Properties

Label 804.2.q.b.241.6
Level 804
Weight 2
Character 804.241
Analytic conductor 6.420
Analytic rank 0
Dimension 60
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(6\) over \(\Q(\zeta_{11})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 241.6
Character \(\chi\) = 804.241
Dual form 804.2.q.b.397.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.415415 + 0.909632i) q^{3} +(1.80159 + 0.528994i) q^{5} +(2.39007 + 2.75829i) q^{7} +(-0.654861 - 0.755750i) q^{9} +O(q^{10})\) \(q+(-0.415415 + 0.909632i) q^{3} +(1.80159 + 0.528994i) q^{5} +(2.39007 + 2.75829i) q^{7} +(-0.654861 - 0.755750i) q^{9} +(2.98671 + 0.876979i) q^{11} +(0.127238 + 0.0817712i) q^{13} +(-1.22960 + 1.41903i) q^{15} +(-0.323618 - 2.25081i) q^{17} +(-1.17218 + 1.35276i) q^{19} +(-3.50190 + 1.02825i) q^{21} +(0.274352 - 0.600747i) q^{23} +(-1.24038 - 0.797147i) q^{25} +(0.959493 - 0.281733i) q^{27} +2.20772 q^{29} +(1.43445 - 0.921865i) q^{31} +(-2.03845 + 2.35250i) q^{33} +(2.84681 + 6.23364i) q^{35} -3.35268 q^{37} +(-0.127238 + 0.0817712i) q^{39} +(1.30141 + 9.05150i) q^{41} +(-0.0505065 - 0.351281i) q^{43} +(-0.780002 - 1.70797i) q^{45} +(-0.965628 + 2.11443i) q^{47} +(-0.899518 + 6.25629i) q^{49} +(2.18184 + 0.640647i) q^{51} +(0.154553 - 1.07494i) q^{53} +(4.91691 + 3.15991i) q^{55} +(-0.743578 - 1.62821i) q^{57} +(9.65283 - 6.20349i) q^{59} +(-11.7220 + 3.44189i) q^{61} +(0.519413 - 3.61259i) q^{63} +(0.185975 + 0.214626i) q^{65} +(5.35460 + 6.19098i) q^{67} +(0.432489 + 0.499119i) q^{69} +(-0.518837 + 3.60859i) q^{71} +(-0.182327 + 0.0535362i) q^{73} +(1.24038 - 0.797147i) q^{75} +(4.71950 + 10.3343i) q^{77} +(-7.44167 - 4.78247i) q^{79} +(-0.142315 + 0.989821i) q^{81} +(6.58998 + 1.93499i) q^{83} +(0.607639 - 4.22622i) q^{85} +(-0.917121 + 2.00822i) q^{87} +(-1.09285 - 2.39302i) q^{89} +(0.0785604 + 0.546400i) q^{91} +(0.242666 + 1.68778i) q^{93} +(-2.82738 + 1.81705i) q^{95} -6.01452 q^{97} +(-1.29311 - 2.83151i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60q + 6q^{3} + 2q^{5} + 2q^{7} - 6q^{9} + O(q^{10}) \) \( 60q + 6q^{3} + 2q^{5} + 2q^{7} - 6q^{9} - 11q^{11} - 2q^{13} + 9q^{15} + 21q^{17} + 10q^{19} - 2q^{21} - 10q^{23} - 36q^{25} + 6q^{27} + 4q^{29} - 24q^{31} - 32q^{35} + 2q^{37} + 2q^{39} + 10q^{41} + 23q^{43} + 2q^{45} + 66q^{47} + 34q^{49} + 23q^{51} - 13q^{53} + 27q^{55} + q^{57} + 35q^{59} + 56q^{61} - 9q^{63} + 48q^{65} + 13q^{67} + 10q^{69} + 76q^{71} - q^{73} + 36q^{75} - 38q^{77} - 46q^{79} - 6q^{81} - 26q^{83} + 42q^{85} + 7q^{87} + 58q^{89} - 40q^{91} - 9q^{93} - 29q^{95} - 46q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{11}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.415415 + 0.909632i −0.239840 + 0.525176i
\(4\) 0 0
\(5\) 1.80159 + 0.528994i 0.805694 + 0.236573i 0.658545 0.752541i \(-0.271172\pi\)
0.147149 + 0.989114i \(0.452990\pi\)
\(6\) 0 0
\(7\) 2.39007 + 2.75829i 0.903363 + 1.04254i 0.998890 + 0.0471093i \(0.0150009\pi\)
−0.0955270 + 0.995427i \(0.530454\pi\)
