Properties

Label 804.2.s.b.5.1
Level 804
Weight 2
Character 804.5
Analytic conductor 6.420
Analytic rank 0
Dimension 200
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.s (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(200\)
Relative dimension: \(20\) over \(\Q(\zeta_{22})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 5.1
Character \(\chi\) = 804.5
Dual form 804.2.s.b.161.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.72660 - 0.137338i) q^{3} +(2.48625 - 0.730028i) q^{5} +(3.64531 + 3.15868i) q^{7} +(2.96228 + 0.474256i) q^{9} +O(q^{10})\) \(q+(-1.72660 - 0.137338i) q^{3} +(2.48625 - 0.730028i) q^{5} +(3.64531 + 3.15868i) q^{7} +(2.96228 + 0.474256i) q^{9} +(-6.01277 + 1.76551i) q^{11} +(2.22147 + 3.45668i) q^{13} +(-4.39301 + 0.919007i) q^{15} +(0.235591 + 0.0338728i) q^{17} +(-0.749547 - 0.865023i) q^{19} +(-5.86018 - 5.95441i) q^{21} +(1.84028 - 0.840429i) q^{23} +(1.44221 - 0.926855i) q^{25} +(-5.04952 - 1.22568i) q^{27} -0.303522i q^{29} +(-4.77999 + 7.43781i) q^{31} +(10.6241 - 2.22254i) q^{33} +(11.3691 + 5.19208i) q^{35} -2.20438 q^{37} +(-3.36086 - 6.27339i) q^{39} +(0.648759 - 4.51222i) q^{41} +(3.70767 + 0.533082i) q^{43} +(7.71117 - 0.983427i) q^{45} +(4.93924 - 2.25568i) q^{47} +(2.31483 + 16.1000i) q^{49} +(-0.402118 - 0.0908404i) q^{51} +(1.07232 + 7.45815i) q^{53} +(-13.6603 + 8.77897i) q^{55} +(1.17537 + 1.59649i) q^{57} +(-4.86335 + 7.56752i) q^{59} +(0.272313 - 0.927412i) q^{61} +(9.30040 + 11.0857i) q^{63} +(8.04661 + 6.97242i) q^{65} +(6.65218 - 4.76954i) q^{67} +(-3.29285 + 1.19834i) q^{69} +(16.0736 - 2.31103i) q^{71} +(13.2311 + 3.88499i) q^{73} +(-2.61742 + 1.40223i) q^{75} +(-27.4951 - 12.5566i) q^{77} +(-1.18099 - 1.83765i) q^{79} +(8.55016 + 2.80976i) q^{81} +(-1.09530 - 3.73026i) q^{83} +(0.610465 - 0.0877716i) q^{85} +(-0.0416852 + 0.524060i) q^{87} +(9.87966 + 4.51189i) q^{89} +(-2.82059 + 19.6176i) q^{91} +(9.27461 - 12.1856i) q^{93} +(-2.49505 - 1.60347i) q^{95} -2.79168i q^{97} +(-18.6488 + 2.37833i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 200q - 10q^{9} + O(q^{10}) \) \( 200q - 10q^{9} + 2q^{15} + 6q^{19} - 10q^{21} - 20q^{25} - 44q^{31} - 5q^{33} + 78q^{39} - 22q^{43} - 22q^{45} - 16q^{49} + 36q^{55} + 66q^{57} + 176q^{61} + 132q^{63} + 46q^{67} - 26q^{73} - 165q^{75} - 44q^{79} + 42q^{81} - 66q^{87} - 20q^{91} + 84q^{93} - 55q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.72660 0.137338i −0.996851 0.0792923i
\(4\) 0 0
\(5\) 2.48625 0.730028i 1.11188 0.326478i 0.326320 0.945259i \(-0.394191\pi\)
0.785564 + 0.618781i \(0.212373\pi\)
\(6\) 0 0
\(7\) 3.64531 + 3.15868i 1.37780 + 1.19387i 0.958179 + 0.286170i \(0.0923821\pi\)
0.419620 + 0.907700i \(0.362163\pi\)
\(8\) 0 0
\(9\) 2.96228 + 0.474256i 0.987425 + 0.158085i
\(10\) 0 0
\(11\) −6.01277 + 1.76551i −1.81292 + 0.532320i −0.998827 0.0484186i \(-0.984582\pi\)
−0.814090 + 0.580739i \(0.802764\pi\)
\(12\) 0 0
\(13\) 2.22147 + 3.45668i 0.616126 + 0.958711i 0.999385 + 0.0350697i \(0.0111653\pi\)
−0.383259 + 0.923641i \(0.625198\pi\)
\(14\) 0 0
\(15\) −4.39301 + 0.919007i −1.13427 + 0.237287i
\(16\) 0 0
\(17\) 0.235591 + 0.0338728i 0.0571391 + 0.00821537i 0.170825 0.985301i \(-0.445357\pi\)
−0.113686 + 0.993517i \(0.536266\pi\)
\(18\) 0 0
\(19\) −0.749547 0.865023i −0.171958 0.198450i 0.663229 0.748417i \(-0.269186\pi\)
−0.835186 + 0.549967i \(0.814640\pi\)
\(20\) 0 0
\(21\) −5.86018 5.95441i −1.27880 1.29936i
\(22\) 0 0
\(23\) 1.84028 0.840429i 0.383725 0.175242i −0.214207 0.976788i \(-0.568717\pi\)
0.597932 + 0.801547i \(0.295989\pi\)
\(24\) 0 0
\(25\) 1.44221 0.926855i 0.288443 0.185371i
\(26\) 0 0
\(27\) −5.04952 1.22568i −0.971781 0.235883i
\(28\) 0 0
\(29\) 0.303522i 0.0563626i −0.999603 0.0281813i \(-0.991028\pi\)
0.999603 0.0281813i \(-0.00897157\pi\)
\(30\) 0 0
\(31\) −4.77999 + 7.43781i −0.858511 + 1.33587i 0.0821840 + 0.996617i \(0.473810\pi\)
−0.940695 + 0.339253i \(0.889826\pi\)
\(32\) 0 0
\(33\) 10.6241 2.22254i 1.84942 0.386894i
\(34\) 0 0
\(35\) 11.3691 + 5.19208i 1.92172 + 0.877622i
\(36\) 0 0
\(37\) −2.20438 −0.362398 −0.181199 0.983446i \(-0.557998\pi\)
−0.181199 + 0.983446i \(0.557998\pi\)
\(38\) 0 0
\(39\) −3.36086 6.27339i −0.538168 1.00455i
\(40\) 0 0
\(41\) 0.648759 4.51222i 0.101319 0.704690i −0.874327 0.485338i \(-0.838697\pi\)
0.975646 0.219352i \(-0.0703944\pi\)
\(42\) 0 0
