
−0.597678 0.801736i \(-0.703910\pi\)
\(662\) 0 0
\(663\) 33.1389 + 27.6156i 1.28701 + 1.07250i
\(664\) 0 0
\(665\) −1.39342 4.74555i −0.0540345 0.184025i
\(666\) 0 0
\(667\) 5.75183 + 12.5948i 0.222712 + 0.487671i
\(668\) 0 0
\(669\) −0.0701674 3.64240i −0.00271283 0.140823i
\(670\) 0 0
\(671\) 69.0642i 2.66620i
\(672\) 0 0
\(673\) 44.5977 20.3671i 1.71911 0.785093i 0.723626 0.690192i \(-0.242474\pi\)
0.995487 0.0949009i \(-0.0302534\pi\)
\(674\) 0 0
\(675\) 9.11528 + 25.4938i 0.350847 + 0.981256i
\(676\) 0 0
\(677\) 11.8582 13.6851i 0.455746 0.525959i −0.480646 0.876915i \(-0.659598\pi\)
0.936392 + 0.350955i \(0.114143\pi\)
\(678\) 0 0
\(679\) −1.58485 + 1.82902i −0.0608210 + 0.0701912i
\(680\) 0 0
\(681\) 20.2149 6.36102i 0.774635 0.243755i
\(682\) 0 0
\(683\) −3.07753 + 1.97781i −0.117759 + 0.0756788i −0.598194 0.801351i \(-0.704115\pi\)
0.480436 + 0.877030i \(0.340479\pi\)
\(684\) 0 0
\(685\) 31.5196 + 36.3756i 1.20430 + 1.38984i
\(686\) 0 0
\(687\) 1.16595 9.38989i 0.0444836 0.358247i
\(688\) 0 0
\(689\) −49.2989 + 42.7178i −1.87814 + 1.62742i
\(690\) 0 0
\(691\) −22.9206 6.73010i −0.871942 0.256025i −0.185001 0.982738i \(-0.559229\pi\)
−0.686941 + 0.726713i \(0.741047\pi\)
\(692\) 0 0
\(693\) −10.6375 + 5.36236i −0.404085 + 0.203699i
\(694\) 0 0
\(695\) 10.0666 + 15.6639i 0.381847 + 0.594166i
\(696\) 0 0
\(697\) −1.71451 + 5.83910i −0.0649419 + 0.221172i
\(698\) 0 0
\(699\) −0.916074 47.5535i −0.0346491 1.79864i
\(700\) 0 0
\(701\) −7.15827 4.60034i −0.270364 0.173752i 0.398433 0.917197i \(-0.369554\pi\)
−0.668797 + 0.743445i \(0.733190\pi\)
\(702\) 0 0
\(703\) 4.88745 + 5.64042i 0.184334 + 0.212732i
\(704\) 0 0
\(705\) −2.94835 + 6.79960i −0.111041 + 0.256088i
\(706\) 0 0
\(707\) 2.58376i 0.0971722i
\(708\) 0 0
\(709\) 3.78525 + 2.43263i 0.142158 + 0.0913595i 0.609787 0.792566i \(-0.291255\pi\)
−0.467629 + 0.883925i \(0.654891\pi\)
\(710\) 0 0
\(711\) 16.5487 + 1.73192i 0.620625 + 0.0649521i
\(712\) 0 0
\(713\) 2.51666 17.5038i 0.0942497 0.655521i
\(714\) 0 0
\(715\) −80.7045 36.8565i −3.01818 1.37835i
\(716\) 0 0
\(717\) −30.8072 + 14.7928i −1.15052 + 0.552447i
\(718\) 0 0
\(719\) −43.8824 + 6.30933i −1.63654 + 0.235298i −0.898344 0.439292i \(-0.855229\pi\)
−0.738192 + 0.674591i \(0.764320\pi\)
\(720\) 0 0
\(721\) −1.08020 3.67883i −0.0402288 0.137007i
\(722\) 0 0
\(723\) −43.6728 + 7.14030i −1.62421 + 0.265550i
\(724\) 0 0
\(725\) 13.8587 + 21.5646i 0.514700 + 0.800888i
\(726\) 0 0
\(727\) 10.1784 + 4.64832i 0.377496 + 0.172397i 0.595122 0.803636i \(-0.297104\pi\)
−0.217626 + 0.976032i \(0.569831\pi\)
\(728\) 0 0
\(729\) −24.2456 11.8807i −0.897985 0.440027i
\(730\) 0 0
\(731\) 37.3516 + 10.9674i 1.38150 + 0.405645i
\(732\) 0 0
\(733\) 0.719942 0.103512i 0.0265917 0.00382330i −0.129006 0.991644i \(-0.541179\pi\)
0.155598 + 0.987820i \(0.450270\pi\)
\(734\) 0 0
\(735\) −27.1565 22.6303i −1.00168 0.834732i
\(736\) 0 0
\(737\) −17.4638 37.6653i −0.643286 1.38742i
\(738\) 0 0
\(739\) −3.91386 3.39138i −0.143974 0.124754i 0.579896 0.814690i \(-0.303093\pi\)
−0.723870 + 0.689936i \(0.757639\pi\)
\(740\) 0 0
\(741\) 3.02470 + 18.5002i 0.111115 + 0.679623i
\(742\) 0 0
\(743\) −9.27006 + 31.5709i −0.340085 + 1.15822i 0.594977 + 0.803742i \(0.297161\pi\)
−0.935063 + 0.354482i \(0.884657\pi\)
\(744\) 0 0
\(745\) −35.6868 + 55.5297i −1.30746 + 2.03445i
\(746\) 0 0
\(747\) 11.4405 + 4.70101i 0.418586 + 0.172001i
\(748\) 0 0
\(749\) −7.14955 + 4.59474i −0.261239 + 0.167888i
\(750\) 0 0
\(751\) −4.72629 32.8721i −0.172465 1.19952i −0.873655 0.486546i \(-0.838257\pi\)
0.701190 0.712974i \(-0.252652\pi\)
\(752\) 0 0
\(753\) 5.55951 + 17.6677i 0.202600 + 0.643848i
\(754\) 0 0
\(755\) −1.50742 10.4844i −0.0548608 0.381565i
\(756\) 0 0
\(757\) 36.8168 16.8137i 1.33813 0.611103i 0.387626 0.921817i \(-0.373295\pi\)
0.950504 + 0.310713i \(0.100568\pi\)
\(758\) 0 0
\(759\) 9.83601 22.6842i 0.357025 0.823385i
\(760\) 0 0
\(761\) −38.6217 5.55295i −1.40003 0.201294i −0.599401 0.800449i \(-0.704594\pi\)
−0.800633 + 0.599155i \(0.795503\pi\)
\(762\) 0 0
\(763\) −0.766987 + 5.33451i −0.0277668 + 0.193122i
\(764\) 0 0
\(765\) −22.1483 + 37.5702i −0.800772 + 1.35835i
\(766\) 0 0
\(767\) −48.2952 −1.74384
\(768\) 0 0
\(769\) 4.79533 + 2.18995i 0.172924 + 0.0789717i 0.499996 0.866028i \(-0.333335\pi\)
−0.327072 + 0.944999i \(0.606062\pi\)
\(770\) 0 0
\(771\) −7.64907 8.49137i −0.275475 0.305809i
\(772\) 0 0
\(773\) 9.21678 14.3416i 0.331505 0.515831i −0.634989 0.772521i \(-0.718995\pi\)
0.966494 + 0.256690i \(0.0826319\pi\)
\(774\) 0 0
\(775\) 32.7390i 1.17602i
\(776\) 0 0