\(8\) 0 0
\(9\) −0.654861 0.755750i −0.218287 0.251917i
\(10\) 0 0
\(11\) 2.98671 + 0.876979i 0.900528 + 0.264419i 0.699049 0.715074i \(-0.253607\pi\)
0.201479 + 0.979493i \(0.435425\pi\)
\(12\) 0 0
\(13\) 0.127238 + 0.0817712i 0.0352896 + 0.0226792i 0.558167 0.829729i \(-0.311505\pi\)
−0.522877 + 0.852408i \(0.675141\pi\)
\(14\) 0 0
\(15\) −1.22960 + 1.41903i −0.317480 + 0.366392i
\(16\) 0 0
\(17\) −0.323618 2.25081i −0.0784888 0.545902i −0.990688 0.136154i \(-0.956526\pi\)
0.912199 0.409748i \(-0.134383\pi\)
\(18\) 0 0
\(19\) −1.17218 + 1.35276i −0.268916 + 0.310345i −0.874106 0.485736i \(-0.838552\pi\)
0.605190 + 0.796081i \(0.293097\pi\)
\(20\) 0 0
\(21\) −3.50190 + 1.02825i −0.764178 + 0.224383i
\(22\) 0 0
\(23\) 0.274352 0.600747i 0.0572063 0.125264i −0.878870 0.477061i \(-0.841702\pi\)
0.936076 + 0.351797i \(0.114429\pi\)
\(24\) 0 0
\(25\) −1.24038 0.797147i −0.248077 0.159429i
\(26\) 0 0
\(27\) 0.959493 0.281733i 0.184655 0.0542195i
\(28\) 0 0
\(29\) 2.20772 0.409964 0.204982 0.978766i \(-0.434286\pi\)
0.204982 + 0.978766i \(0.434286\pi\)
\(30\) 0 0
\(31\) 1.43445 0.921865i 0.257635 0.165572i −0.405448 0.914118i \(-0.632884\pi\)
0.663082 + 0.748547i \(0.269248\pi\)
\(32\) 0 0
\(33\) −2.03845 + 2.35250i −0.354849 + 0.409518i
\(34\) 0 0
\(35\) 2.84681 + 6.23364i 0.481198 + 1.05368i
\(36\) 0 0
\(37\) −3.35268 −0.551177 −0.275589 0.961276i \(-0.588873\pi\)
−0.275589 + 0.961276i \(0.588873\pi\)
\(38\) 0 0
\(39\) −0.127238 + 0.0817712i −0.0203744 + 0.0130939i
\(40\) 0 0
\(41\) 1.30141 + 9.05150i 0.203246 + 1.41361i 0.794570 + 0.607173i \(0.207697\pi\)
−0.591324 + 0.806434i \(0.701394\pi\)
\(42\) 0 0
\(43\) −0.0505065 0.351281i −0.00770217 0.0535698i 0.985608 0.169048i \(-0.0540692\pi\)
−0.993310 + 0.115478i \(0.963160\pi\)
\(44\) 0 0
\(45\) −0.780002 1.70797i −0.116276 0.254609i
\(46\) 0 0
\(47\) −0.965628 + 2.11443i −0.140851 + 0.308421i −0.966891 0.255191i \(-0.917862\pi\)
0.826039 + 0.563613i \(0.190589\pi\)
\(48\) 0 0
\(49\) −0.899518 + 6.25629i −0.128503 + 0.893755i
\(50\) 0 0
\(51\) 2.18184 + 0.640647i 0.305519 + 0.0897086i
\(52\) 0 0
\(53\) 0.154553 1.07494i 0.0212295 0.147654i −0.976450 0.215746i \(-0.930782\pi\)
0.997679 + 0.0680913i \(0.0216909\pi\)
\(54\) 0 0
\(55\) 4.91691 + 3.15991i 0.662996 + 0.426082i
\(56\) 0 0
\(57\) −0.743578 1.62821i −0.0984893 0.215661i
\(58\) 0 0
\(59\) 9.65283 6.20349i 1.25669 0.807626i 0.268863 0.963178i \(-0.413352\pi\)
0.987828 + 0.155552i \(0.0497157\pi\)
\(60\) 0 0
\(61\) −11.7220 + 3.44189i −1.50085 + 0.440689i −0.925985 0.377561i \(-0.876763\pi\)
−0.574863 + 0.818250i \(0.694945\pi\)
\(62\) 0 0
\(63\) 0.519413 3.61259i 0.0654398 0.455144i
\(64\) 0 0
\(65\) 0.185975 + 0.214626i 0.0230673 + 0.0266211i
\(66\) 0 0
\(67\) 5.35460 + 6.19098i 0.654168 + 0.756349i
\(68\) 0 0
\(69\) 0.432489 + 0.499119i 0.0520655 + 0.0600868i
\(70\) 0 0
\(71\) −0.518837 + 3.60859i −0.0615746 + 0.428261i 0.935595 + 0.353075i \(0.114864\pi\)