\(43\) 3.70767 + 0.533082i 0.565414 + 0.0812942i 0.419093 0.907943i \(-0.362348\pi\)
0.146320 + 0.989237i \(0.453257\pi\)
\(44\) 0 0
\(45\) 7.71117 0.983427i 1.14951 0.146601i
\(46\) 0 0
\(47\) 4.93924 2.25568i 0.720463 0.329024i −0.0212204 0.999775i \(-0.506755\pi\)
0.741683 + 0.670751i \(0.234028\pi\)
\(48\) 0 0
\(49\) 2.31483 + 16.1000i 0.330691 + 2.30000i
\(50\) 0 0
\(51\) −0.402118 0.0908404i −0.0563078 0.0127202i
\(52\) 0 0
\(53\) 1.07232 + 7.45815i 0.147294 + 1.02446i 0.920624 + 0.390451i \(0.127681\pi\)
−0.773329 + 0.634004i \(0.781410\pi\)
\(54\) 0 0
\(55\) −13.6603 + 8.77897i −1.84196 + 1.18376i
\(56\) 0 0
\(57\) 1.17537 + 1.59649i 0.155681 + 0.211460i
\(58\) 0 0
\(59\) −4.86335 + 7.56752i −0.633155 + 0.985208i 0.365368 + 0.930863i \(0.380943\pi\)
−0.998522 + 0.0543445i \(0.982693\pi\)
\(60\) 0 0
\(61\) 0.272313 0.927412i 0.0348661 0.118743i −0.940221 0.340564i \(-0.889382\pi\)
0.975087 + 0.221821i \(0.0712001\pi\)
\(62\) 0 0
\(63\) 9.30040 + 11.0857i 1.17174 + 1.39667i
\(64\) 0 0
\(65\) 8.04661 + 6.97242i 0.998059 + 0.864823i
\(66\) 0 0
\(67\) 6.65218 4.76954i 0.812693 0.582692i
\(68\) 0 0
\(69\) −3.29285 + 1.19834i −0.396413 + 0.144263i
\(70\) 0 0
\(71\) 16.0736 2.31103i 1.90758 0.274269i 0.915742 0.401767i \(-0.131604\pi\)
0.991839 + 0.127498i \(0.0406947\pi\)
\(72\) 0 0
\(73\) 13.2311 + 3.88499i 1.54858 + 0.454704i 0.940676 0.339307i \(-0.110193\pi\)
0.607903 + 0.794011i \(0.292011\pi\)
\(74\) 0 0
\(75\) −2.61742 + 1.40223i −0.302233 + 0.161916i
\(76\) 0 0
\(77\) −27.4951 12.5566i −3.13336 1.43096i
\(78\) 0 0
\(79\) −1.18099 1.83765i −0.132871 0.206752i 0.768442 0.639919i \(-0.221032\pi\)
−0.901313 + 0.433168i \(0.857396\pi\)
\(80\) 0 0
\(81\) 8.55016 + 2.80976i 0.950018 + 0.312195i
\(82\) 0 0
\(83\) −1.09530 3.73026i −0.120225 0.409449i 0.877285 0.479969i \(-0.159352\pi\)
−0.997510 + 0.0705203i \(0.977534\pi\)
\(84\) 0 0
\(85\) 0.610465 0.0877716i 0.0662142 0.00952016i
\(86\) 0 0
\(87\) −0.0416852 + 0.524060i −0.00446912 + 0.0561851i
\(88\) 0 0
\(89\) 9.87966 + 4.51189i 1.04724 + 0.478259i 0.863307 0.504679i \(-0.168389\pi\)
0.183935 + 0.982938i \(0.441116\pi\)
\(90\) 0 0
\(91\) −2.82059 + 19.6176i −0.295678 + 2.05648i
\(92\) 0 0
\(93\) 9.27461 12.1856i 0.961732 1.26359i
\(94\) 0 0
\(95\) −2.49505 1.60347i −0.255987 0.164513i
\(96\) 0 0
\(97\) 2.79168i 0.283452i −0.989906 0.141726i \(-0.954735\pi\)
0.989906 0.141726i \(-0.0452652\pi\)
\(98\) 0 0
\(99\) −18.6488 + 2.37833i −1.87427 + 0.239031i
\(100\) 0 0
\(101\) −12.0577 13.9154i −1.19979 1.38463i −0.902973 0.429698i \(-0.858620\pi\)
−0.296818 0.954934i \(-0.595926\pi\)
\(102\) 0 0
\(103\) −10.4201 6.69660i −1.02672 0.659836i −0.0850555 0.996376i \(-0.527107\pi\)
−0.941669 + 0.336540i \(0.890743\pi\)
\(104\) 0 0
\(105\) −18.9167 10.5260i −1.84608 1.02724i
\(106\) 0 0
\(107\) 0.143467 0.488605i 0.0138695 0.0472352i −0.952268 0.305265i \(-0.901255\pi\)
0.966137 + 0.258030i \(0.0830732\pi\)
\(108\) 0 0
\(109\) −8.72485 13.5761i −0.835689 1.30036i −0.951675 0.307107i \(-0.900639\pi\)
0.115986 0.993251i \(-0.462997\pi\)
\(110\) 0 0
\(111\) 3.80607 + 0.302746i 0.361257 + 0.0287354i
\(112\) 0 0
\(113\) −6.52185 1.91499i −0.613524 0.180147i −0.0398163 0.999207i \(-0.512677\pi\)
−0.573708 + 0.819060i \(0.694495\pi\)
\(114\) 0 0
\(115\) 3.96186 3.43297i 0.369445 0.320126i
\(116\) 0 0
\(117\) 4.94127 + 11.2932i 0.456820 + 1.04406i
\(118\) 0 0
\(119\) 0.751808 + 0.867633i 0.0689182 + 0.0795358i
\(120\) 0 0
\(121\) 23.7825 15.2841i 2.16205 1.38946i
\(122\) 0 0
\(123\) −1.73985 + 7.70169i −0.156877 + 0.694438i
\(124\) 0 0
\(125\) −5.57533 + 6.43428i −0.498673 + 0.575499i
\(126\) 0 0
\(127\) −4.09720 + 4.72842i −0.363568 + 0.419580i −0.907832 0.419334i \(-0.862264\pi\)
0.544264 + 0.838914i \(0.316809\pi\)
\(128\) 0 0
\(129\) −6.32843 1.42962i −0.557187 0.125871i
\(130\) 0 0
\(131\) 8.98874 4.10502i 0.785350 0.358657i 0.0179603 0.999839i \(-0.494283\pi\)
0.767389 + 0.641182i \(0.221555\pi\)
\(132\) 0 0
\(133\) 5.52086i 0.478720i
\(134\) 0 0
\(135\) −13.4491 + 0.638942i −1.15752 + 0.0549914i
\(136\) 0 0
\(137\) −8.32825 18.2363i −0.711530 1.55803i −0.825407 0.564539i \(-0.809054\pi\)
0.113876 0.993495i \(-0.463673\pi\)
\(138\) 0 0
\(139\) −1.43656 4.89247i −0.121847 0.414974i 0.875867 0.482553i \(-0.160291\pi\)
−0.997714 + 0.0675796i \(0.978472\pi\)
\(140\) 0 0
\(141\) −8.83787 + 3.21630i −0.744283 + 0.270861i
\(142\) 0 0
