Properties

Label 804.2.q.b.265.2
Level $804$
Weight $2$
Character 804.265
Analytic conductor $6.420$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [804,2,Mod(25,804)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(804, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 0, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("804.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 804.q (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(6\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 265.2
Character \(\chi\) \(=\) 804.265
Dual form 804.2.q.b.625.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.142315 - 0.989821i) q^{3} +(-0.536269 - 1.17426i) q^{5} +(-0.878330 - 0.257901i) q^{7} +(-0.959493 - 0.281733i) q^{9} +O(q^{10})\) \(q+(0.142315 - 0.989821i) q^{3} +(-0.536269 - 1.17426i) q^{5} +(-0.878330 - 0.257901i) q^{7} +(-0.959493 - 0.281733i) q^{9} +(-1.94425 - 4.25731i) q^{11} +(-2.64310 + 3.05030i) q^{13} +(-1.23863 + 0.363695i) q^{15} +(-5.31227 + 3.41399i) q^{17} +(1.25176 - 0.367549i) q^{19} +(-0.380275 + 0.832687i) q^{21} +(-0.397285 + 2.76318i) q^{23} +(2.18299 - 2.51930i) q^{25} +(-0.415415 + 0.909632i) q^{27} -4.58573 q^{29} +(1.11279 + 1.28423i) q^{31} +(-4.49067 + 1.31858i) q^{33} +(0.168177 + 1.16970i) q^{35} -3.19048 q^{37} +(2.64310 + 3.05030i) q^{39} +(9.53729 - 6.12925i) q^{41} +(-9.19035 + 5.90628i) q^{43} +(0.183718 + 1.27778i) q^{45} +(1.17622 - 8.18076i) q^{47} +(-5.18382 - 3.33144i) q^{49} +(2.62322 + 5.74406i) q^{51} +(-10.8592 - 6.97877i) q^{53} +(-3.95657 + 4.56612i) q^{55} +(-0.185664 - 1.29132i) q^{57} +(0.690489 + 0.796867i) q^{59} +(-5.72413 + 12.5341i) q^{61} +(0.770092 + 0.494908i) q^{63} +(4.99927 + 1.46792i) q^{65} +(5.64310 + 5.92920i) q^{67} +(2.67852 + 0.786483i) q^{69} +(0.713125 + 0.458298i) q^{71} +(2.89894 - 6.34779i) q^{73} +(-2.18299 - 2.51930i) q^{75} +(0.609727 + 4.24074i) q^{77} +(4.15154 - 4.79113i) q^{79} +(0.841254 + 0.540641i) q^{81} +(-2.02120 - 4.42580i) q^{83} +(6.85773 + 4.40719i) q^{85} +(-0.652618 + 4.53906i) q^{87} +(-0.858749 - 5.97273i) q^{89} +(3.10819 - 1.99751i) q^{91} +(1.42953 - 0.918703i) q^{93} +(-1.10288 - 1.27279i) q^{95} -15.7274 q^{97} +(0.666070 + 4.63262i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 6 q^{3} + 2 q^{5} + 2 q^{7} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 60 q + 6 q^{3} + 2 q^{5} + 2 q^{7} - 6 q^{9} - 11 q^{11} - 2 q^{13} + 9 q^{15} + 21 q^{17} + 10 q^{19} - 2 q^{21} - 10 q^{23} - 36 q^{25} + 6 q^{27} + 4 q^{29} - 24 q^{31} - 32 q^{35} + 2 q^{37} + 2 q^{39} + 10 q^{41} + 23 q^{43} + 2 q^{45} + 66 q^{47} + 34 q^{49} + 23 q^{51} - 13 q^{53} + 27 q^{55} + q^{57} + 35 q^{59} + 56 q^{61} - 9 q^{63} + 48 q^{65} + 13 q^{67} + 10 q^{69} + 76 q^{71} - q^{73} + 36 q^{75} - 38 q^{77} - 46 q^{79} - 6 q^{81} - 26 q^{83} + 42 q^{85} + 7 q^{87} + 58 q^{89} - 40 q^{91} - 9 q^{93} - 29 q^{95} - 46 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{11}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.142315 0.989821i 0.0821655 0.571474i
\(4\) 0 0
\(5\) −0.536269 1.17426i −0.239827 0.525147i 0.750997 0.660305i \(-0.229573\pi\)
−0.990824 + 0.135158i \(0.956846\pi\)
\(6\) 0 0
\(7\) −0.878330 0.257901i −0.331977 0.0974774i 0.111496 0.993765i \(-0.464436\pi\)
−0.443473 + 0.896287i \(0.646254\pi\)
\(8\) 0 0
\(9\) −0.959493 0.281733i −0.319831 0.0939109i
\(10\) 0 0
\(11\) −1.94425 4.25731i −0.586213 1.28363i −0.937704 0.347436i \(-0.887053\pi\)
0.351491 0.936191i \(-0.385675\pi\)
\(12\) 0 0
\(13\) −2.64310 + 3.05030i −0.733064 + 0.846001i −0.992813 0.119675i \(-0.961815\pi\)
0.259749 + 0.965676i \(0.416360\pi\)
\(14\) 0 0
\(15\) −1.23863 + 0.363695i −0.319813 + 0.0939057i
\(16\) 0 0
\(17\) −5.31227 + 3.41399i −1.28841 + 0.828013i −0.991901 0.127016i \(-0.959460\pi\)
−0.296513 + 0.955029i \(0.595824\pi\)
\(18\) 0 0
\(19\) 1.25176 0.367549i 0.287173 0.0843215i −0.134974 0.990849i \(-0.543095\pi\)
0.422146 + 0.906528i \(0.361277\pi\)
\(20\) 0 0
\(21\) −0.380275 + 0.832687i −0.0829829 + 0.181707i
\(22\) 0 0
\(23\) −0.397285 + 2.76318i −0.0828397 + 0.576163i 0.905552 + 0.424236i \(0.139457\pi\)
−0.988392 + 0.151928i \(0.951452\pi\)
\(24\) 0 0
\(25\) 2.18299 2.51930i 0.436598 0.503861i
\(26\) 0 0
\(27\) −0.415415 + 0.909632i −0.0799467 + 0.175059i
\(28\) 0 0
\(29\) −4.58573 −0.851549 −0.425774 0.904829i \(-0.639998\pi\)
−0.425774 + 0.904829i \(0.639998\pi\)
\(30\) 0 0
\(31\) 1.11279 + 1.28423i 0.199864 + 0.230655i 0.846830 0.531863i \(-0.178508\pi\)
−0.646966 + 0.762519i \(0.723963\pi\)
\(32\) 0 0
\(33\) −4.49067 + 1.31858i −0.781725 + 0.229535i
\(34\) 0 0
\(35\) 0.168177 + 1.16970i 0.0284271 + 0.197715i
\(36\) 0 0
\(37\) −3.19048 −0.524512 −0.262256 0.964998i \(-0.584467\pi\)
−0.262256 + 0.964998i \(0.584467\pi\)
\(38\) 0 0
\(39\) 2.64310 + 3.05030i 0.423235 + 0.488439i
\(40\) 0 0
\(41\) 9.53729 6.12925i 1.48947 0.957227i 0.493299 0.869860i \(-0.335791\pi\)
0.996176 0.0873675i \(-0.0278454\pi\)
\(42\) 0 0
\(43\) −9.19035 + 5.90628i −1.40152 + 0.900699i −0.999886 0.0151027i \(-0.995192\pi\)
−0.401630 + 0.915802i \(0.631556\pi\)
\(44\) 0 0
\(45\) 0.183718 + 1.27778i 0.0273870 + 0.190481i
\(46\) 0 0
\(47\) 1.17622 8.18076i 0.171569 1.19329i −0.704003 0.710197i \(-0.748606\pi\)
0.875571 0.483089i \(-0.160485\pi\)
\(48\) 0 0
\(49\) −5.18382 3.33144i −0.740546 0.475920i
\(50\) 0 0
\(51\) 2.62322 + 5.74406i 0.367325 + 0.804329i
\(52\) 0 0
\(53\) −10.8592 6.97877i −1.49162 0.958607i −0.995932 0.0901079i \(-0.971279\pi\)
−0.495690 0.868499i \(-0.665085\pi\)
\(54\) 0 0
\(55\) −3.95657 + 4.56612i −0.533504 + 0.615696i