−0.997170 + 0.0751856i \(0.976045\pi\)
\(72\) 0 0
\(73\) −0.182327 + 0.0535362i −0.0213398 + 0.00626593i −0.292385 0.956301i \(-0.594449\pi\)
0.271045 + 0.962567i \(0.412631\pi\)
\(74\) 0 0
\(75\) 1.24038 0.797147i 0.143227 0.0920466i
\(76\) 0 0
\(77\) 4.71950 + 10.3343i 0.537837 + 1.17770i
\(78\) 0 0
\(79\) −7.44167 4.78247i −0.837254 0.538070i 0.0503216 0.998733i \(-0.483975\pi\)
−0.887575 + 0.460663i \(0.847612\pi\)
\(80\) 0 0
\(81\) −0.142315 + 0.989821i −0.0158128 + 0.109980i
\(82\) 0 0
\(83\) 6.58998 + 1.93499i 0.723344 + 0.212393i 0.622623 0.782522i \(-0.286067\pi\)
0.100721 + 0.994915i \(0.467885\pi\)
\(84\) 0 0
\(85\) 0.607639 4.22622i 0.0659077 0.458398i
\(86\) 0 0
\(87\) −0.917121 + 2.00822i −0.0983257 + 0.215303i
\(88\) 0 0
\(89\) −1.09285 2.39302i −0.115842 0.253659i 0.842826 0.538187i \(-0.180891\pi\)
−0.958668 + 0.284528i \(0.908163\pi\)
\(90\) 0 0
\(91\) 0.0785604 + 0.546400i 0.00823537 + 0.0572782i
\(92\) 0 0
\(93\) 0.242666 + 1.68778i 0.0251633 + 0.175014i
\(94\) 0 0
\(95\) −2.82738 + 1.81705i −0.290083 + 0.186425i
\(96\) 0 0
\(97\) −6.01452 −0.610682 −0.305341 0.952243i \(-0.598770\pi\)
−0.305341 + 0.952243i \(0.598770\pi\)
\(98\) 0 0
\(99\) −1.29311 2.83151i −0.129962 0.284577i
\(100\) 0 0
\(101\) −3.97370 + 4.58590i −0.395398 + 0.456314i −0.918186 0.396149i \(-0.870346\pi\)
0.522788 + 0.852463i \(0.324892\pi\)
\(102\) 0 0
\(103\) 10.5857 6.80299i 1.04304 0.670319i 0.0973002 0.995255i \(-0.468979\pi\)
0.945736 + 0.324937i \(0.105343\pi\)
\(104\) 0 0
\(105\) −6.85292 −0.668777
\(106\) 0 0
\(107\) 5.55867 1.63217i 0.537377 0.157788i −0.00177233 0.999998i \(-0.500564\pi\)
0.539149 + 0.842210i \(0.318746\pi\)
\(108\) 0 0
\(109\) −11.6445 7.48349i −1.11534 0.716788i −0.152893 0.988243i \(-0.548859\pi\)
−0.962451 + 0.271454i \(0.912495\pi\)
\(110\) 0 0
\(111\) 1.39275 3.04971i 0.132194 0.289465i
\(112\) 0 0
\(113\) 7.26981 2.13461i 0.683886 0.200807i 0.0787088 0.996898i \(-0.474920\pi\)
0.605178 + 0.796090i \(0.293102\pi\)
\(114\) 0 0
\(115\) 0.812061 0.937168i 0.0757250 0.0873914i
\(116\) 0 0
\(117\) −0.0215249 0.149709i −0.00198998 0.0138406i
\(118\) 0 0
\(119\) 5.43492 6.27223i 0.498218 0.574975i
\(120\) 0 0
\(121\) −1.10242 0.708479i −0.100220 0.0644072i
\(122\) 0 0
\(123\) −8.77416 2.57633i −0.791140 0.232300i
\(124\) 0 0
\(125\) −7.96096 9.18743i −0.712050 0.821749i
\(126\) 0 0
\(127\) 2.19274 + 2.53056i 0.194574 + 0.224550i 0.844650 0.535319i \(-0.179808\pi\)
−0.650076 + 0.759869i \(0.725263\pi\)
\(128\) 0 0
\(129\) 0.340517 + 0.0999849i 0.0299809 + 0.00880318i
\(130\) 0 0
\(131\) 4.90417 10.7386i 0.428479 0.938238i −0.565092 0.825028i \(-0.691159\pi\)
0.993571 0.113210i \(-0.0361134\pi\)
\(132\) 0 0
\(133\) −6.53291 −0.566475
\(134\) 0 0
\(135\) 1.87765 0.161602
\(136\) 0 0
\(137\) 0.467114 1.02284i 0.0399082 0.0873869i −0.888628 0.458629i \(-0.848341\pi\)
0.928536 + 0.371242i \(0.121068\pi\)
\(138\) 0 0
\(139\) −20.1089 5.90451i −1.70562 0.500814i −0.723698 0.690117i \(-0.757559\pi\)