\(143\) −19.4600 16.8622i −1.62733 1.41009i
\(144\) 0 0
\(145\) −0.221579 0.754630i −0.0184012 0.0626686i
\(146\) 0 0
\(147\) −1.78563 28.1162i −0.147277 2.31898i
\(148\) 0 0
\(149\) 11.0450 9.57056i 0.904843 0.784051i −0.0721340 0.997395i \(-0.522981\pi\)
0.976977 + 0.213344i \(0.0684355\pi\)
\(150\) 0 0
\(151\) −1.67622 + 11.6584i −0.136409 + 0.948743i 0.800541 + 0.599278i \(0.204546\pi\)
−0.936949 + 0.349465i \(0.886363\pi\)
\(152\) 0 0
\(153\) 0.681820 + 0.212071i 0.0551219 + 0.0171449i
\(154\) 0 0
\(155\) −6.45442 + 21.9818i −0.518432 + 1.76562i
\(156\) 0 0
\(157\) 2.48920 + 5.45059i 0.198660 + 0.435005i 0.982576 0.185863i \(-0.0595079\pi\)
−0.783916 + 0.620867i \(0.786781\pi\)
\(158\) 0 0
\(159\) −0.827174 13.0245i −0.0655992 1.03291i
\(160\) 0 0
\(161\) 9.36305 + 2.74924i 0.737912 + 0.216671i
\(162\) 0 0
\(163\) 14.7249 1.15334 0.576672 0.816976i \(-0.304351\pi\)
0.576672 + 0.816976i \(0.304351\pi\)
\(164\) 0 0
\(165\) 24.7916 13.2817i 1.93002 1.03398i
\(166\) 0 0
\(167\) −13.1615 + 11.4045i −1.01847 + 0.882507i −0.993112 0.117171i \(-0.962617\pi\)
−0.0253561 + 0.999678i \(0.508072\pi\)
\(168\) 0 0
\(169\) −1.61330 + 3.53263i −0.124100 + 0.271741i
\(170\) 0 0
\(171\) −1.81012 2.91792i −0.138424 0.223139i
\(172\) 0 0
\(173\) 4.64811 7.23260i 0.353389 0.549885i −0.618361 0.785894i \(-0.712203\pi\)
0.971751 + 0.236009i \(0.0758396\pi\)
\(174\) 0 0
\(175\) 8.18497 + 1.17682i 0.618725 + 0.0889593i
\(176\) 0 0
\(177\) 9.43636 12.3981i 0.709281 0.931901i
\(178\) 0 0
\(179\) −5.22231 + 11.4353i −0.390334 + 0.854712i 0.607826 + 0.794070i \(0.292042\pi\)
−0.998160 + 0.0606413i \(0.980685\pi\)
\(180\) 0 0
\(181\) 7.27604 + 15.9323i 0.540824 + 1.18424i 0.960937 + 0.276767i \(0.0892631\pi\)
−0.420113 + 0.907472i \(0.638010\pi\)
\(182\) 0 0
\(183\) −0.597544 + 1.56387i −0.0441717 + 0.115604i
\(184\) 0 0
\(185\) −5.48063 + 1.60926i −0.402944 + 0.118315i
\(186\) 0 0
\(187\) −1.47635 + 0.212268i −0.107962 + 0.0155226i
\(188\) 0 0
\(189\) −14.5356 20.4178i −1.05731 1.48518i
\(190\) 0 0
\(191\) 3.15748 6.91391i 0.228467 0.500273i −0.760331 0.649536i \(-0.774963\pi\)
0.988797 + 0.149264i \(0.0476903\pi\)
\(192\) 0 0
\(193\) −1.55588 0.999901i −0.111994 0.0719744i 0.483445 0.875375i \(-0.339385\pi\)
−0.595439 + 0.803401i \(0.703022\pi\)
\(194\) 0 0
\(195\) −12.9357 13.1437i −0.926342 0.941238i
\(196\) 0 0
\(197\) 1.04976 + 7.30122i 0.0747921 + 0.520190i 0.992434 + 0.122781i \(0.0391814\pi\)
−0.917642 + 0.397409i \(0.869909\pi\)
\(198\) 0 0
\(199\) 11.1805 12.9029i 0.792562 0.914665i −0.205387 0.978681i \(-0.565845\pi\)
0.997949 + 0.0640159i \(0.0203909\pi\)
\(200\) 0 0
\(201\) −12.1407 + 7.32147i −0.856337 + 0.516417i
\(202\) 0 0
\(203\) 0.958729 1.10643i 0.0672896 0.0776563i
\(204\) 0 0
\(205\) −1.68107 11.6921i −0.117411 0.816612i
\(206\) 0 0
\(207\) 5.85000 1.61682i 0.406603 0.112377i
\(208\) 0 0
\(209\) 6.03406 + 3.87785i 0.417384 + 0.268237i
\(210\) 0 0
\(211\) 5.83106 12.7682i 0.401427 0.879002i −0.595697 0.803209i \(-0.703124\pi\)
0.997124 0.0757924i \(-0.0241486\pi\)
\(212\) 0 0
\(213\) −28.0700 + 1.78270i −1.92332 + 0.122149i
\(214\) 0 0
\(215\) 9.60734 1.38133i 0.655215 0.0942057i
\(216\) 0 0
\(217\) −40.9182 + 12.0147i −2.77771 + 0.815609i
\(218\) 0 0
\(219\) −22.3112 8.52495i −1.50765 0.576063i
\(220\) 0 0
\(221\) 0.406271 + 0.889609i 0.0273287 + 0.0598416i
\(222\) 0 0
\(223\) 9.47470 20.7467i 0.634473 1.38930i −0.270037 0.962850i \(-0.587036\pi\)
0.904510 0.426452i \(-0.140237\pi\)
\(224\) 0 0
\(225\) 4.71181 2.06162i 0.314120 0.137441i
\(226\) 0 0
\(227\) 8.02748 + 1.15418i 0.532802 + 0.0766054i 0.403465 0.914995i \(-0.367806\pi\)
0.129338 + 0.991601i \(0.458715\pi\)
\(228\) 0 0
\(229\) −5.96495 + 9.28164i −0.394175 + 0.613348i −0.980451 0.196763i \(-0.936957\pi\)
0.586276 + 0.810111i \(0.300593\pi\)
\(230\) 0 0
\(231\) 45.7484 + 25.4563i 3.01003 + 1.67490i
\(232\) 0 0
\(233\) −6.11597 + 13.3921i −0.400671 + 0.877346i 0.596531 + 0.802590i \(0.296545\pi\)
−0.997202 + 0.0747565i \(0.976182\pi\)
\(234\) 0 0
\(235\) 10.6335 9.21395i 0.693651 0.601052i
\(236\) 0 0
\(237\) 1.78671 + 3.33507i 0.116059 + 0.216636i
\(238\) 0 0
\(239\) −22.8427 −1.47757 −0.738784 0.673942i \(-0.764600\pi\)
−0.738784 + 0.673942i \(0.764600\pi\)
\(240\) 0 0
\(241\) 11.3059 + 3.31970i 0.728275 + 0.213841i 0.624793 0.780791i \(-0.285183\pi\)
0.103482 + 0.994631i \(0.467002\pi\)
\(242\) 0 0