\(56\) 0 0
\(57\) −0.185664 1.29132i −0.0245918 0.171040i
\(58\) 0 0
\(59\) 0.690489 + 0.796867i 0.0898940 + 0.103743i 0.798914 0.601445i \(-0.205408\pi\)
−0.709020 + 0.705188i \(0.750863\pi\)
\(60\) 0 0
\(61\) −5.72413 + 12.5341i −0.732900 + 1.60483i 0.0619934 + 0.998077i \(0.480254\pi\)
−0.794893 + 0.606750i \(0.792473\pi\)
\(62\) 0 0
\(63\) 0.770092 + 0.494908i 0.0970225 + 0.0623526i
\(64\) 0 0
\(65\) 4.99927 + 1.46792i 0.620084 + 0.182073i
\(66\) 0 0
\(67\) 5.64310 + 5.92920i 0.689415 + 0.724367i
\(68\) 0 0
\(69\) 2.67852 + 0.786483i 0.322455 + 0.0946815i
\(70\) 0 0
\(71\) 0.713125 + 0.458298i 0.0846324 + 0.0543899i 0.582273 0.812994i \(-0.302164\pi\)
−0.497640 + 0.867384i \(0.665800\pi\)
\(72\) 0 0
\(73\) 2.89894 6.34779i 0.339295 0.742953i −0.660675 0.750672i \(-0.729730\pi\)
0.999970 + 0.00771910i \(0.00245709\pi\)
\(74\) 0 0
\(75\) −2.18299 2.51930i −0.252070 0.290904i
\(76\) 0 0
\(77\) 0.609727 + 4.24074i 0.0694848 + 0.483278i
\(78\) 0 0
\(79\) 4.15154 4.79113i 0.467084 0.539044i −0.472514 0.881323i \(-0.656653\pi\)
0.939598 + 0.342279i \(0.111199\pi\)
\(80\) 0 0
\(81\) 0.841254 + 0.540641i 0.0934726 + 0.0600712i
\(82\) 0 0
\(83\) −2.02120 4.42580i −0.221855 0.485795i 0.765674 0.643228i \(-0.222405\pi\)
−0.987530 + 0.157433i \(0.949678\pi\)
\(84\) 0 0
\(85\) 6.85773 + 4.40719i 0.743825 + 0.478027i
\(86\) 0 0
\(87\) −0.652618 + 4.53906i −0.0699680 + 0.486638i
\(88\) 0 0
\(89\) −0.858749 5.97273i −0.0910272 0.633108i −0.983352 0.181713i \(-0.941836\pi\)
0.892324 0.451395i \(-0.149073\pi\)
\(90\) 0 0
\(91\) 3.10819 1.99751i 0.325827 0.209396i
\(92\) 0 0
\(93\) 1.42953 0.918703i 0.148235 0.0952650i
\(94\) 0 0
\(95\) −1.10288 1.27279i −0.113153 0.130585i
\(96\) 0 0
\(97\) −15.7274 −1.59688 −0.798438 0.602078i \(-0.794340\pi\)
−0.798438 + 0.602078i \(0.794340\pi\)
\(98\) 0 0
\(99\) 0.666070 + 4.63262i 0.0669425 + 0.465595i
\(100\) 0 0
\(101\) −11.0344 + 3.24000i −1.09797 + 0.322392i −0.780044 0.625725i \(-0.784803\pi\)
−0.317922 + 0.948117i \(0.602985\pi\)
\(102\) 0 0
\(103\) 2.19063 + 2.52813i 0.215850 + 0.249104i 0.853340 0.521354i \(-0.174573\pi\)
−0.637491 + 0.770458i \(0.720028\pi\)
\(104\) 0 0
\(105\) 1.18172 0.115325
\(106\) 0 0
\(107\) 7.37899 16.1577i 0.713354 1.56203i −0.109636 0.993972i \(-0.534968\pi\)
0.822990 0.568056i \(-0.192304\pi\)
\(108\) 0 0
\(109\) 12.2705 14.1609i 1.17530 1.35637i 0.254150 0.967165i \(-0.418204\pi\)
0.921151 0.389205i \(-0.127250\pi\)
\(110\) 0 0
\(111\) −0.454053 + 3.15801i −0.0430968 + 0.299745i
\(112\) 0 0
\(113\) −0.221563 + 0.485156i −0.0208429 + 0.0456397i −0.919767 0.392464i \(-0.871623\pi\)
0.898924 + 0.438104i \(0.144350\pi\)
\(114\) 0 0
\(115\) 3.45776 1.01529i 0.322438 0.0946762i
\(116\) 0 0
\(117\) 3.39541 2.18209i 0.313905 0.201735i
\(118\) 0 0
\(119\) 5.54639 1.62857i 0.508437 0.149291i
\(120\) 0 0
\(121\) −7.14111 + 8.24128i −0.649192 + 0.749207i
\(122\) 0 0
\(123\) −4.70956 10.3125i −0.424647 0.929847i
\(124\) 0 0
\(125\) −10.3222 3.03086i −0.923242 0.271088i
\(126\) 0 0
\(127\) 14.5727 + 4.27893i 1.29312 + 0.379693i 0.854721 0.519088i \(-0.173728\pi\)
0.438396 + 0.898782i \(0.355547\pi\)
\(128\) 0 0
\(129\) 4.53824 + 9.93736i 0.399570 + 0.874936i
\(130\) 0 0
\(131\) 2.05195 14.2716i 0.179279 1.24691i −0.679156 0.733994i \(-0.737654\pi\)
0.858436 0.512921i \(-0.171437\pi\)
\(132\) 0 0
\(133\) −1.19425 −0.103554
\(134\) 0 0
\(135\) 1.29092 0.111105
\(136\) 0 0
\(137\) 0.363829 2.53049i 0.0310840 0.216194i −0.968359 0.249561i \(-0.919714\pi\)
0.999443 + 0.0333665i \(0.0106229\pi\)
\(138\) 0 0
\(139\) 2.84479 + 6.22922i 0.241292 + 0.528356i 0.991071 0.133332i \(-0.0425677\pi\)
−0.749779 + 0.661688i \(0.769840\pi\)
\(140\) 0 0
\(141\) −7.93009 2.32849i −0.667834 0.196094i
\(142\) 0 0
\(143\) 18.1249 + 5.32195i 1.51568 + 0.445044i
\(144\) 0 0
\(145\) 2.45918 + 5.38486i 0.204224 + 0.447189i
\(146\) 0 0
\(147\) −4.03527 + 4.65695i −0.332823 + 0.384098i
\(148\) 0 0
\(149\) 2.77897 0.815978i 0.227662 0.0668475i −0.165912 0.986141i \(-0.553057\pi\)
0.393574 + 0.919293i \(0.371239\pi\)
\(150\) 0 0
\(151\) 12.3713 7.95055i 1.00676 0.647006i 0.0702086 0.997532i \(-0.477633\pi\)
0.936553 + 0.350526i \(0.113997\pi\)
\(152\) 0 0
\(153\) 6.05891 1.77906i 0.489834 0.143828i
\(154\) 0 0
\(155\) 0.911273 1.99541i 0.0731952 0.160275i
\(156\) 0 0
\(157\) 0.319653 2.22324i 0.0255111 0.177434i −0.973082 0.230459i \(-0.925977\pi\)
0.998593 + 0.0530253i \(0.0168864\pi\)
\(158\) 0 0
\(159\) −8.45315 + 9.75546i −0.670379 + 0.773658i
\(160\) 0 0
\(161\) 1.06157 2.32452i 0.0836638 0.183198i
\(162\) 0 0
\(163\) −18.7620 −1.46955 −0.734775 0.678311i \(-0.762712\pi\)
−0.734775 + 0.678311i \(0.762712\pi\)
\(164\) 0 0
\(165\) 3.95657 + 4.56612i 0.308018 + 0.355472i
\(166\) 0 0
\(167\) 11.4524 3.36274i 0.886215 0.260216i 0.193218 0.981156i \(-0.438108\pi\)
0.692998 + 0.720940i \(0.256290\pi\)
\(168\) 0 0
\(169\) −0.468261 3.25682i −0.0360200 0.250525i
\(170\) 0 0
\(171\) −1.30460 −0.0997655
\(172\) 0 0
\(173\) 12.1753 + 14.0510i 0.925669 + 1.06828i 0.997486 + 0.0708617i \(0.0225749\pi\)
−0.0718167 + 0.997418i \(0.522880\pi\)
\(174\) 0 0
\(175\) −2.56712 + 1.64979i −0.194056 + 0.124712i
\(176\) 0 0
\(177\) 0.887022 0.570055i 0.0666727 0.0428479i
\(178\) 0 0
\(179\) −0.247637 1.72235i −0.0185093 0.128735i 0.978472 0.206381i \(-0.0661686\pi\)
−0.996981 + 0.0776462i \(0.975260\pi\)
\(180\) 0 0
\(181\) 1.26330 8.78646i 0.0939005 0.653092i −0.887455 0.460893i \(-0.847529\pi\)
0.981356 0.192199i \(-0.0615619\pi\)
\(182\) 0 0
\(183\) 11.5919 + 7.44965i 0.856897 + 0.550694i
\(184\) 0 0
\(185\) 1.71096 + 3.74647i 0.125792 + 0.275446i