−0.981919 + 0.189302i \(0.939377\pi\)
\(140\) 0 0
\(141\) −1.52222 1.75673i −0.128194 0.147944i
\(142\) 0 0
\(143\) 0.308313 + 0.355812i 0.0257824 + 0.0297545i
\(144\) 0 0
\(145\) 3.97741 + 1.16787i 0.330306 + 0.0969865i
\(146\) 0 0
\(147\) −5.31724 3.41719i −0.438559 0.281845i
\(148\) 0 0
\(149\) 8.84336 10.2058i 0.724476 0.836090i −0.267361 0.963596i \(-0.586152\pi\)
0.991838 + 0.127506i \(0.0406972\pi\)
\(150\) 0 0
\(151\) −0.0477575 0.332161i −0.00388645 0.0270309i 0.987786 0.155817i \(-0.0498010\pi\)
−0.991672 + 0.128786i \(0.958892\pi\)
\(152\) 0 0
\(153\) −1.48912 + 1.71854i −0.120389 + 0.138936i
\(154\) 0 0
\(155\) 3.07195 0.902005i 0.246745 0.0724508i
\(156\) 0 0
\(157\) 7.65072 16.7527i 0.610594 1.33701i −0.311573 0.950222i \(-0.600856\pi\)
0.922167 0.386792i \(-0.126417\pi\)
\(158\) 0 0
\(159\) 0.913595 + 0.587132i 0.0724528 + 0.0465626i
\(160\) 0 0
\(161\) 2.31276 0.679087i 0.182271 0.0535195i
\(162\) 0 0
\(163\) −4.98076 −0.390123 −0.195062 0.980791i \(-0.562491\pi\)
−0.195062 + 0.980791i \(0.562491\pi\)
\(164\) 0 0
\(165\) −4.91691 + 3.15991i −0.382781 + 0.245998i
\(166\) 0 0
\(167\) 0.481617 0.555816i 0.0372687 0.0430103i −0.736809 0.676101i \(-0.763668\pi\)
0.774078 + 0.633090i \(0.218214\pi\)
\(168\) 0 0
\(169\) −5.39089 11.8044i −0.414684 0.908031i
\(170\) 0 0
\(171\) 1.78996 0.136882
\(172\) 0 0
\(173\) 20.6953 13.3001i 1.57344 1.01119i 0.595228 0.803557i \(-0.297062\pi\)
0.978208 0.207629i \(-0.0665748\pi\)
\(174\) 0 0
\(175\) −0.765847 5.32658i −0.0578926 0.402652i
\(176\) 0 0
\(177\) 1.63297 + 11.3575i 0.122741 + 0.853685i
\(178\) 0 0
\(179\) −4.72850 10.3540i −0.353424 0.773892i −0.999940 0.0109905i \(-0.996502\pi\)
0.646515 0.762901i \(-0.276226\pi\)
\(180\) 0 0
\(181\) −4.23803 + 9.28000i −0.315010 + 0.689777i −0.999219 0.0395095i \(-0.987420\pi\)
0.684209 + 0.729286i \(0.260148\pi\)
\(182\) 0 0
\(183\) 1.73864 12.0925i 0.128524 0.893904i
\(184\) 0 0
\(185\) −6.04015 1.77355i −0.444081 0.130394i
\(186\) 0 0
\(187\) 1.00736 7.00633i 0.0736654 0.512354i
\(188\) 0 0
\(189\) 3.07036 + 1.97320i 0.223336 + 0.143529i
\(190\) 0 0
\(191\) 4.15038 + 9.08807i 0.300311 + 0.657590i 0.998285 0.0585330i \(-0.0186423\pi\)
−0.697974 + 0.716123i \(0.745915\pi\)
\(192\) 0 0
\(193\) −1.59199 + 1.02311i −0.114594 + 0.0736449i −0.596682 0.802478i \(-0.703515\pi\)
0.482089 + 0.876122i \(0.339878\pi\)
\(194\) 0 0
\(195\) −0.272488 + 0.0800096i −0.0195132 + 0.00572960i
\(196\) 0 0
\(197\) 2.39553 16.6613i 0.170674 1.18707i −0.706790 0.707424i \(-0.749857\pi\)
0.877464 0.479643i \(-0.159234\pi\)
\(198\) 0 0
\(199\) 9.79527 + 11.3043i 0.694368 + 0.801344i 0.987980 0.154581i \(-0.0494027\pi\)
−0.293612 + 0.955925i \(0.594857\pi\)
\(200\) 0 0
\(201\) −7.85590 + 2.29888i −0.554112 + 0.162151i
\(202\) 0 0
\(203\) 5.27662 + 6.08954i 0.370346 + 0.427402i
\(204\) 0 0
\(205\) −2.44359 + 16.9955i −0.170667 + 1.18702i
\(206\) 0 0
\(207\) −0.633677 + 0.186064i −0.0440436 + 0.0129324i
\(208\) 0 0