\(243\) −14.3768 6.02558i −0.922272 0.386541i
\(244\) 0 0
\(245\) 17.5087 + 38.3387i 1.11859 + 2.44937i
\(246\) 0 0
\(247\) 1.32501 4.51257i 0.0843084 0.287128i
\(248\) 0 0
\(249\) 1.37884 + 6.59108i 0.0873804 + 0.417693i
\(250\) 0 0
\(251\) 0.266123 1.85092i 0.0167975 0.116829i −0.979698 0.200481i \(-0.935749\pi\)
0.996495 + 0.0836521i \(0.0266585\pi\)
\(252\) 0 0
\(253\) −9.58140 + 8.30233i −0.602378 + 0.521963i
\(254\) 0 0
\(255\) −1.06608 + 0.0677059i −0.0667606 + 0.00423991i
\(256\) 0 0
\(257\) 4.67380 + 15.9175i 0.291544 + 0.992907i 0.966845 + 0.255365i \(0.0821955\pi\)
−0.675301 + 0.737542i \(0.735986\pi\)
\(258\) 0 0
\(259\) −8.03565 6.96293i −0.499311 0.432655i
\(260\) 0 0
\(261\) 0.143947 0.899115i 0.00891010 0.0556538i
\(262\) 0 0
\(263\) 3.07107 + 10.4591i 0.189370 + 0.644935i 0.998367 + 0.0571226i \(0.0181926\pi\)
−0.808997 + 0.587813i \(0.799989\pi\)
\(264\) 0 0
\(265\) 8.11071 + 17.7600i 0.498237 + 1.09099i
\(266\) 0 0
\(267\) −16.4385 9.14707i −1.00602 0.559792i
\(268\) 0 0
\(269\) 12.6511i 0.771353i 0.922634 + 0.385676i \(0.126032\pi\)
−0.922634 + 0.385676i \(0.873968\pi\)
\(270\) 0 0
\(271\) 16.8404 7.69077i 1.02298 0.467181i 0.167973 0.985792i \(-0.446278\pi\)
0.855011 + 0.518610i \(0.173550\pi\)
\(272\) 0 0
\(273\) 7.56427 33.4843i 0.457810 2.02656i
\(274\) 0 0
\(275\) −7.03533 + 8.11920i −0.424246 + 0.489606i
\(276\) 0 0
\(277\) −2.76721 + 3.19353i −0.166265 + 0.191880i −0.832768 0.553622i \(-0.813245\pi\)
0.666503 + 0.745503i \(0.267791\pi\)
\(278\) 0 0
\(279\) −17.6871 + 19.7659i −1.05890 + 1.18335i
\(280\) 0 0
\(281\) 1.13085 0.726751i 0.0674606 0.0433543i −0.506476 0.862254i \(-0.669052\pi\)
0.573936 + 0.818900i \(0.305416\pi\)
\(282\) 0 0
\(283\) −11.0999 12.8100i −0.659821 0.761474i 0.322927 0.946424i \(-0.395333\pi\)
−0.982748 + 0.184950i \(0.940788\pi\)
\(284\) 0 0
\(285\) 4.08773 + 3.11122i 0.242136 + 0.184293i
\(286\) 0 0
\(287\) 16.6176 14.3992i 0.980906 0.849960i
\(288\) 0 0
\(289\) −16.2570 4.77349i −0.956296 0.280794i
\(290\) 0 0
\(291\) −0.383405 + 4.82010i −0.0224756 + 0.282559i
\(292\) 0 0
\(293\) −12.9485 20.1483i −0.756460 1.17708i −0.979338 0.202229i \(-0.935182\pi\)
0.222878 0.974846i \(-0.428455\pi\)
\(294\) 0 0
\(295\) −6.56699 + 22.3651i −0.382345 + 1.30215i
\(296\) 0 0
\(297\) 32.5256 1.54522i 1.88732 0.0896630i
\(298\) 0 0
\(299\) 6.99323 + 4.49428i 0.404429 + 0.259911i
\(300\) 0 0
\(301\) 11.8318 + 13.6546i 0.681972 + 0.787037i
\(302\) 0 0
\(303\) 18.9078 + 25.6823i 1.08622 + 1.47541i
\(304\) 0 0
\(305\) 2.50457i 0.143411i
\(306\) 0 0
\(307\) −17.6161 11.3212i −1.00541 0.646135i −0.0692060 0.997602i \(-0.522047\pi\)
−0.936200 + 0.351467i \(0.885683\pi\)
\(308\) 0 0
\(309\) 17.0716 + 12.9934i 0.971172 + 0.739170i
\(310\) 0 0
\(311\) 3.81967 26.5664i 0.216593 1.50644i −0.533892 0.845553i \(-0.679271\pi\)
0.750485 0.660887i \(-0.229820\pi\)
\(312\) 0 0
\(313\) −7.13321 3.25763i −0.403193 0.184132i 0.203488 0.979077i \(-0.434772\pi\)
−0.606681 + 0.794945i \(0.707499\pi\)
\(314\) 0 0
\(315\) 31.2160 + 20.7722i 1.75882 + 1.17038i
\(316\) 0 0
\(317\) −27.3537 + 3.93286i −1.53633 + 0.220892i −0.857918 0.513786i \(-0.828243\pi\)
−0.678416 + 0.734678i \(0.737333\pi\)
\(318\) 0 0
\(319\) 0.535870 + 1.82501i 0.0300030 + 0.102181i
\(320\) 0 0
\(321\) −0.314815 + 0.823920i −0.0175712 + 0.0459868i
\(322\) 0 0
\(323\) −0.147286 0.229181i −0.00819519 0.0127520i
\(324\) 0 0
\(325\) 6.40768 + 2.92629i 0.355434 + 0.162321i
\(326\) 0 0
\(327\) 13.1998 + 24.6388i 0.729949 + 1.36253i
\(328\) 0 0
\(329\) 25.1301 + 7.37885i 1.38546 + 0.406809i
\(330\) 0 0
\(331\) −5.45068 + 0.783689i −0.299596 + 0.0430755i −0.290474 0.956883i \(-0.593813\pi\)
−0.00912255 + 0.999958i \(0.502904\pi\)
\(332\) 0 0
\(333\) −6.52998 1.04544i −0.357841 0.0572898i
\(334\) 0 0
\(335\) 13.0571 16.7145i 0.713384 0.913212i
\(336\) 0 0
\(337\) 9.65316 + 8.36451i 0.525841 + 0.455644i 0.876875 0.480719i \(-0.159624\pi\)
−0.351033 + 0.936363i \(0.614170\pi\)
\(338\) 0 0
\(339\) 10.9976 + 4.20211i 0.597308 + 0.228227i
\(340\) 0 0
\(341\) 15.6094 53.1609i 0.845299 2.87882i
\(342\) 0 0
\(343\) −24.1623 + 37.5973i −1.30464 + 2.03006i
\(344\) 0 0
\(345\) −7.31202 + 5.38324i −0.393666 + 0.289824i
\(346\) 0 0
\(347\) 1.27673 0.820506i 0.0685386 0.0440471i −0.505923 0.862579i \(-0.668848\pi\)
0.574461 + 0.818532i \(0.305212\pi\)
\(348\) 0 0
\(349\) −1.05529 7.33972i −0.0564885 0.392886i −0.998377 0.0569591i \(-0.981860\pi\)