\(186\) 0 0
\(187\) 24.8628 + 15.9783i 1.81814 + 1.16845i
\(188\) 0 0
\(189\) 0.599466 0.691821i 0.0436048 0.0503226i
\(190\) 0 0
\(191\) −0.695824 4.83956i −0.0503481 0.350179i −0.999387 0.0350187i \(-0.988851\pi\)
0.949039 0.315160i \(-0.102058\pi\)
\(192\) 0 0
\(193\) −9.99031 11.5294i −0.719118 0.829906i 0.272083 0.962274i \(-0.412288\pi\)
−0.991201 + 0.132367i \(0.957742\pi\)
\(194\) 0 0
\(195\) 2.16445 4.73948i 0.154999 0.339401i
\(196\) 0 0
\(197\) −9.60601 6.17341i −0.684400 0.439837i 0.151691 0.988428i \(-0.451528\pi\)
−0.836091 + 0.548591i \(0.815164\pi\)
\(198\) 0 0
\(199\) 1.68870 + 0.495846i 0.119709 + 0.0351496i 0.341038 0.940049i \(-0.389221\pi\)
−0.221330 + 0.975199i \(0.571040\pi\)
\(200\) 0 0
\(201\) 6.67194 4.74185i 0.470603 0.334464i
\(202\) 0 0
\(203\) 4.02779 + 1.18266i 0.282695 + 0.0830068i
\(204\) 0 0
\(205\) −12.3119 7.91239i −0.859901 0.552625i
\(206\) 0 0
\(207\) 1.15967 2.53932i 0.0806027 0.176495i
\(208\) 0 0
\(209\) −3.99850 4.61451i −0.276582 0.319192i
\(210\) 0 0
\(211\) 1.35955 + 9.45589i 0.0935954 + 0.650970i 0.981574 + 0.191085i \(0.0612005\pi\)
−0.887978 + 0.459886i \(0.847890\pi\)
\(212\) 0 0
\(213\) 0.555121 0.640644i 0.0380363 0.0438962i
\(214\) 0 0
\(215\) 11.8640 + 7.62455i 0.809121 + 0.519990i
\(216\) 0 0
\(217\) −0.646196 1.41497i −0.0438666 0.0960545i
\(218\) 0 0
\(219\) −5.87062 3.77282i −0.396700 0.254943i
\(220\) 0 0
\(221\) 3.62717 25.2275i 0.243990 1.69699i
\(222\) 0 0
\(223\) 2.92842 + 20.3676i 0.196101 + 1.36391i 0.815463 + 0.578809i \(0.196482\pi\)
−0.619362 + 0.785106i \(0.712609\pi\)
\(224\) 0 0
\(225\) −2.80433 + 1.80224i −0.186956 + 0.120149i
\(226\) 0 0
\(227\) 21.7603 13.9845i 1.44428 0.928184i 0.444813 0.895623i \(-0.353270\pi\)
0.999470 0.0325608i \(-0.0103663\pi\)
\(228\) 0 0
\(229\) 8.12663 + 9.37863i 0.537023 + 0.619757i 0.957810 0.287402i \(-0.0927916\pi\)
−0.420787 + 0.907159i \(0.638246\pi\)
\(230\) 0 0
\(231\) 4.28435 0.281890
\(232\) 0 0
\(233\) −0.783459 5.44908i −0.0513261 0.356981i −0.999258 0.0385086i \(-0.987739\pi\)
0.947932 0.318472i \(-0.103170\pi\)
\(234\) 0 0
\(235\) −10.2371 + 3.00590i −0.667797 + 0.196083i
\(236\) 0 0
\(237\) −4.15154 4.79113i −0.269671 0.311217i
\(238\) 0 0
\(239\) −17.6365 −1.14081 −0.570406 0.821363i \(-0.693214\pi\)
−0.570406 + 0.821363i \(0.693214\pi\)
\(240\) 0 0
\(241\) 10.5756 23.1572i 0.681231 1.49169i −0.180102 0.983648i \(-0.557643\pi\)
0.861333 0.508041i \(-0.169630\pi\)
\(242\) 0 0
\(243\) 0.654861 0.755750i 0.0420093 0.0484814i
\(244\) 0 0
\(245\) −1.13207 + 7.87373i −0.0723254 + 0.503034i
\(246\) 0 0
\(247\) −2.18738 + 4.78970i −0.139180 + 0.304762i
\(248\) 0 0
\(249\) −4.66840 + 1.37077i −0.295848 + 0.0868688i
\(250\) 0 0
\(251\) −0.539104 + 0.346461i −0.0340280 + 0.0218684i −0.557544 0.830147i \(-0.688256\pi\)
0.523516 + 0.852016i \(0.324620\pi\)
\(252\) 0 0
\(253\) 12.5361 3.68094i 0.788140 0.231419i
\(254\) 0 0
\(255\) 5.33829 6.16072i 0.334297 0.385799i
\(256\) 0 0
\(257\) 8.04521 + 17.6166i 0.501847 + 1.09889i 0.975865 + 0.218376i \(0.0700758\pi\)
−0.474018 + 0.880515i \(0.657197\pi\)
\(258\) 0 0
\(259\) 2.80230 + 0.822829i 0.174126 + 0.0511281i
\(260\) 0 0
\(261\) 4.39998 + 1.29195i 0.272352 + 0.0799697i
\(262\) 0 0
\(263\) 10.6614 + 23.3452i 0.657409 + 1.43952i 0.884917 + 0.465748i \(0.154215\pi\)
−0.227508 + 0.973776i \(0.573058\pi\)
\(264\) 0 0
\(265\) −2.37149 + 16.4940i −0.145679 + 1.01322i
\(266\) 0 0
\(267\) −6.03415 −0.369284
\(268\) 0 0
\(269\) −17.6429 −1.07571 −0.537854 0.843038i \(-0.680765\pi\)
−0.537854 + 0.843038i \(0.680765\pi\)
\(270\) 0 0
\(271\) 1.54182 10.7236i 0.0936586 0.651410i −0.887870 0.460094i \(-0.847816\pi\)
0.981529 0.191316i \(-0.0612754\pi\)
\(272\) 0 0
\(273\) −1.53484 3.36083i −0.0928927 0.203407i
\(274\) 0 0
\(275\) −14.9697 4.39551i −0.902709 0.265059i
\(276\) 0 0
\(277\) 17.8315 + 5.23580i 1.07139 + 0.314589i 0.769429 0.638732i \(-0.220541\pi\)
0.301961 + 0.953320i \(0.402359\pi\)
\(278\) 0 0
\(279\) −0.705908 1.54572i −0.0422616 0.0925401i
\(280\) 0 0
\(281\) −4.54316 + 5.24308i −0.271022 + 0.312776i −0.874903 0.484299i \(-0.839075\pi\)
0.603881 + 0.797075i \(0.293620\pi\)
\(282\) 0 0
\(283\) −10.8588 + 3.18842i −0.645486 + 0.189532i −0.588059 0.808818i \(-0.700108\pi\)
−0.0574269 + 0.998350i \(0.518290\pi\)
\(284\) 0 0
\(285\) −1.41679 + 0.910516i −0.0839234 + 0.0539343i
\(286\) 0 0
\(287\) −9.95763 + 2.92382i −0.587780 + 0.172588i
\(288\) 0 0
\(289\) 9.50281 20.8083i 0.558989 1.22402i
\(290\) 0 0
\(291\) −2.23824 + 15.5673i −0.131208 + 0.912572i
\(292\) 0 0
\(293\) −22.3591 + 25.8038i −1.30623 + 1.50747i −0.597984 + 0.801508i \(0.704031\pi\)
−0.708248 + 0.705964i \(0.750514\pi\)
\(294\) 0 0
\(295\) 0.565445 1.23815i 0.0329215 0.0720880i
\(296\) 0 0
\(297\) 4.68025 0.271576
\(298\) 0 0
\(299\) −7.37847 8.51520i −0.426708 0.492447i
\(300\) 0 0
\(301\) 9.59540 2.81746i 0.553069 0.162396i
\(302\) 0 0
\(303\) 1.63666 + 11.3832i 0.0940236 + 0.653948i
\(304\) 0 0
\(305\) 17.7880 1.01854
\(306\) 0 0
\(307\) −14.3693 16.5830i −0.820099 0.946445i 0.179203 0.983812i \(-0.442648\pi\)
−0.999302 + 0.0373676i \(0.988103\pi\)
\(308\) 0 0
\(309\) 2.81415 1.80855i 0.160092 0.102885i
\(310\) 0 0
\(311\) −4.77241 + 3.06704i −0.270618 + 0.173916i −0.668911 0.743343i \(-0.733239\pi\)
0.398293 + 0.917258i \(0.369603\pi\)
\(312\) 0 0
\(313\) −0.217998 1.51621i −0.0123220 0.0857013i 0.982732 0.185032i \(-0.0592389\pi\)
−0.995054 + 0.0993308i \(0.968330\pi\)
\(314\) 0 0
\(315\) 0.168177 1.16970i 0.00947570 0.0659049i
\(316\) 0 0