\(209\) −4.68730 + 3.01235i −0.324228 + 0.208368i
\(210\) 0 0
\(211\) 0.861860 + 1.88721i 0.0593329 + 0.129921i 0.936976 0.349394i \(-0.113613\pi\)
−0.877643 + 0.479315i \(0.840885\pi\)
\(212\) 0 0
\(213\) −3.06696 1.97101i −0.210144 0.135052i
\(214\) 0 0
\(215\) 0.0948334 0.659581i 0.00646758 0.0449830i
\(216\) 0 0
\(217\) 5.97121 + 1.75331i 0.405352 + 0.119022i
\(218\) 0 0
\(219\) 0.0270433 0.188091i 0.00182742 0.0127100i
\(220\) 0 0
\(221\) 0.142875 0.312852i 0.00961080 0.0210447i
\(222\) 0 0
\(223\) −6.89712 15.1026i −0.461865 1.01134i −0.987058 0.160361i \(-0.948734\pi\)
0.525193 0.850983i \(-0.323993\pi\)
\(224\) 0 0
\(225\) 0.209836 + 1.45944i 0.0139891 + 0.0972960i
\(226\) 0 0
\(227\) 1.09176 + 7.59336i 0.0724627 + 0.503989i 0.993438 + 0.114369i \(0.0364846\pi\)
−0.920976 + 0.389620i \(0.872606\pi\)
\(228\) 0 0
\(229\) −1.91219 + 1.22889i −0.126361 + 0.0812072i −0.602294 0.798274i \(-0.705747\pi\)
0.475934 + 0.879481i \(0.342110\pi\)
\(230\) 0 0
\(231\) −11.3609 −0.747495
\(232\) 0 0
\(233\) −2.14010 4.68616i −0.140202 0.307000i 0.826486 0.562958i \(-0.190337\pi\)
−0.966688 + 0.255957i \(0.917609\pi\)
\(234\) 0 0
\(235\) −2.85818 + 3.29852i −0.186447 + 0.215172i
\(236\) 0 0
\(237\) 7.44167 4.78247i 0.483389 0.310655i
\(238\) 0 0
\(239\) −12.0387 −0.778720 −0.389360 0.921086i \(-0.627304\pi\)
−0.389360 + 0.921086i \(0.627304\pi\)
\(240\) 0 0
\(241\) −8.06231 + 2.36731i −0.519339 + 0.152492i −0.530888 0.847442i \(-0.678142\pi\)
0.0115498 + 0.999933i \(0.496324\pi\)
\(242\) 0 0
\(243\) −0.841254 0.540641i −0.0539664 0.0346821i
\(244\) 0 0
\(245\) −4.93010 + 10.7954i −0.314972 + 0.689693i
\(246\) 0 0
\(247\) −0.259763 + 0.0762733i −0.0165283 + 0.00485315i
\(248\) 0 0
\(249\) −4.49771 + 5.19063i −0.285031 + 0.328943i
\(250\) 0 0
\(251\) 0.427529 + 2.97353i 0.0269854 + 0.187688i 0.998855 0.0478300i \(-0.0152306\pi\)
−0.971870 + 0.235518i \(0.924321\pi\)
\(252\) 0 0
\(253\) 1.34625 1.55366i 0.0846382 0.0976777i
\(254\) 0 0
\(255\) 3.59189 + 2.30836i 0.224933 + 0.144555i
\(256\) 0 0
\(257\) −17.6046 5.16917i −1.09814 0.322444i −0.318030 0.948081i \(-0.603021\pi\)
−0.780115 + 0.625637i \(0.784839\pi\)
\(258\) 0 0
\(259\) −8.01315 9.24767i −0.497913 0.574622i
\(260\) 0 0
\(261\) −1.44575 1.66849i −0.0894897 0.103277i
\(262\) 0 0
\(263\) 8.01178 + 2.35247i 0.494028 + 0.145060i 0.519250 0.854622i \(-0.326211\pi\)
−0.0252226 + 0.999682i \(0.508029\pi\)
\(264\) 0 0
\(265\) 0.847076 1.85484i 0.0520355 0.113942i
\(266\) 0 0
\(267\) 2.63075 0.160999
\(268\) 0 0
\(269\) 18.0917 1.10307 0.551534 0.834152i \(-0.314043\pi\)
0.551534 + 0.834152i \(0.314043\pi\)
\(270\) 0 0
\(271\) −9.80415 + 21.4681i −0.595559 + 1.30409i 0.336464 + 0.941696i \(0.390769\pi\)
−0.932024 + 0.362397i \(0.881958\pi\)
\(272\) 0 0
\(273\) −0.529658 0.155522i −0.0320563 0.00941259i
\(274\) 0 0
\(275\) −3.00559 3.46864i −0.181244 0.209167i
\(276\) 0 0
\(277\) −1.81945 2.09975i −0.109320 0.126162i 0.698452 0.715657i \(-0.253872\pi\)