0.941888 0.335927i \(-0.109050\pi\)
\(350\) 0 0
\(351\) −6.98059 20.1774i −0.372596 1.07699i
\(352\) 0 0
\(353\) −3.05627 21.2568i −0.162669 1.13139i −0.893577 0.448910i \(-0.851812\pi\)
0.730908 0.682476i \(-0.239097\pi\)
\(354\) 0 0
\(355\) 38.2757 17.4799i 2.03146 0.927739i
\(356\) 0 0
\(357\) −1.17891 1.60131i −0.0623946 0.0847501i
\(358\) 0 0
\(359\) −11.3677 1.63442i −0.599962 0.0862615i −0.164359 0.986401i \(-0.552556\pi\)
−0.435603 + 0.900139i \(0.643465\pi\)
\(360\) 0 0
\(361\) 2.51754 17.5099i 0.132502 0.921571i
\(362\) 0 0
\(363\) −43.1620 + 23.1232i −2.26542 + 1.21366i
\(364\) 0 0
\(365\) 35.7318 1.87029
\(366\) 0 0
\(367\) −17.9406 8.19319i −0.936491 0.427681i −0.112097 0.993697i \(-0.535757\pi\)
−0.824394 + 0.566016i \(0.808484\pi\)
\(368\) 0 0
\(369\) 4.06175 13.0588i 0.211446 0.679812i
\(370\) 0 0
\(371\) −19.6490 + 30.5744i −1.02012 + 1.58734i
\(372\) 0 0
\(373\) 4.59919i 0.238137i 0.992886 + 0.119069i \(0.0379908\pi\)
−0.992886 + 0.119069i \(0.962009\pi\)
\(374\) 0 0
\(375\) 10.5100 10.3437i 0.542736 0.534146i
\(376\) 0 0
\(377\) 1.04918 0.674266i 0.0540354 0.0347264i
\(378\) 0 0
\(379\) 21.4242 9.78412i 1.10049 0.502576i 0.219452 0.975623i \(-0.429573\pi\)
0.881037 + 0.473047i \(0.156846\pi\)
\(380\) 0 0
\(381\) 7.72361 7.60138i 0.395693 0.389430i
\(382\) 0 0
\(383\) −21.9247 25.3025i −1.12030 1.29290i −0.951638 0.307223i \(-0.900600\pi\)
−0.168663 0.985674i \(-0.553945\pi\)
\(384\) 0 0
\(385\) −77.5262 11.1466i −3.95110 0.568083i
\(386\) 0 0
\(387\) 10.7303 + 3.33752i 0.545452 + 0.169656i
\(388\) 0 0
\(389\) −7.57002 11.7792i −0.383815 0.597228i 0.594564 0.804049i \(-0.297325\pi\)
−0.978379 + 0.206820i \(0.933688\pi\)
\(390\) 0 0
\(391\) 0.462021 0.135662i 0.0233654 0.00686071i
\(392\) 0 0
\(393\) −16.0837 + 5.85321i −0.811316 + 0.295256i
\(394\) 0 0
\(395\) −4.27776 3.70670i −0.215237 0.186504i
\(396\) 0 0
\(397\) 15.7692 4.63025i 0.791433 0.232386i 0.139060 0.990284i \(-0.455592\pi\)
0.652373 + 0.757898i \(0.273774\pi\)
\(398\) 0 0
\(399\) −0.758226 + 9.53231i −0.0379588 + 0.477212i
\(400\) 0 0
\(401\) 23.8879 1.19290 0.596452 0.802648i \(-0.296576\pi\)
0.596452 + 0.802648i \(0.296576\pi\)
\(402\) 0 0
\(403\) −36.3287 −1.80966
\(404\) 0 0
\(405\) 23.3090 + 0.743888i 1.15823 + 0.0369641i
\(406\) 0 0
\(407\) 13.2544 3.89185i 0.656997 0.192912i
\(408\) 0 0
\(409\) 3.01750 + 2.61468i 0.149206 + 0.129288i 0.726265 0.687415i \(-0.241254\pi\)
−0.577059 + 0.816702i \(0.695800\pi\)
\(410\) 0 0
\(411\) 11.8750 + 32.6306i 0.585750 + 1.60955i
\(412\) 0 0
\(413\) −41.6318 + 12.2242i −2.04857 + 0.601514i
\(414\) 0 0
\(415\) −5.44639 8.47474i −0.267353 0.416009i
\(416\) 0 0
\(417\) 1.80843 + 8.64462i 0.0885594 + 0.423329i
\(418\) 0 0
\(419\) −4.20561 0.604675i −0.205457 0.0295403i 0.0388176 0.999246i \(-0.487641\pi\)
−0.244275 + 0.969706i \(0.578550\pi\)
\(420\) 0 0
\(421\) −3.22520 3.72208i −0.157187 0.181403i 0.671694 0.740829i \(-0.265567\pi\)
−0.828880 + 0.559426i \(0.811022\pi\)
\(422\) 0 0
\(423\) 15.7012 4.33947i 0.763417 0.210992i
\(424\) 0 0
\(425\) 0.371168 0.169507i 0.0180043 0.00822228i
\(426\) 0 0
\(427\) 3.92206 2.52056i 0.189802 0.121978i
\(428\) 0 0
\(429\) 31.2837 + 31.7868i 1.51039 + 1.53468i
\(430\) 0 0
\(431\) 36.6610i 1.76590i 0.469468 + 0.882949i \(0.344446\pi\)
−0.469468 + 0.882949i \(0.655554\pi\)
\(432\) 0 0
\(433\) −3.85517 + 5.99876i −0.185268 + 0.288282i −0.921447 0.388505i \(-0.872992\pi\)
0.736179 + 0.676787i \(0.236628\pi\)
\(434\) 0 0
\(435\) 0.278939 + 1.33337i 0.0133741 + 0.0639304i
\(436\) 0 0
\(437\) −2.10637 0.961947i −0.100761 0.0460161i
\(438\) 0 0
\(439\) 16.9963 0.811187 0.405593 0.914054i \(-0.367065\pi\)
0.405593 + 0.914054i \(0.367065\pi\)
\(440\) 0 0
\(441\) −0.778357 + 48.7905i −0.0370646 + 2.32336i
\(442\) 0 0
\(443\) 5.83435 40.5788i 0.277198 1.92796i −0.0861059 0.996286i \(-0.527442\pi\)
0.363304 0.931671i \(-0.381649\pi\)
\(444\) 0 0
\(445\) 27.8571 + 4.00524i 1.32055 + 0.189867i
\(446\) 0 0
\(447\) −20.3847 + 15.0076i −0.964163 + 0.709835i
\(448\) 0 0
\(449\) −14.1335 + 6.45457i −0.667003 + 0.304610i −0.719989 0.693985i \(-0.755853\pi\)
0.0529862 + 0.998595i \(0.483126\pi\)
\(450\) 0 0
\(451\) 4.06552 + 28.2763i 0.191438 + 1.33148i
\(452\) 0 0
\(453\) 4.49529 19.8991i 0.211207 0.934940i
\(454\) 0 0
\(455\) 7.30873 + 50.8333i 0.342639 + 2.38310i
\(456\) 0 0