\(317\) 9.95310 + 6.39647i 0.559022 + 0.359262i 0.789438 0.613831i \(-0.210372\pi\)
−0.230416 + 0.973092i \(0.574009\pi\)
\(318\) 0 0
\(319\) 8.91580 + 19.5229i 0.499189 + 1.09307i
\(320\) 0 0
\(321\) −14.9431 9.60337i −0.834045 0.536008i
\(322\) 0 0
\(323\) −5.39486 + 6.22600i −0.300178 + 0.346424i
\(324\) 0 0
\(325\) 1.91477 + 13.3176i 0.106213 + 0.738725i
\(326\) 0 0
\(327\) −12.2705 14.1609i −0.678560 0.783100i
\(328\) 0 0
\(329\) −3.14293 + 6.88205i −0.173275 + 0.379420i
\(330\) 0 0
\(331\) −15.8023 10.1555i −0.868574 0.558199i 0.0287421 0.999587i \(-0.490850\pi\)
−0.897316 + 0.441388i \(0.854486\pi\)
\(332\) 0 0
\(333\) 3.06125 + 0.898863i 0.167755 + 0.0492574i
\(334\) 0 0
\(335\) 3.93623 9.80614i 0.215059 0.535767i
\(336\) 0 0
\(337\) −9.09726 2.67120i −0.495559 0.145509i 0.0243968 0.999702i \(-0.492233\pi\)
−0.519956 + 0.854193i \(0.674052\pi\)
\(338\) 0 0
\(339\) 0.448686 + 0.288353i 0.0243693 + 0.0156612i
\(340\) 0 0
\(341\) 3.30383 7.23438i 0.178912 0.391764i
\(342\) 0 0
\(343\) 7.89019 + 9.10577i 0.426030 + 0.491665i
\(344\) 0 0
\(345\) −0.512865 3.56705i −0.0276117 0.192044i
\(346\) 0 0
\(347\) −3.54827 + 4.09492i −0.190481 + 0.219827i −0.842955 0.537984i \(-0.819186\pi\)
0.652474 + 0.757812i \(0.273731\pi\)
\(348\) 0 0
\(349\) 8.19562 + 5.26700i 0.438701 + 0.281936i 0.741290 0.671185i \(-0.234214\pi\)
−0.302589 + 0.953121i \(0.597851\pi\)
\(350\) 0 0
\(351\) −1.67667 3.67139i −0.0894939 0.195964i
\(352\) 0 0
\(353\) −15.8570 10.1907i −0.843985 0.542396i 0.0457083 0.998955i \(-0.485446\pi\)
−0.889693 + 0.456559i \(0.849082\pi\)
\(354\) 0 0
\(355\) 0.155736 1.08317i 0.00826562 0.0574886i
\(356\) 0 0
\(357\) −0.822657 5.72171i −0.0435396 0.302825i
\(358\) 0 0
\(359\) 1.41898 0.911924i 0.0748910 0.0481295i −0.502659 0.864485i \(-0.667645\pi\)
0.577550 + 0.816355i \(0.304009\pi\)
\(360\) 0 0
\(361\) −14.5520 + 9.35201i −0.765895 + 0.492211i
\(362\) 0 0
\(363\) 7.14111 + 8.24128i 0.374811 + 0.432555i
\(364\) 0 0
\(365\) −9.00860 −0.471532
\(366\) 0 0
\(367\) −1.94807 13.5491i −0.101688 0.707258i −0.975340 0.220707i \(-0.929164\pi\)
0.873652 0.486552i \(-0.161745\pi\)
\(368\) 0 0
\(369\) −10.8778 + 3.19400i −0.566274 + 0.166273i
\(370\) 0 0
\(371\) 7.73811 + 8.93025i 0.401742 + 0.463635i
\(372\) 0 0
\(373\) −30.3720 −1.57260 −0.786302 0.617842i \(-0.788007\pi\)
−0.786302 + 0.617842i \(0.788007\pi\)
\(374\) 0 0
\(375\) −4.46901 + 9.78576i −0.230778 + 0.505334i
\(376\) 0 0
\(377\) 12.1205 13.9879i 0.624240 0.720411i
\(378\) 0 0
\(379\) 0.921830 6.41147i 0.0473512 0.329335i −0.952353 0.304999i \(-0.901344\pi\)
0.999704 0.0243359i \(-0.00774712\pi\)
\(380\) 0 0
\(381\) 6.30928 13.8154i 0.323234 0.707785i
\(382\) 0 0
\(383\) −5.28953 + 1.55315i −0.270282 + 0.0793621i −0.414065 0.910247i \(-0.635891\pi\)
0.143783 + 0.989609i \(0.454073\pi\)
\(384\) 0 0
\(385\) 4.65278 2.99016i 0.237128 0.152393i
\(386\) 0 0
\(387\) 10.4821 3.07781i 0.532834 0.156454i
\(388\) 0 0
\(389\) 0.154633 0.178456i 0.00784021 0.00904808i −0.751816 0.659373i \(-0.770822\pi\)
0.759656 + 0.650325i \(0.225367\pi\)
\(390\) 0 0
\(391\) −7.32298 16.0351i −0.370339 0.810929i
\(392\) 0 0
\(393\) −13.8343 4.06212i −0.697848 0.204907i
\(394\) 0 0
\(395\) −7.85240 2.30567i −0.395097 0.116011i
\(396\) 0 0
\(397\) −1.72141 3.76936i −0.0863949 0.189179i 0.861503 0.507752i \(-0.169523\pi\)
−0.947898 + 0.318574i \(0.896796\pi\)
\(398\) 0 0
\(399\) −0.169959 + 1.18209i −0.00850859 + 0.0591786i
\(400\) 0 0
\(401\) −36.4984 −1.82264 −0.911322 0.411694i \(-0.864937\pi\)
−0.911322 + 0.411694i \(0.864937\pi\)
\(402\) 0 0
\(403\) −6.85853 −0.341648
\(404\) 0 0
\(405\) 0.183718 1.27778i 0.00912900 0.0634936i
\(406\) 0 0
\(407\) 6.20309 + 13.5829i 0.307476 + 0.673278i
\(408\) 0 0
\(409\) 24.7894 + 7.27882i 1.22576 + 0.359914i 0.829646 0.558289i \(-0.188542\pi\)
0.396109 + 0.918203i \(0.370360\pi\)
\(410\) 0 0
\(411\) −2.45295 0.720252i −0.120995 0.0355274i
\(412\) 0 0
\(413\) −0.400964 0.877989i −0.0197302 0.0432030i
\(414\) 0 0
\(415\) −4.11316 + 4.74684i −0.201907 + 0.233013i
\(416\) 0 0
\(417\) 6.57068 1.92932i 0.321767 0.0944794i
\(418\) 0 0
\(419\) 6.27243 4.03105i 0.306428 0.196930i −0.378385 0.925649i \(-0.623520\pi\)
0.684813 + 0.728719i \(0.259884\pi\)
\(420\) 0 0
\(421\) −33.0784 + 9.71269i −1.61214 + 0.473368i −0.958891 0.283774i \(-0.908413\pi\)
−0.653251 + 0.757142i \(0.726595\pi\)
\(422\) 0 0
\(423\) −3.43336 + 7.51800i −0.166935 + 0.365538i
\(424\) 0 0
\(425\) −2.99575 + 20.8359i −0.145315 + 1.01069i
\(426\) 0 0
\(427\) 8.26023 9.53281i 0.399740 0.461325i
\(428\) 0 0
\(429\) 7.84723 17.1830i 0.378868 0.829605i
\(430\) 0 0
\(431\) 2.41518 0.116335 0.0581677 0.998307i \(-0.481474\pi\)
0.0581677 + 0.998307i \(0.481474\pi\)
\(432\) 0 0
\(433\) −2.58300 2.98095i −0.124131 0.143255i 0.690282 0.723540i \(-0.257486\pi\)
−0.814413 + 0.580285i \(0.802941\pi\)
\(434\) 0 0
\(435\) 5.68003 1.66781i 0.272337 0.0799653i
\(436\) 0 0
\(437\) 0.518300 + 3.60485i 0.0247936 + 0.172443i
\(438\) 0 0
\(439\) −39.4321 −1.88199 −0.940996 0.338419i \(-0.890108\pi\)
−0.940996 + 0.338419i \(0.890108\pi\)
\(440\) 0 0
\(441\) 4.03527 + 4.65695i 0.192156 + 0.221759i
\(442\) 0 0
\(443\) −9.38461 + 6.03113i −0.445876 + 0.286547i −0.744249 0.667902i \(-0.767193\pi\)
0.298373 + 0.954449i \(0.403556\pi\)
\(444\) 0 0
\(445\) −6.55305 + 4.21139i −0.310644 + 0.199639i
\(446\) 0 0
\(447\) −0.412184 2.86681i −0.0194957 0.135595i
\(448\) 0 0
\(449\) −2.10295 + 14.6264i −0.0992446 + 0.690261i 0.878080 + 0.478514i \(0.158824\pi\)
−0.977324 + 0.211747i \(0.932085\pi\)
\(450\) 0 0
\(451\) −44.6370 28.6864i −2.10187 1.35079i
\(452\) 0 0