−0.807772 + 0.589495i \(0.799327\pi\)
\(278\) 0 0
\(279\) −1.63606 0.480392i −0.0979486 0.0287603i
\(280\) 0 0
\(281\) −7.82491 5.02876i −0.466795 0.299991i 0.286019 0.958224i \(-0.407668\pi\)
−0.752814 + 0.658233i \(0.771304\pi\)
\(282\) 0 0
\(283\) 16.2079 18.7050i 0.963462 1.11189i −0.0302065 0.999544i \(-0.509616\pi\)
0.993669 0.112351i \(-0.0358381\pi\)
\(284\) 0 0
\(285\) −0.478308 3.32671i −0.0283325 0.197057i
\(286\) 0 0
\(287\) −21.8562 + 25.2234i −1.29013 + 1.48889i
\(288\) 0 0
\(289\) 11.3500 3.33265i 0.667645 0.196038i
\(290\) 0 0
\(291\) 2.49852 5.47100i 0.146466 0.320716i
\(292\) 0 0
\(293\) −19.6734 12.6433i −1.14933 0.738630i −0.179824 0.983699i \(-0.557553\pi\)
−0.969506 + 0.245069i \(0.921189\pi\)
\(294\) 0 0
\(295\) 20.6720 6.06985i 1.20357 0.353400i
\(296\) 0 0
\(297\) 3.11281 0.180623
\(298\) 0 0
\(299\) 0.0840319 0.0540040i 0.00485969 0.00312313i
\(300\) 0 0
\(301\) 0.848220 0.978898i 0.0488906 0.0564228i
\(302\) 0 0
\(303\) −2.52074 5.51966i −0.144813 0.317096i
\(304\) 0 0
\(305\) −22.9389 −1.31348
\(306\) 0 0
\(307\) 16.5533 10.6382i 0.944749 0.607153i 0.0250114 0.999687i \(-0.492038\pi\)
0.919738 + 0.392534i \(0.128401\pi\)
\(308\) 0 0
\(309\) 1.79078 + 12.4551i 0.101874 + 0.708547i
\(310\) 0 0
\(311\) 3.65481 + 25.4198i 0.207245 + 1.44142i 0.782093 + 0.623162i \(0.214152\pi\)
−0.574848 + 0.818260i \(0.694939\pi\)
\(312\) 0 0
\(313\) 10.2070 + 22.3501i 0.576931 + 1.26330i 0.943024 + 0.332725i \(0.107968\pi\)
−0.366093 + 0.930578i \(0.619305\pi\)
\(314\) 0 0
\(315\) 2.84681 6.23364i 0.160399 0.351226i
\(316\) 0 0
\(317\) −1.42831 + 9.93412i −0.0802219 + 0.557956i 0.909583 + 0.415523i \(0.136401\pi\)
−0.989805 + 0.142432i \(0.954508\pi\)
\(318\) 0 0
\(319\) 6.59384 + 1.93613i 0.369184 + 0.108402i
\(320\) 0 0
\(321\) −0.824478 + 5.73437i −0.0460179 + 0.320061i
\(322\) 0 0
\(323\) 3.42415 + 2.20057i 0.190525 + 0.122443i
\(324\) 0 0
\(325\) −0.0926409 0.202855i −0.00513879 0.0112524i
\(326\) 0 0
\(327\) 11.6445 7.48349i 0.643944 0.413838i
\(328\) 0 0
\(329\) −8.14014 + 2.39016i −0.448780 + 0.131774i
\(330\) 0 0
\(331\) 4.16695 28.9818i 0.229036 1.59298i −0.473145 0.880984i \(-0.656882\pi\)
0.702182 0.711998i \(-0.252209\pi\)
\(332\) 0 0
\(333\) 2.19554 + 2.53379i 0.120315 + 0.138851i
\(334\) 0 0
\(335\) 6.37178 + 13.9861i 0.348128 + 0.764145i
\(336\) 0 0
\(337\) 8.99004 + 10.3751i 0.489718 + 0.565165i 0.945790 0.324778i \(-0.105289\pi\)
−0.456072 + 0.889943i \(0.650744\pi\)
\(338\) 0 0
\(339\) −1.07828 + 7.49960i −0.0585641 + 0.407322i
\(340\) 0 0
\(341\) 5.09275 1.49537i 0.275788 0.0809786i
\(342\) 0 0
\(343\) 2.08594 1.34055i 0.112630 0.0723829i
\(344\) 0 0
\(345\) 0.515136 + 1.12799i 0.0277340 + 0.0607289i
\(346\) 0 0
\(347\) 7.30508 + 4.69469i 0.392157 + 0.252024i 0.721829 0.692071i \(-0.243302\pi\)
−0.329672 + 0.944096i \(0.606938\pi\)
\(348\) 0 0
\(349\) −2.16651 + 15.0684i −0.115971 + 0.806595i 0.845949 + 0.533264i \(0.179035\pi\)
−0.961920 + 0.273331i \(0.911874\pi\)