\(457\) −14.0626 + 9.03746i −0.657819 + 0.422755i −0.826516 0.562913i \(-0.809680\pi\)
0.168697 + 0.985668i \(0.446044\pi\)
\(458\) 0 0
\(459\) −1.14810 0.459801i −0.0535889 0.0214617i
\(460\) 0 0
\(461\) −6.54290 + 10.1810i −0.304733 + 0.474175i −0.959520 0.281639i \(-0.909122\pi\)
0.654787 + 0.755813i \(0.272758\pi\)
\(462\) 0 0
\(463\) 2.13123 7.25830i 0.0990466 0.337322i −0.895030 0.446007i \(-0.852846\pi\)
0.994076 + 0.108685i \(0.0346639\pi\)
\(464\) 0 0
\(465\) 14.1631 37.0672i 0.656799 1.71895i
\(466\) 0 0
\(467\) −7.55982 6.55062i −0.349827 0.303127i 0.462167 0.886793i \(-0.347072\pi\)
−0.811994 + 0.583666i \(0.801618\pi\)
\(468\) 0 0
\(469\) 39.3147 + 3.62566i 1.81539 + 0.167417i
\(470\) 0 0
\(471\) −3.54927 9.75284i −0.163542 0.449387i
\(472\) 0 0
\(473\) −23.2345 + 3.34061i −1.06832 + 0.153602i
\(474\) 0 0
\(475\) −1.88276 0.552828i −0.0863869 0.0253655i
\(476\) 0 0
\(477\) −0.360565 + 22.6016i −0.0165091 + 1.03486i
\(478\) 0 0
\(479\) 20.9351 + 9.56076i 0.956551 + 0.436842i 0.831633 0.555325i \(-0.187406\pi\)
0.124917 + 0.992167i \(0.460133\pi\)
\(480\) 0 0
\(481\) −4.89697 7.61983i −0.223283 0.347434i
\(482\) 0 0
\(483\) −15.7886 6.03274i −0.718408 0.274499i
\(484\) 0 0
\(485\) −2.03800 6.94080i −0.0925409 0.315166i
\(486\) 0 0
\(487\) 25.6875 3.69331i 1.16401 0.167360i 0.466892 0.884314i \(-0.345374\pi\)
0.697120 + 0.716955i \(0.254465\pi\)
\(488\) 0 0
\(489\) −25.4240 2.02230i −1.14971 0.0914514i
\(490\) 0 0
\(491\) 27.6162 + 12.6119i 1.24630 + 0.569166i 0.925775 0.378074i \(-0.123414\pi\)
0.320525 + 0.947240i \(0.396141\pi\)
\(492\) 0 0
\(493\) 0.0102811 0.0715069i 0.000463039 0.00322051i
\(494\) 0 0
\(495\) −44.6292 + 19.5272i −2.00593 + 0.877684i
\(496\) 0 0
\(497\) 65.8930 + 42.3468i 2.95570 + 1.89952i
\(498\) 0 0
\(499\) 19.1108i 0.855517i −0.903893 0.427758i \(-0.859303\pi\)
0.903893 0.427758i \(-0.140697\pi\)
\(500\) 0 0
\(501\) 24.2909 17.8834i 1.08524 0.798972i
\(502\) 0 0
\(503\) 24.0623 + 27.7693i 1.07288 + 1.23817i 0.969903 + 0.243491i \(0.0782925\pi\)
0.102981 + 0.994683i \(0.467162\pi\)
\(504\) 0 0
\(505\) −40.1372 25.7946i −1.78608 1.14784i
\(506\) 0 0
\(507\) 3.27068 5.87787i 0.145256 0.261045i
\(508\) 0 0
\(509\) 0.587268 2.00005i 0.0260302 0.0886507i −0.945453 0.325757i \(-0.894381\pi\)
0.971484 + 0.237106i \(0.0761990\pi\)
\(510\) 0 0
\(511\) 35.9599 + 55.9547i 1.59077 + 2.47529i
\(512\) 0 0
\(513\) 2.72461 + 5.28667i 0.120295 + 0.233412i
\(514\) 0 0
\(515\) −30.7957 9.04243i −1.35702 0.398457i
\(516\) 0 0
\(517\) −25.7161 + 22.2831i −1.13099 + 0.980011i
\(518\) 0 0
\(519\) −9.01873 + 11.8494i −0.395878 + 0.520132i
\(520\) 0 0
\(521\) 4.40009 + 5.07797i 0.192771 + 0.222470i 0.843904 0.536494i \(-0.180251\pi\)
−0.651133 + 0.758964i \(0.725706\pi\)
\(522\) 0 0
\(523\) 34.4842 22.1616i 1.50789 0.969061i 0.514105 0.857727i \(-0.328124\pi\)
0.993783 0.111333i \(-0.0355121\pi\)
\(524\) 0 0
\(525\) −13.9705 3.15600i −0.609723 0.137739i
\(526\) 0 0
\(527\) −1.37806 + 1.59037i −0.0600293 + 0.0692775i
\(528\) 0 0
\(529\) −12.3815 + 14.2890i −0.538325 + 0.621260i
\(530\) 0 0
\(531\) −17.9955 + 20.1106i −0.780940 + 0.872727i
\(532\) 0 0
\(533\) 17.0385 7.78122i 0.738019 0.337042i
\(534\) 0 0
\(535\) 1.31953i 0.0570482i
\(536\) 0 0
\(537\) 10.5873 19.0269i 0.456877 0.821070i
\(538\) 0 0
\(539\) −42.3433 92.7188i −1.82385 3.99368i
\(540\) 0 0
\(541\) 6.48103 + 22.0724i 0.278641 + 0.948965i 0.973283 + 0.229609i \(0.0737447\pi\)
−0.694642 + 0.719356i \(0.744437\pi\)
\(542\) 0 0
\(543\) −10.3747 28.5080i −0.445220 1.22339i
\(544\) 0 0
\(545\) −31.6031 27.3842i −1.35373 1.17301i
\(546\) 0 0
\(547\) −11.8312 40.2932i −0.505864 1.72281i −0.675548 0.737316i \(-0.736093\pi\)
0.169684 0.985499i \(-0.445725\pi\)
\(548\) 0 0
\(549\) 1.24650 2.61810i 0.0531992 0.111738i
\(550\) 0 0
\(551\) −0.262553 + 0.227504i −0.0111852 + 0.00969199i
\(552\) 0 0
\(553\) 1.49949 10.4292i 0.0637647 0.443493i
\(554\) 0 0
\(555\) 9.68385 2.02584i 0.411057 0.0859921i
\(556\) 0 0
\(557\) −1.65371 + 5.63203i −0.0700701 + 0.238637i −0.987080 0.160227i \(-0.948777\pi\)
0.917010 + 0.398864i \(0.130595\pi\)
\(558\) 0 0
\(559\) 6.39379 + 14.0004i 0.270428 + 0.592156i
\(560\) 0 0
\(561\) 2.57822 0.163741i 0.108853 0.00691314i
\(562\) 0 0
\(563\) 20.3288 + 5.96908i 0.856757 + 0.251567i 0.680473 0.732773i \(-0.261774\pi\)
0.176284 + 0.984339i \(0.443592\pi\)
\(564\) 0 0
\(565\) −17.6129 −0.740981