\(453\) −6.10900 13.3769i −0.287026 0.628499i
\(454\) 0 0
\(455\) −4.01243 2.57863i −0.188106 0.120888i
\(456\) 0 0
\(457\) −5.81019 + 6.70531i −0.271789 + 0.313661i −0.875193 0.483775i \(-0.839265\pi\)
0.603403 + 0.797436i \(0.293811\pi\)
\(458\) 0 0
\(459\) −0.898676 6.25043i −0.0419466 0.291745i
\(460\) 0 0
\(461\) 11.1451 + 12.8621i 0.519077 + 0.599047i 0.953400 0.301710i \(-0.0975576\pi\)
−0.434322 + 0.900758i \(0.643012\pi\)
\(462\) 0 0
\(463\) −4.73052 + 10.3584i −0.219846 + 0.481395i −0.987132 0.159910i \(-0.948880\pi\)
0.767286 + 0.641305i \(0.221607\pi\)
\(464\) 0 0
\(465\) −1.84541 1.18597i −0.0855789 0.0549982i
\(466\) 0 0
\(467\) −16.7589 4.92085i −0.775509 0.227710i −0.130052 0.991507i \(-0.541515\pi\)
−0.645456 + 0.763797i \(0.723333\pi\)
\(468\) 0 0
\(469\) −3.42736 6.66315i −0.158261 0.307676i
\(470\) 0 0
\(471\) −2.15512 0.632799i −0.0993025 0.0291578i
\(472\) 0 0
\(473\) 43.0132 + 27.6429i 1.97775 + 1.27102i
\(474\) 0 0
\(475\) 1.80660 3.95591i 0.0828927 0.181510i
\(476\) 0 0
\(477\) 8.45315 + 9.75546i 0.387043 + 0.446672i
\(478\) 0 0
\(479\) 1.37595 + 9.56996i 0.0628689 + 0.437262i 0.996808 + 0.0798314i \(0.0254382\pi\)
−0.933940 + 0.357431i \(0.883653\pi\)
\(480\) 0 0
\(481\) 8.43277 9.73193i 0.384501 0.443738i
\(482\) 0 0
\(483\) −2.14979 1.38158i −0.0978186 0.0628642i
\(484\) 0 0
\(485\) 8.43411 + 18.4681i 0.382973 + 0.838595i
\(486\) 0 0
\(487\) 5.92522 + 3.80790i 0.268497 + 0.172553i 0.667961 0.744196i \(-0.267167\pi\)
−0.399464 + 0.916749i \(0.630804\pi\)
\(488\) 0 0
\(489\) −2.67010 + 18.5710i −0.120746 + 0.839809i
\(490\) 0 0
\(491\) −1.35208 9.40389i −0.0610183 0.424392i −0.997318 0.0731898i \(-0.976682\pi\)
0.936300 0.351202i \(-0.114227\pi\)
\(492\) 0 0
\(493\) 24.3606 15.6556i 1.09715 0.705094i
\(494\) 0 0
\(495\) 5.08273 3.26647i 0.228452 0.146817i
\(496\) 0 0
\(497\) −0.508164 0.586452i −0.0227943 0.0263060i
\(498\) 0 0
\(499\) 6.67323 0.298735 0.149367 0.988782i \(-0.452276\pi\)
0.149367 + 0.988782i \(0.452276\pi\)
\(500\) 0 0
\(501\) −1.69866 11.8144i −0.0758904 0.527830i
\(502\) 0 0
\(503\) 18.7005 5.49097i 0.833815 0.244830i 0.163160 0.986600i \(-0.447831\pi\)
0.670655 + 0.741769i \(0.266013\pi\)
\(504\) 0 0
\(505\) 9.72204 + 11.2198i 0.432625 + 0.499276i
\(506\) 0 0
\(507\) −3.29031 −0.146128
\(508\) 0 0
\(509\) 4.90861 10.7484i 0.217570 0.476413i −0.769103 0.639125i \(-0.779297\pi\)
0.986674 + 0.162712i \(0.0520241\pi\)
\(510\) 0 0
\(511\) −4.18333 + 4.82782i −0.185060 + 0.213570i
\(512\) 0 0
\(513\) −0.185664 + 1.29132i −0.00819728 + 0.0570133i
\(514\) 0 0
\(515\) 1.79392 3.92814i 0.0790496 0.173095i
\(516\) 0 0
\(517\) −37.1149 + 10.8979i −1.63231 + 0.479289i
\(518\) 0 0
\(519\) 15.6407 10.0517i 0.686552 0.441220i
\(520\) 0 0
\(521\) −1.69982 + 0.499113i −0.0744706 + 0.0218665i −0.318756 0.947837i \(-0.603265\pi\)
0.244285 + 0.969703i \(0.421447\pi\)
\(522\) 0 0
\(523\) 24.3294 28.0777i 1.06385 1.22775i 0.0911143 0.995840i \(-0.470957\pi\)
0.972737 0.231910i \(-0.0744974\pi\)
\(524\) 0 0
\(525\) 1.26765 + 2.77578i 0.0553250 + 0.121145i
\(526\) 0 0
\(527\) −10.2958 3.02312i −0.448493 0.131689i
\(528\) 0 0
\(529\) 14.5910 + 4.28431i 0.634392 + 0.186274i
\(530\) 0 0
\(531\) −0.438016 0.959121i −0.0190083 0.0416223i
\(532\) 0 0
\(533\) −6.51198 + 45.2918i −0.282065 + 1.96181i
\(534\) 0 0
\(535\) −22.9306 −0.991376
\(536\) 0 0
\(537\) −1.74006 −0.0750893
\(538\) 0 0
\(539\) −4.10434 + 28.5463i −0.176786 + 1.22958i
\(540\) 0 0
\(541\) −14.1105 30.8977i −0.606659 1.32840i −0.924836 0.380366i \(-0.875798\pi\)
0.318178 0.948031i \(-0.396929\pi\)
\(542\) 0 0
\(543\) −8.51724 2.50089i −0.365510 0.107323i
\(544\) 0 0
\(545\) −23.2090 6.81476i −0.994162 0.291912i
\(546\) 0 0
\(547\) −14.2268 31.1523i −0.608292 1.33197i −0.923736 0.383030i \(-0.874881\pi\)
0.315443 0.948944i \(-0.397847\pi\)
\(548\) 0 0
\(549\) 9.02352 10.4137i 0.385115 0.444446i
\(550\) 0 0
\(551\) −5.74022 + 1.68548i −0.244542 + 0.0718039i
\(552\) 0 0
\(553\) −4.88206 + 3.13751i −0.207606 + 0.133420i
\(554\) 0 0
\(555\) 3.95183 1.16036i 0.167746 0.0492547i
\(556\) 0 0
\(557\) −14.2264 + 31.1514i −0.602791 + 1.31993i 0.324606 + 0.945849i \(0.394768\pi\)
−0.927397 + 0.374079i \(0.877959\pi\)
\(558\) 0 0
\(559\) 6.27509 43.6442i 0.265408 1.84595i
\(560\) 0 0
\(561\) 19.3540 22.3357i 0.817128 0.943015i
\(562\) 0 0
\(563\) 5.74664 12.5834i 0.242192 0.530326i −0.749030 0.662536i \(-0.769480\pi\)
0.991222 + 0.132210i \(0.0422074\pi\)
\(564\) 0 0
\(565\) 0.688520 0.0289662
\(566\) 0 0
\(567\) −0.599466 0.691821i −0.0251752 0.0290538i
\(568\) 0 0
\(569\) −22.8778 + 6.71752i −0.959086 + 0.281613i −0.723565 0.690256i \(-0.757498\pi\)
−0.235521 + 0.971869i \(0.575680\pi\)
\(570\) 0 0
\(571\) −2.86947 19.9576i −0.120083 0.835199i −0.957459 0.288570i \(-0.906820\pi\)
0.837375 0.546628i \(-0.184089\pi\)
\(572\) 0 0
\(573\) −4.88933 −0.204255
\(574\) 0 0
\(575\) 6.09402 + 7.03288i 0.254138 + 0.293291i
\(576\) 0 0
\(577\) 38.5138 24.7513i 1.60335 1.03041i 0.637799 0.770203i \(-0.279845\pi\)
0.965552 0.260209i \(-0.0837915\pi\)
\(578\) 0 0
\(579\) −12.8338 + 8.24781i −0.533356 + 0.342767i
\(580\) 0 0
\(581\) 0.633859 + 4.40859i 0.0262969 + 0.182899i
\(582\) 0 0
\(583\) −8.59784 + 59.7993i −0.356086 + 2.47663i
\(584\) 0 0
\(585\) −4.38321 2.81692i −0.181223 0.116465i
\(586\) 0 0
\(587\) −5.08565 11.1360i −0.209907 0.459633i 0.775169 0.631755i \(-0.217665\pi\)
−0.985076 + 0.172122i \(0.944938\pi\)
\(588\) 0 0
\(589\) 1.86497 + 1.19854i 0.0768446 + 0.0493851i
\(590\) 0 0
\(591\) −7.47765 + 8.62967i −0.307589 + 0.354977i
\(592\) 0 0