\(350\) 0 0
\(351\) 0.145122 + 0.0426116i 0.00774604 + 0.00227444i
\(352\) 0 0
\(353\) 3.35632 23.3437i 0.178639 1.24246i −0.681278 0.732025i \(-0.738576\pi\)
0.859917 0.510434i \(-0.170515\pi\)
\(354\) 0 0
\(355\) −2.84365 + 6.22673i −0.150925 + 0.330480i
\(356\) 0 0
\(357\) 3.44768 + 7.54936i 0.182470 + 0.399554i
\(358\) 0 0
\(359\) 2.72336 + 18.9414i 0.143733 + 0.999688i 0.926210 + 0.377008i \(0.123047\pi\)
−0.782476 + 0.622680i \(0.786044\pi\)
\(360\) 0 0
\(361\) 2.24801 + 15.6353i 0.118316 + 0.822908i
\(362\) 0 0
\(363\) 1.10242 0.708479i 0.0578618 0.0371855i
\(364\) 0 0
\(365\) −0.356799 −0.0186757
\(366\) 0 0
\(367\) 2.71899 + 5.95376i 0.141930 + 0.310784i 0.967226 0.253917i \(-0.0817190\pi\)
−0.825296 + 0.564700i \(0.808992\pi\)
\(368\) 0 0
\(369\) 5.98843 6.91101i 0.311745 0.359773i
\(370\) 0 0
\(371\) 3.33439 2.14288i 0.173113 0.111253i
\(372\) 0 0
\(373\) −10.5721 −0.547403 −0.273702 0.961815i \(-0.588248\pi\)
−0.273702 + 0.961815i \(0.588248\pi\)
\(374\) 0 0
\(375\) 11.6643 3.42494i 0.602341 0.176863i
\(376\) 0 0
\(377\) 0.280907 + 0.180528i 0.0144675 + 0.00929767i
\(378\) 0 0
\(379\) 7.02781 15.3888i 0.360994 0.790467i −0.638783 0.769387i \(-0.720562\pi\)
0.999778 0.0210808i \(-0.00671071\pi\)
\(380\) 0 0
\(381\) −3.21277 + 0.943355i −0.164595 + 0.0483295i
\(382\) 0 0
\(383\) −5.59587 + 6.45798i −0.285936 + 0.329987i −0.880487 0.474070i \(-0.842784\pi\)
0.594551 + 0.804058i \(0.297330\pi\)
\(384\) 0 0
\(385\) 3.03583 + 21.1147i 0.154720 + 1.07610i
\(386\) 0 0
\(387\) −0.232405 + 0.268210i −0.0118138 + 0.0136339i
\(388\) 0 0
\(389\) −3.34597 2.15032i −0.169647 0.109026i 0.453062 0.891479i \(-0.350332\pi\)
−0.622709 + 0.782453i \(0.713968\pi\)
\(390\) 0 0
\(391\) −1.44095 0.423102i −0.0728721 0.0213972i
\(392\) 0 0
\(393\) 7.73093 + 8.92197i 0.389974 + 0.450054i
\(394\) 0 0
\(395\) −10.8769 12.5526i −0.547278 0.631592i
\(396\) 0 0
\(397\) 27.2849 + 8.01157i 1.36939 + 0.402089i 0.882064 0.471130i \(-0.156154\pi\)
0.487327 + 0.873220i \(0.337972\pi\)
\(398\) 0 0
\(399\) 2.71387 5.94254i 0.135863 0.297499i
\(400\) 0 0
\(401\) −26.2138 −1.30906 −0.654528 0.756038i \(-0.727133\pi\)
−0.654528 + 0.756038i \(0.727133\pi\)
\(402\) 0 0
\(403\) 0.257899 0.0128469
\(404\) 0 0
\(405\) −0.780002 + 1.70797i −0.0387586 + 0.0848695i
\(406\) 0 0
\(407\) −10.0135 2.94023i −0.496351 0.145742i
\(408\) 0 0
\(409\) −0.667743 0.770616i −0.0330178 0.0381045i 0.739001 0.673705i \(-0.235298\pi\)
−0.772018 + 0.635600i \(0.780753\pi\)
\(410\) 0 0
\(411\) 0.736359 + 0.849804i 0.0363219 + 0.0419177i
\(412\) 0 0
\(413\) 40.1820 + 11.7985i 1.97723 + 0.580566i
\(414\) 0 0
\(415\) 10.8488 + 6.97212i 0.532548 + 0.342248i
\(416\) 0 0
\(417\) 13.7245 15.8389i 0.672091 0.775634i
\(418\) 0 0
\(419\) 0.160215 + 1.11432i 0.00782700 + 0.0544380i 0.993361 0.115042i \(-0.0367003\pi\)
−0.985534 + 0.169480i \(0.945791\pi\)
\(420\) 0 0
\(421\) −3.58169 + 4.13349i −0.174561 + 0.201454i −0.836287 0.548291i \(-0.815279\pi\)