\(566\) 0 0
\(567\) 22.2929 + 37.2497i 0.936214 + 1.56434i
\(568\) 0 0
\(569\) −5.19009 + 4.49724i −0.217580 + 0.188534i −0.756830 0.653611i \(-0.773253\pi\)
0.539250 + 0.842145i \(0.318708\pi\)
\(570\) 0 0
\(571\) −8.43609 + 18.4725i −0.353040 + 0.773049i 0.646906 + 0.762570i \(0.276063\pi\)
−0.999945 + 0.0104787i \(0.996664\pi\)
\(572\) 0 0
\(573\) −6.40123 + 11.5039i −0.267415 + 0.480582i
\(574\) 0 0
\(575\) 1.87513 2.91775i 0.0781982 0.121679i
\(576\) 0 0
\(577\) 35.6420 + 5.12454i 1.48379 + 0.213337i 0.836106 0.548568i \(-0.184827\pi\)
0.647688 + 0.761906i \(0.275736\pi\)
\(578\) 0 0
\(579\) 2.54905 + 1.94011i 0.105935 + 0.0806281i
\(580\) 0 0
\(581\) 7.78998 17.0577i 0.323183 0.707672i
\(582\) 0 0
\(583\) −19.6150 42.9509i −0.812371 1.77884i
\(584\) 0 0
\(585\) 20.5296 + 24.4704i 0.848793 + 1.01173i
\(586\) 0 0
\(587\) 3.18875 0.936301i 0.131614 0.0386453i −0.215262 0.976556i \(-0.569061\pi\)
0.346876 + 0.937911i \(0.387242\pi\)
\(588\) 0 0
\(589\) 10.0167 1.44018i 0.412731 0.0593418i
\(590\) 0 0
\(591\) −0.809770 12.7504i −0.0333095 0.524483i
\(592\) 0 0
\(593\) 3.67919 8.05629i 0.151086 0.330832i −0.818922 0.573905i \(-0.805428\pi\)
0.970008 + 0.243072i \(0.0781552\pi\)
\(594\) 0 0
\(595\) 2.50258 + 1.60831i 0.102596 + 0.0659342i
\(596\) 0 0
\(597\) −21.0762 + 20.7427i −0.862592 + 0.848941i
\(598\) 0 0
\(599\) 2.55166 + 17.7472i 0.104258 + 0.725129i 0.973157 + 0.230141i \(0.0739186\pi\)
−0.868900 + 0.494988i \(0.835172\pi\)
\(600\) 0 0
\(601\) 4.28571 4.94597i 0.174818 0.201750i −0.661578 0.749876i \(-0.730113\pi\)
0.836396 + 0.548126i \(0.184658\pi\)
\(602\) 0 0
\(603\) 21.9676 10.9739i 0.894589 0.446890i
\(604\) 0 0
\(605\) 47.9714 55.3620i 1.95032 2.25079i
\(606\) 0 0
\(607\) −2.81396 19.5715i −0.114215 0.794384i −0.963741 0.266838i \(-0.914021\pi\)
0.849526 0.527546i \(-0.176888\pi\)
\(608\) 0 0
\(609\) −1.80729 + 1.77869i −0.0732353 + 0.0720762i
\(610\) 0 0
\(611\) 18.7696 + 12.0625i 0.759335 + 0.487995i
\(612\) 0 0
\(613\) 7.55708 16.5477i 0.305228 0.668355i −0.693410 0.720544i \(-0.743892\pi\)
0.998637 + 0.0521884i \(0.0166196\pi\)
\(614\) 0 0
\(615\) 1.29676 + 20.4184i 0.0522903 + 0.823350i
\(616\) 0 0
\(617\) −4.53596 + 0.652173i −0.182611 + 0.0262555i −0.233014 0.972473i \(-0.574859\pi\)
0.0504026 + 0.998729i \(0.483950\pi\)
\(618\) 0 0
\(619\) 11.7426 3.44793i 0.471973 0.138584i −0.0370918 0.999312i \(-0.511809\pi\)
0.509065 + 0.860728i \(0.329991\pi\)
\(620\) 0 0
\(621\) −10.3227 + 1.98816i −0.414234 + 0.0797822i
\(622\) 0 0
\(623\) 21.7628 + 47.6540i 0.871910 + 1.90922i
\(624\) 0 0
\(625\) −12.7253 + 27.8646i −0.509013 + 1.11458i
\(626\) 0 0
\(627\) −9.88581 7.52420i −0.394801 0.300487i
\(628\) 0 0
\(629\) −0.519331 0.0746685i −0.0207071 0.00297723i
\(630\) 0 0
\(631\) 1.62062 2.52174i 0.0645160 0.100389i −0.807497 0.589872i \(-0.799178\pi\)
0.872013 + 0.489483i \(0.162815\pi\)
\(632\) 0 0
\(633\) −11.8215 + 21.2448i −0.469861 + 0.844404i
\(634\) 0 0
\(635\) −6.73477 + 14.7471i −0.267261 + 0.585221i
\(636\) 0 0
\(637\) −50.5103 + 43.7674i −2.00129 + 1.73413i
\(638\) 0 0
\(639\) 48.7104 + 0.777078i 1.92695 + 0.0307407i
\(640\) 0 0
\(641\) −40.6694 −1.60634 −0.803172 0.595747i \(-0.796856\pi\)
−0.803172 + 0.595747i \(0.796856\pi\)
\(642\) 0 0
\(643\) −8.09347 2.37646i −0.319175 0.0937183i 0.118221 0.992987i \(-0.462281\pi\)
−0.437396 + 0.899269i \(0.644099\pi\)
\(644\) 0 0
\(645\) −16.7777 + 1.06554i −0.660622 + 0.0419555i
\(646\) 0 0
\(647\) −12.7390 27.8944i −0.500820 1.09664i −0.976202 0.216864i \(-0.930417\pi\)
0.475382 0.879780i \(-0.342310\pi\)
\(648\) 0 0
\(649\) 15.8817 54.0880i 0.623410 2.12314i
\(650\) 0 0
\(651\) 72.2994 15.1249i 2.83364 0.592790i
\(652\) 0 0
\(653\) −5.75048 + 39.9955i −0.225034 + 1.56514i 0.493559 + 0.869712i \(0.335696\pi\)
−0.718593 + 0.695431i \(0.755213\pi\)
\(654\) 0 0
\(655\) 19.3514 16.7681i 0.756123 0.655185i
\(656\) 0 0
\(657\) 37.3516 + 17.7833i 1.45722 + 0.693794i
\(658\) 0 0
\(659\) −3.02418 10.2994i −0.117805 0.401208i 0.879385 0.476110i \(-0.157954\pi\)
−0.997191 + 0.0749021i \(0.976136\pi\)
\(660\) 0 0
\(661\) −0.415841 0.360328i −0.0161743 0.0140151i 0.646736 0.762714i \(-0.276134\pi\)
−0.662910 + 0.748699i \(0.730679\pi\)
\(662\) 0 0
\(663\) −0.579289 1.59179i −0.0224977 0.0618201i
\(664\) 0 0
\(665\) −4.03038 13.7262i −0.156292 0.532280i
\(666\) 0 0
\(667\) −0.255088 0.558566i −0.00987707 0.0216278i