\(593\) 2.72655 + 18.9636i 0.111966 + 0.778740i 0.966003 + 0.258529i \(0.0832378\pi\)
−0.854038 + 0.520211i \(0.825853\pi\)
\(594\) 0 0
\(595\) −4.88673 5.63958i −0.200336 0.231200i
\(596\) 0 0
\(597\) 0.731126 1.60094i 0.0299230 0.0655222i
\(598\) 0 0
\(599\) −6.64809 4.27247i −0.271634 0.174568i 0.397732 0.917502i \(-0.369798\pi\)
−0.669365 + 0.742933i \(0.733434\pi\)
\(600\) 0 0
\(601\) 45.8502 + 13.4628i 1.87027 + 0.549160i 0.998213 + 0.0597497i \(0.0190303\pi\)
0.872054 + 0.489410i \(0.162788\pi\)
\(602\) 0 0
\(603\) −3.74407 7.27887i −0.152470 0.296418i
\(604\) 0 0
\(605\) 13.5070 + 3.96601i 0.549138 + 0.161241i
\(606\) 0 0
\(607\) 31.8022 + 20.4381i 1.29081 + 0.829555i 0.992180 0.124813i \(-0.0398331\pi\)
0.298633 + 0.954368i \(0.403469\pi\)
\(608\) 0 0
\(609\) 1.74384 3.81848i 0.0706640 0.154733i
\(610\) 0 0
\(611\) 21.8449 + 25.2104i 0.883750 + 1.01990i
\(612\) 0 0
\(613\) 1.67191 + 11.6284i 0.0675277 + 0.469665i 0.995325 + 0.0965811i \(0.0307907\pi\)
−0.927797 + 0.373084i \(0.878300\pi\)
\(614\) 0 0
\(615\) −9.58402 + 11.0605i −0.386465 + 0.446004i
\(616\) 0 0
\(617\) −7.59820 4.88307i −0.305892 0.196585i 0.378685 0.925526i \(-0.376377\pi\)
−0.684577 + 0.728941i \(0.740013\pi\)
\(618\) 0 0
\(619\) 11.0328 + 24.1584i 0.443445 + 0.971009i 0.990953 + 0.134209i \(0.0428492\pi\)
−0.547508 + 0.836800i \(0.684424\pi\)
\(620\) 0 0
\(621\) −2.34844 1.50925i −0.0942396 0.0605641i
\(622\) 0 0
\(623\) −0.786108 + 5.46750i −0.0314947 + 0.219051i
\(624\) 0 0
\(625\) −0.395625 2.75163i −0.0158250 0.110065i
\(626\) 0 0
\(627\) −5.13659 + 3.30108i −0.205135 + 0.131833i
\(628\) 0 0
\(629\) 16.9487 10.8923i 0.675789 0.434303i
\(630\) 0 0
\(631\) 17.4120 + 20.0946i 0.693162 + 0.799952i 0.987812 0.155653i \(-0.0497483\pi\)
−0.294649 + 0.955605i \(0.595203\pi\)
\(632\) 0 0
\(633\) 9.55312 0.379703
\(634\) 0 0
\(635\) −2.79028 19.4069i −0.110729 0.770137i
\(636\) 0 0
\(637\) 23.8633 7.00689i 0.945497 0.277623i
\(638\) 0 0
\(639\) −0.555121 0.640644i −0.0219603 0.0253435i
\(640\) 0 0
\(641\) 1.86764 0.0737675 0.0368837 0.999320i \(-0.488257\pi\)
0.0368837 + 0.999320i \(0.488257\pi\)
\(642\) 0 0
\(643\) −10.6907 + 23.4093i −0.421599 + 0.923173i 0.573017 + 0.819544i \(0.305773\pi\)
−0.994616 + 0.103630i \(0.966954\pi\)
\(644\) 0 0
\(645\) 9.23538 10.6582i 0.363643 0.419666i
\(646\) 0 0
\(647\) −3.86134 + 26.8562i −0.151805 + 1.05583i 0.761387 + 0.648297i \(0.224519\pi\)
−0.913192 + 0.407529i \(0.866390\pi\)
\(648\) 0 0
\(649\) 2.05003 4.48893i 0.0804705 0.176206i
\(650\) 0 0
\(651\) −1.49253 + 0.438247i −0.0584970 + 0.0171763i
\(652\) 0 0
\(653\) −34.3930 + 22.1030i −1.34590 + 0.864958i −0.997380 0.0723425i \(-0.976953\pi\)
−0.348522 + 0.937301i \(0.613316\pi\)
\(654\) 0 0
\(655\) −17.8590 + 5.24388i −0.697810 + 0.204895i
\(656\) 0 0
\(657\) −4.56989 + 5.27394i −0.178288 + 0.205756i
\(658\) 0 0
\(659\) −11.4622 25.0987i −0.446504 0.977708i −0.990358 0.138529i \(-0.955763\pi\)
0.543854 0.839180i \(-0.316965\pi\)
\(660\) 0 0
\(661\) 36.1468 + 10.6137i 1.40595 + 0.412823i 0.894722 0.446623i \(-0.147374\pi\)
0.511225 + 0.859447i \(0.329192\pi\)
\(662\) 0 0
\(663\) −24.4545 7.18050i −0.949736 0.278868i
\(664\) 0 0
\(665\) 0.640437 + 1.40236i 0.0248351 + 0.0543813i
\(666\) 0 0
\(667\) 1.82184 12.6712i 0.0705421 0.490631i
\(668\) 0 0
\(669\) 20.5770 0.795554
\(670\) 0 0
\(671\) 64.4906 2.48963
\(672\) 0 0
\(673\) −0.740340 + 5.14918i −0.0285380 + 0.198486i −0.999103 0.0423546i \(-0.986514\pi\)
0.970565 + 0.240841i \(0.0774232\pi\)
\(674\) 0 0
\(675\) 1.38479 + 3.03227i 0.0533007 + 0.116712i
\(676\) 0 0
\(677\) 17.1129 + 5.02479i 0.657701 + 0.193119i 0.593519 0.804820i \(-0.297738\pi\)
0.0641819 + 0.997938i \(0.479556\pi\)
\(678\) 0 0
\(679\) 13.8138 + 4.05611i 0.530127 + 0.155659i
\(680\) 0 0
\(681\) −10.7453 23.5290i −0.411763 0.901634i
\(682\) 0 0
\(683\) −10.4179 + 12.0230i −0.398632 + 0.460046i −0.919210 0.393769i \(-0.871171\pi\)
0.520578 + 0.853814i \(0.325717\pi\)
\(684\) 0 0
\(685\) −3.16657 + 0.929790i −0.120989 + 0.0355255i
\(686\) 0 0
\(687\) 10.4397 6.70919i 0.398300 0.255972i
\(688\) 0 0
\(689\) 49.9892 14.6782i 1.90444 0.559193i
\(690\) 0 0
\(691\) 9.96608 21.8227i 0.379127 0.830173i −0.619839 0.784729i \(-0.712802\pi\)
0.998967 0.0454445i \(-0.0144704\pi\)
\(692\) 0 0
\(693\) 0.609727 4.24074i 0.0231616 0.161093i
\(694\) 0 0
\(695\) 5.78919 6.68108i 0.219596 0.253428i
\(696\) 0 0
\(697\) −29.7395 + 65.1204i −1.12646 + 2.46661i
\(698\) 0 0
\(699\) −5.50511 −0.208222
\(700\) 0 0
\(701\) 0.626793 + 0.723358i 0.0236736 + 0.0273208i 0.767463 0.641093i \(-0.221519\pi\)
−0.743789 + 0.668414i \(0.766973\pi\)
\(702\) 0 0
\(703\) −3.99371 + 1.17266i −0.150626 + 0.0442277i
\(704\) 0 0
\(705\) 1.51840 + 10.5607i 0.0571864 + 0.397740i
\(706\) 0 0
\(707\) 10.5275 0.395926
\(708\) 0 0
\(709\) −0.228790 0.264038i −0.00859240 0.00991616i 0.751437 0.659805i \(-0.229361\pi\)
−0.760030 + 0.649889i \(0.774816\pi\)
\(710\) 0 0
\(711\) −5.33319 + 3.42743i −0.200010 + 0.128539i
\(712\) 0 0
\(713\) −3.99067 + 2.56465i −0.149452 + 0.0960467i
\(714\) 0 0
\(715\) −3.47044 24.1374i −0.129787 0.902689i
\(716\) 0 0
\(717\) −2.50994 + 17.4570i −0.0937355 + 0.651944i
\(718\) 0 0
\(719\) −28.6986 18.4435i −1.07028 0.687827i −0.117987 0.993015i \(-0.537644\pi\)
−0.952292 + 0.305189i \(0.901281\pi\)
\(720\) 0 0
\(721\) −1.27209 2.78550i −0.0473752 0.103737i
\(722\) 0 0
\(723\) −21.4165 13.7635i −0.796487 0.511871i
\(724\) 0 0
\(725\) −10.0106 + 11.5529i −0.371785 + 0.429062i
\(726\) 0 0
\(727\) −5.90672 41.0822i −0.219068 1.52365i −0.741489 0.670965i \(-0.765880\pi\)
0.522421 0.852688i \(-0.325029\pi\)
\(728\) 0 0
\(729\) −0.654861 0.755750i −0.0242541 0.0279907i
\(730\) 0 0
\(731\) 28.6576 62.7515i 1.05994 2.32095i
\(732\) 0 0
\(733\) 2.89542 + 1.86078i 0.106945 + 0.0687293i 0.593020 0.805188i \(-0.297935\pi\)
−0.486075 + 0.873917i \(0.661572\pi\)
\(734\) 0 0
\(735\) 7.63248 + 2.24110i 0.281528 + 0.0826641i
\(736\) 0 0
\(737\) 14.2708 35.5523i 0.525673 1.30958i
\(738\) 0 0
\(739\) 12.5370 + 3.68120i 0.461182 + 0.135415i 0.504066 0.863665i \(-0.331837\pi\)
−0.0428848 + 0.999080i \(0.513655\pi\)
\(740\) 0 0
\(741\) 4.42965 + 2.84677i 0.162727 + 0.104579i
\(742\) 0 0
\(743\) −0.112560 + 0.246471i −0.00412941 + 0.00904216i −0.911685 0.410889i \(-0.865218\pi\)
0.907556 + 0.419931i \(0.137946\pi\)
\(744\) 0 0
\(745\) −2.44845 2.82566i −0.0897041 0.103524i
\(746\) 0 0
\(747\) 0.692431 + 4.81597i 0.0253347 + 0.176207i
\(748\) 0 0
\(749\) −10.6483 + 12.2888i −0.389080 + 0.449022i
\(750\) 0 0
\(751\) 0.955593 + 0.614123i 0.0348701 + 0.0224097i 0.557960 0.829868i \(-0.311584\pi\)
−0.523090 + 0.852278i \(0.675221\pi\)
\(752\) 0 0
\(753\) 0.266212 + 0.582924i 0.00970131 + 0.0212429i
\(754\) 0 0
\(755\) −15.9704 10.2635i −0.581222 0.373529i
\(756\) 0 0
\(757\) 7.19178 50.0199i 0.261390 1.81800i −0.261046 0.965326i \(-0.584068\pi\)
0.522436 0.852678i \(-0.325023\pi\)
\(758\) 0 0
\(759\) −1.85940 12.9324i −0.0674918 0.469416i
\(760\) 0 0
\(761\) 11.4862 7.38174i 0.416375 0.267588i −0.315637 0.948880i \(-0.602218\pi\)
0.732011 + 0.681292i \(0.238582\pi\)
\(762\) 0 0
\(763\) −14.4297 + 9.27338i −0.522389 + 0.335719i
\(764\) 0 0
\(765\) −5.33829 6.16072i −0.193006 0.222741i
\(766\) 0 0
\(767\) −4.25571 −0.153665
\(768\) 0 0
\(769\) −0.475579 3.30773i −0.0171498 0.119280i 0.979448 0.201696i \(-0.0646453\pi\)
−0.996598 + 0.0824164i \(0.973736\pi\)
\(770\) 0 0
\(771\) 18.5822 5.45623i 0.669222 0.196501i
\(772\) 0 0
\(773\) −25.6925 29.6508i −0.924096 1.06646i −0.997605 0.0691692i \(-0.977965\pi\)
0.0735089 0.997295i \(-0.476580\pi\)
\(774\) 0 0
\(775\) 5.66459 0.203478
\(776\) 0 0
\(777\) 1.21326 2.65667i 0.0435255 0.0953076i
\(778\) 0 0
\(779\) 9.68558 11.1777i 0.347022 0.400484i
\(780\) 0 0
\(781\) 0.564623 3.92704i 0.0202038 0.140520i
\(782\) 0 0
\(783\) 1.90498 4.17133i 0.0680785 0.149071i
\(784\) 0 0
\(785\) −2.78209 + 0.816895i −0.0992970 + 0.0291562i
\(786\) 0 0
\(787\) 11.9881 7.70428i 0.427329 0.274628i −0.309248 0.950982i \(-0.600077\pi\)
0.736577 + 0.676354i \(0.236441\pi\)
\(788\) 0 0
\(789\) 24.6248 7.23050i 0.876667 0.257413i
\(790\) 0 0
\(791\) 0.319728 0.368986i 0.0113682 0.0131196i
\(792\) 0 0
\(793\) −23.1033 50.5892i −0.820422 1.79647i
\(794\) 0 0
\(795\) 15.9887 + 4.69469i 0.567059 + 0.166504i
\(796\) 0 0
\(797\) 27.1945 + 7.98502i 0.963278 + 0.282844i 0.725305 0.688428i \(-0.241699\pi\)
0.237973 + 0.971272i \(0.423517\pi\)
\(798\) 0 0
\(799\) 21.6806 + 47.4739i 0.767005 + 1.67951i
\(800\) 0 0
\(801\) −0.858749 + 5.97273i −0.0303424 + 0.211036i
\(802\) 0 0
\(803\) −32.6608 −1.15257
\(804\) 0 0
\(805\) −3.29890 −0.116271
\(806\) 0 0
\(807\) −2.51085 + 17.4633i −0.0883861 + 0.614739i
\(808\) 0 0
\(809\) 18.7702 + 41.1009i 0.659924 + 1.44503i 0.882593 + 0.470138i \(0.155796\pi\)
−0.222669 + 0.974894i \(0.571477\pi\)
\(810\) 0 0
\(811\) 42.0405 + 12.3442i 1.47624 + 0.433464i 0.918122 0.396297i \(-0.129705\pi\)
0.558119 + 0.829761i \(0.311523\pi\)
\(812\) 0 0
\(813\) −10.3950 3.05224i −0.364568 0.107047i
\(814\) 0 0
\(815\) 10.0615 + 22.0315i 0.352437 + 0.771730i
\(816\) 0 0
\(817\) −9.33324 + 10.7711i −0.326529 + 0.376834i
\(818\) 0 0
\(819\) −3.54505 + 1.04092i −0.123874 + 0.0363727i
\(820\) 0 0
\(821\) 19.4989 12.5312i 0.680518 0.437342i −0.154186 0.988042i \(-0.549275\pi\)
0.834703 + 0.550700i \(0.185639\pi\)
\(822\) 0 0
\(823\) 14.0387 4.12214i 0.489359 0.143689i −0.0277384 0.999615i \(-0.508831\pi\)
0.517098 + 0.855926i \(0.327012\pi\)
\(824\) 0 0
\(825\) −6.48118 + 14.1918i −0.225646 + 0.494096i
\(826\) 0 0
\(827\) −4.42953 + 30.8081i −0.154030 + 1.07130i 0.755346 + 0.655326i \(0.227469\pi\)
−0.909376 + 0.415975i \(0.863440\pi\)
\(828\) 0 0
\(829\) 21.8685 25.2375i 0.759523 0.876536i −0.235932 0.971770i \(-0.575814\pi\)
0.995455 + 0.0952335i \(0.0303598\pi\)
\(830\) 0 0
\(831\) 7.72019 16.9049i 0.267810 0.586423i
\(832\) 0 0
\(833\) 38.9113 1.34820
\(834\) 0 0
\(835\) −10.0903 11.6449i −0.349190 0.402987i
\(836\) 0 0
\(837\) −1.63045 + 0.478744i −0.0563567 + 0.0165478i
\(838\) 0 0
\(839\) −8.11244 56.4232i −0.280072 1.94795i −0.316452 0.948608i \(-0.602492\pi\)
0.0363800 0.999338i \(-0.488417\pi\)
\(840\) 0 0
\(841\) −7.97107 −0.274864
\(842\) 0 0
\(843\) 4.54316 + 5.24308i 0.156475 + 0.180581i
\(844\) 0 0
\(845\) −3.57326 + 2.29640i −0.122924 + 0.0789984i
\(846\) 0 0
\(847\) 8.39768 5.39686i 0.288548 0.185438i
\(848\) 0 0
\(849\) 1.61060 + 11.2020i 0.0552757 + 0.384451i
\(850\) 0 0
\(851\) 1.26753 8.81588i 0.0434505 0.302205i
\(852\) 0 0
\(853\) 23.9866 + 15.4153i 0.821286 + 0.527808i 0.882498 0.470316i \(-0.155860\pi\)
−0.0612120 + 0.998125i \(0.519497\pi\)
\(854\) 0 0
\(855\) 0.699618 + 1.53195i 0.0239264 + 0.0523916i
\(856\) 0 0
\(857\) 37.4772 + 24.0851i 1.28020 + 0.822733i 0.990912 0.134510i \(-0.0429462\pi\)
0.289285 + 0.957243i \(0.406583\pi\)
\(858\) 0 0
\(859\) −26.6840 + 30.7949i −0.910445 + 1.05071i 0.0880631 + 0.996115i \(0.471932\pi\)
−0.998509 + 0.0545952i \(0.982613\pi\)
\(860\) 0 0
\(861\) 1.47694 + 10.2724i 0.0503341 + 0.350082i
\(862\) 0 0
\(863\) −11.9027 13.7365i −0.405173 0.467595i 0.516090 0.856534i \(-0.327387\pi\)
−0.921263 + 0.388939i \(0.872842\pi\)