\(668\) 0 0
\(669\) −19.2083 + 34.5200i −0.742636 + 1.33462i
\(670\) 0 0
\(671\) 6.05708i 0.233831i
\(672\) 0 0
\(673\) −20.7848 + 9.49212i −0.801197 + 0.365894i −0.773560 0.633724i \(-0.781526\pi\)
−0.0276375 + 0.999618i \(0.508798\pi\)
\(674\) 0 0
\(675\) −8.41853 + 2.91248i −0.324029 + 0.112101i
\(676\) 0 0
\(677\) −14.3718 + 16.5859i −0.552352 + 0.637449i −0.961430 0.275051i \(-0.911305\pi\)
0.409077 + 0.912500i \(0.365851\pi\)
\(678\) 0 0
\(679\) 8.81802 10.1765i 0.338405 0.390540i
\(680\) 0 0
\(681\) −13.7017 3.09528i −0.525051 0.118611i
\(682\) 0 0
\(683\) −36.2668 + 23.3072i −1.38771 + 0.891827i −0.999557 0.0297686i \(-0.990523\pi\)
−0.388152 + 0.921595i \(0.626887\pi\)
\(684\) 0 0
\(685\) −34.0191 39.2601i −1.29980 1.50005i
\(686\) 0 0
\(687\) 11.5738 15.2064i 0.441567 0.580162i
\(688\) 0 0
\(689\) −23.3983 + 20.2747i −0.891404 + 0.772406i
\(690\) 0 0
\(691\) −18.4515 5.41786i −0.701929 0.206105i −0.0887557 0.996053i \(-0.528289\pi\)
−0.613173 + 0.789948i \(0.710107\pi\)
\(692\) 0 0
\(693\) −75.4930 50.2358i −2.86774 1.90830i
\(694\) 0 0
\(695\) −7.14328 11.1152i −0.270960 0.421622i
\(696\) 0 0
\(697\) 0.305683 1.04106i 0.0115786 0.0394330i
\(698\) 0 0
\(699\) 12.3991 22.2828i 0.468976 0.842814i
\(700\) 0 0
\(701\) 10.9597 + 7.04335i 0.413941 + 0.266023i 0.730994 0.682384i \(-0.239057\pi\)
−0.317053 + 0.948408i \(0.602693\pi\)
\(702\) 0 0
\(703\) 1.65229 + 1.90684i 0.0623171 + 0.0719178i
\(704\) 0 0
\(705\) −19.6252 + 14.4484i −0.739126 + 0.544158i
\(706\) 0 0
\(707\) 88.8125i 3.34014i
\(708\) 0 0
\(709\) −21.3951 13.7498i −0.803511 0.516385i 0.0732489 0.997314i \(-0.476663\pi\)
−0.876760 + 0.480929i \(0.840300\pi\)
\(710\) 0 0
\(711\) −2.62689 6.00371i −0.0985160 0.225157i
\(712\) 0 0
\(713\) −2.54558 + 17.7049i −0.0953328 + 0.663054i
\(714\) 0 0
\(715\) −60.6922 27.7172i −2.26976 1.03656i
\(716\) 0 0
\(717\) 39.4401 + 3.13717i 1.47292 + 0.117160i
\(718\) 0 0
\(719\) 49.2521 7.08138i 1.83679 0.264091i 0.865317 0.501225i \(-0.167117\pi\)
0.971477 + 0.237134i \(0.0762082\pi\)
\(720\) 0 0
\(721\) −16.8322 57.3250i −0.626862 2.13490i
\(722\) 0 0
\(723\) −19.0648 7.28452i −0.709026 0.270914i
\(724\) 0 0
\(725\) −0.281321 0.437744i −0.0104480 0.0162574i
\(726\) 0 0
\(727\) −29.3484 13.4030i −1.08847 0.497088i −0.211376 0.977405i \(-0.567795\pi\)
−0.877095 + 0.480317i \(0.840522\pi\)
\(728\) 0 0
\(729\) 23.9954 + 12.3782i 0.888719 + 0.458453i
\(730\) 0 0
\(731\) 0.855434 + 0.251178i 0.0316394 + 0.00929016i
\(732\) 0 0
\(733\) 6.92412 0.995538i 0.255748 0.0367710i −0.0132482 0.999912i \(-0.504217\pi\)
0.268996 + 0.963141i \(0.413308\pi\)
\(734\) 0 0
\(735\) −24.9651 68.6002i −0.920852 2.53036i
\(736\) 0 0
\(737\) −31.5773 + 40.4226i −1.16317 + 1.48899i
\(738\) 0 0
\(739\) 17.2341 + 14.9334i 0.633966 + 0.549335i 0.911458 0.411393i \(-0.134958\pi\)
−0.277492 + 0.960728i \(0.589503\pi\)
\(740\) 0 0
\(741\) −2.90751 + 7.60942i −0.106810 + 0.279539i
\(742\) 0 0
\(743\) −8.39865 + 28.6032i −0.308117 + 1.04935i 0.649274 + 0.760554i \(0.275073\pi\)
−0.957391 + 0.288795i \(0.906745\pi\)
\(744\) 0 0
\(745\) 20.4739 31.8580i 0.750104 1.16719i
\(746\) 0 0
\(747\) −1.47549 11.5695i −0.0539854 0.423306i
\(748\) 0 0
\(749\) 2.06633 1.32795i 0.0755021 0.0485223i
\(750\) 0 0
\(751\) 4.00492 + 27.8548i 0.146142 + 1.01644i 0.922459 + 0.386095i \(0.126176\pi\)
−0.776318 + 0.630342i \(0.782915\pi\)
\(752\) 0 0
\(753\) −0.713690 + 3.15925i −0.0260083 + 0.115130i
\(754\) 0 0
\(755\) 4.34343 + 30.2092i 0.158074 + 1.09943i
\(756\) 0 0
\(757\) 25.1592 11.4898i 0.914428 0.417605i 0.0980883 0.995178i \(-0.468727\pi\)
0.816339 + 0.577573i \(0.196000\pi\)
\(758\) 0 0
\(759\) 17.6835 13.0189i 0.641869 0.472556i
\(760\) 0 0
\(761\) 37.7010 + 5.42058i 1.36666 + 0.196496i 0.786290 0.617857i \(-0.211999\pi\)
0.580370 + 0.814353i \(0.302908\pi\)
\(762\) 0 0
\(763\) 11.0779 77.0483i 0.401046 2.78934i
\(764\) 0 0
\(765\) 1.84999 + 0.0295130i 0.0668866 + 0.00106704i
\(766\) 0 0
\(767\) −36.9623 −1.33463
\(768\) 0 0
\(769\) −24.3548 11.1224i −0.878255 0.401086i −0.0753250 0.997159i \(-0.523999\pi\)
−0.802930 + 0.596073i \(0.796727\pi\)
\(770\) 0 0
\(771\) −5.88369 28.1250i −0.211896 1.01290i
\(772\) 0 0
\(773\) −0.211784 + 0.329542i −0.00761734 + 0.0118528i −0.845041 0.534701i \(-0.820424\pi\)
0.837424 + 0.546554i \(0.184061\pi\)
\(774\) 0 0
\(775\) 15.1573i 0.544465i
\(776\) 0 0