\(864\) 0 0
\(865\) 9.97040 21.8321i 0.339004 0.742315i
\(866\) 0 0
\(867\) −19.2441 12.3674i −0.653563 0.420019i
\(868\) 0 0
\(869\) −28.4689 8.35923i −0.965742 0.283568i
\(870\) 0 0
\(871\) −33.0011 + 1.54170i −1.11820 + 0.0522384i
\(872\) 0 0
\(873\) 15.0903 + 4.43092i 0.510730 + 0.149964i
\(874\) 0 0
\(875\) 8.28460 + 5.32419i 0.280071 + 0.179990i
\(876\) 0 0
\(877\) 12.4408 27.2415i 0.420094 0.919879i −0.574737 0.818338i \(-0.694896\pi\)
0.994831 0.101540i \(-0.0323771\pi\)
\(878\) 0 0
\(879\) 22.3591 + 25.8038i 0.754153 + 0.870339i
\(880\) 0 0
\(881\) 4.60231 + 32.0097i 0.155056 + 1.07844i 0.907582 + 0.419874i \(0.137926\pi\)
−0.752527 + 0.658562i \(0.771165\pi\)
\(882\) 0 0
\(883\) 2.87319 3.31584i 0.0966905 0.111587i −0.705342 0.708867i \(-0.749207\pi\)
0.802033 + 0.597280i \(0.203752\pi\)
\(884\) 0 0
\(885\) −1.14508 0.735897i −0.0384914 0.0247369i
\(886\) 0 0
\(887\) 7.04191 + 15.4196i 0.236444 + 0.517741i 0.990241 0.139367i \(-0.0445068\pi\)
−0.753796 + 0.657108i \(0.771780\pi\)
\(888\) 0 0
\(889\) −11.6961 7.51662i −0.392274 0.252099i
\(890\) 0 0
\(891\) 0.666070 4.63262i 0.0223142 0.155198i
\(892\) 0 0
\(893\) −1.53449 10.6726i −0.0513499 0.357146i
\(894\) 0 0
\(895\) −1.88970 + 1.21444i −0.0631657 + 0.0405941i
\(896\) 0 0
\(897\) −9.47860 + 6.09152i −0.316481 + 0.203390i
\(898\) 0 0
\(899\) −5.10298 5.88915i −0.170194 0.196414i
\(900\) 0 0
\(901\) 81.5122 2.71557
\(902\) 0 0
\(903\) −1.42322 9.89870i −0.0473617 0.329408i
\(904\) 0 0
\(905\) −10.9951 + 3.22845i −0.365490 + 0.107317i
\(906\) 0 0
\(907\) −22.3807 25.8287i −0.743140 0.857629i 0.250745 0.968053i \(-0.419325\pi\)
−0.993885 + 0.110424i \(0.964779\pi\)
\(908\) 0 0
\(909\) 11.5003 0.381440
\(910\) 0 0
\(911\) −6.60586 + 14.4648i −0.218862 + 0.479241i −0.986934 0.161122i \(-0.948489\pi\)
0.768073 + 0.640363i \(0.221216\pi\)
\(912\) 0 0
\(913\) −14.9123 + 17.2097i −0.493525 + 0.569559i
\(914\) 0 0
\(915\) 2.53150 17.6070i 0.0836888 0.582068i
\(916\) 0 0
\(917\) −5.48294 + 12.0060i −0.181063 + 0.396472i
\(918\) 0 0
\(919\) −39.1542 + 11.4967i −1.29158 + 0.379241i −0.854157 0.520016i \(-0.825926\pi\)
−0.437420 + 0.899257i \(0.644108\pi\)
\(920\) 0 0
\(921\) −18.4592 + 11.8630i −0.608252 + 0.390900i
\(922\) 0 0
\(923\) −3.28281 + 0.963919i −0.108055 + 0.0317278i
\(924\) 0 0
\(925\) −6.96479 + 8.03780i −0.229001 + 0.264281i
\(926\) 0 0
\(927\) −1.38964 3.04289i −0.0456418 0.0999417i
\(928\) 0 0
\(929\) −27.8507 8.17769i −0.913751 0.268301i −0.209132 0.977887i \(-0.567064\pi\)
−0.704619 + 0.709586i \(0.748882\pi\)
\(930\) 0 0
\(931\) −7.71336 2.26485i −0.252795 0.0742273i
\(932\) 0 0
\(933\) 2.35664 + 5.16031i 0.0771528 + 0.168941i
\(934\) 0 0
\(935\) 5.42966 37.7641i 0.177569 1.23502i
\(936\) 0 0
\(937\) −26.1874 −0.855506 −0.427753 0.903896i \(-0.640695\pi\)
−0.427753 + 0.903896i \(0.640695\pi\)
\(938\) 0 0
\(939\) −1.53180 −0.0499885
\(940\) 0 0
\(941\) −2.64310 + 18.3832i −0.0861628 + 0.599275i 0.900298 + 0.435275i \(0.143349\pi\)
−0.986460 + 0.164000i \(0.947560\pi\)
\(942\) 0 0
\(943\) 13.1472 + 28.7883i 0.428131 + 0.937477i
\(944\) 0 0
\(945\) −1.13386 0.332930i −0.0368843 0.0108302i
\(946\) 0 0
\(947\) 0.641897 + 0.188478i 0.0208588 + 0.00612471i 0.292145 0.956374i \(-0.405631\pi\)
−0.271286 + 0.962499i \(0.587449\pi\)
\(948\) 0 0
\(949\) 11.7005 + 25.6205i 0.379814 + 0.831676i
\(950\) 0 0
\(951\) 7.74784 8.94148i 0.251241 0.289947i
\(952\) 0 0
\(953\) 15.5563 4.56775i 0.503919 0.147964i −0.0198859 0.999802i \(-0.506330\pi\)
0.523805 + 0.851838i \(0.324512\pi\)
\(954\) 0 0
\(955\) −5.30978 + 3.41239i −0.171821 + 0.110422i
\(956\) 0 0
\(957\) 20.5930 6.04665i 0.665678 0.195461i
\(958\) 0 0
\(959\) −0.972178 + 2.12877i −0.0313933 + 0.0687416i
\(960\) 0 0
\(961\) 4.00082 27.8263i 0.129059 0.897622i
\(962\) 0 0
\(963\) −11.6323 + 13.4243i −0.374844 + 0.432593i
\(964\) 0 0
\(965\) −8.18111 + 17.9141i −0.263359 + 0.576677i
\(966\) 0 0
\(967\) −2.70069 −0.0868483 −0.0434242 0.999057i \(-0.513827\pi\)
−0.0434242 + 0.999057i \(0.513827\pi\)
\(968\) 0 0
\(969\) 5.39486 + 6.22600i 0.173308 + 0.200008i
\(970\) 0 0
\(971\) 42.5821 12.5032i 1.36652 0.401248i 0.485466 0.874256i \(-0.338650\pi\)
0.881058 + 0.473008i \(0.156832\pi\)
\(972\) 0 0
\(973\) −0.892143 6.20499i −0.0286008 0.198923i
\(974\) 0 0
\(975\) 13.4545 0.430889
\(976\) 0 0
\(977\) −20.8501 24.0623i −0.667054 0.769822i 0.316858 0.948473i \(-0.397372\pi\)
−0.983912 + 0.178651i \(0.942827\pi\)
\(978\) 0 0
\(979\) −23.7581 + 15.2684i −0.759313 + 0.487981i
\(980\) 0 0
\(981\) −15.7631 + 10.1303i −0.503276 + 0.323436i
\(982\) 0 0
\(983\) 4.99044 + 34.7093i 0.159170 + 1.10705i 0.900167 + 0.435546i \(0.143445\pi\)
−0.740996 + 0.671509i \(0.765646\pi\)
\(984\) 0 0
\(985\) −2.09781 + 14.5906i −0.0668419 + 0.464895i
\(986\) 0 0
\(987\) 6.36472 + 4.09036i 0.202591 + 0.130198i
\(988\) 0 0
\(989\) −12.6689 27.7411i −0.402849 0.882115i
\(990\) 0 0
\(991\) 16.1265 + 10.3639i 0.512276 + 0.329220i 0.771110 0.636702i \(-0.219702\pi\)
−0.258834 + 0.965922i \(0.583338\pi\)
\(992\) 0 0
\(993\) −12.3011 + 14.1962i −0.390363 + 0.450503i
\(994\) 0 0
\(995\) −0.323341 2.24888i −0.0102506 0.0712944i
\(996\) 0 0
\(997\) 2.94916 + 3.40352i 0.0934010 + 0.107790i 0.800526 0.599298i \(-0.204554\pi\)
−0.707125 + 0.707089i \(0.750008\pi\)
\(998\) 0 0
\(999\) 1.32537 2.90217i 0.0419330 0.0918205i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 804.2.q.b.265.2 60
67.22 even 11 inner 804.2.q.b.625.2 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
804.2.q.b.265.2 60 1.1 even 1 trivial
804.2.q.b.625.2 yes 60 67.22 even 11 inner