0.661727 + 0.749745i \(0.269824\pi\)
\(422\) 0 0
\(423\) 2.23033 0.654885i 0.108442 0.0318416i
\(424\) 0 0
\(425\) −1.39282 + 3.04984i −0.0675615 + 0.147939i
\(426\) 0 0
\(427\) −37.5102 24.1063i −1.81524 1.16659i
\(428\) 0 0
\(429\) −0.451736 + 0.132642i −0.0218100 + 0.00640400i
\(430\) 0 0
\(431\) −14.6894 −0.707562 −0.353781 0.935328i \(-0.615104\pi\)
−0.353781 + 0.935328i \(0.615104\pi\)
\(432\) 0 0
\(433\) −1.71109 + 1.09965i −0.0822298 + 0.0528459i −0.581110 0.813825i \(-0.697381\pi\)
0.498880 + 0.866671i \(0.333745\pi\)
\(434\) 0 0
\(435\) −2.71461 + 3.13282i −0.130155 + 0.150207i
\(436\) 0 0
\(437\) 0.491080 + 1.07532i 0.0234915 + 0.0514393i
\(438\) 0 0
\(439\) 9.82775 0.469053 0.234526 0.972110i \(-0.424646\pi\)
0.234526 + 0.972110i \(0.424646\pi\)
\(440\) 0 0
\(441\) 5.31724 3.41719i 0.253202 0.162723i
\(442\) 0 0
\(443\) −0.124244 0.864136i −0.00590301 0.0410563i 0.986657 0.162812i \(-0.0520565\pi\)
−0.992560 + 0.121756i \(0.961147\pi\)
\(444\) 0 0
\(445\) −0.702981 4.88934i −0.0333245 0.231777i
\(446\) 0 0
\(447\) 5.60984 + 12.2838i 0.265336 + 0.581006i
\(448\) 0 0
\(449\) 11.2869 24.7148i 0.532660 1.16636i −0.431760 0.901989i \(-0.642107\pi\)
0.964420 0.264375i \(-0.0851655\pi\)
\(450\) 0 0
\(451\) −4.05104 + 28.1756i −0.190756 + 1.32674i
\(452\) 0 0
\(453\) 0.321983 + 0.0945428i 0.0151281 + 0.00444201i
\(454\) 0 0
\(455\) −0.147509 + 1.02594i −0.00691531 + 0.0480970i
\(456\) 0 0
\(457\) 0.560778 + 0.360390i 0.0262321 + 0.0168583i 0.553691 0.832722i \(-0.313219\pi\)
−0.527459 + 0.849580i \(0.676855\pi\)
\(458\) 0 0
\(459\) −0.944635 2.06846i −0.0440918 0.0965476i
\(460\) 0 0
\(461\) −13.9996 + 8.99697i −0.652024 + 0.419031i −0.824405 0.566000i \(-0.808490\pi\)
0.172381 + 0.985030i \(0.444854\pi\)
\(462\) 0 0
\(463\) −20.4270 + 5.99792i −0.949325 + 0.278747i −0.719506 0.694486i \(-0.755632\pi\)
−0.229819 + 0.973233i \(0.573813\pi\)
\(464\) 0 0
\(465\) −0.455640 + 3.16905i −0.0211298 + 0.146961i
\(466\) 0 0
\(467\) −10.5463 12.1711i −0.488024 0.563210i 0.457312 0.889306i \(-0.348812\pi\)
−0.945337 + 0.326096i \(0.894267\pi\)
\(468\) 0 0
\(469\) −4.27866 + 29.5664i −0.197570 + 1.36525i
\(470\) 0 0
\(471\) 12.0606 + 13.9187i 0.555723 + 0.641339i
\(472\) 0 0
\(473\) 0.157217 1.09347i 0.00722885 0.0502777i
\(474\) 0 0
\(475\) 2.53230 0.743551i 0.116190 0.0341165i
\(476\) 0 0
\(477\) −0.913595 + 0.587132i −0.0418306 + 0.0268829i
\(478\) 0 0
\(479\) 16.8867 + 36.9767i 0.771573 + 1.68951i 0.723159 + 0.690682i \(0.242689\pi\)
0.0484141 + 0.998827i \(0.484583\pi\)
\(480\) 0 0
\(481\) −0.426590 0.274153i −0.0194508 0.0125003i
\(482\) 0 0
\(483\) −0.343035 + 2.38586i −0.0156086 + 0.108560i
\(484\) 0 0
\(485\) −10.8357 3.18164i −0.492023 0.144471i
\(486\) 0 0
\(487\) −0.476441 + 3.31372i −0.0215896 + 0.150159i −0.997765 0.0668254i \(-0.978713\pi\)
0.976175 + 0.216984i \(0.0696220\pi\)
\(488\) 0 0
\(489\) 2.06908 4.53066i 0.0935672 0.204883i
\(490\) 0 0
\(491\) −3.63248 7.95402i −0.163931 0.358960i 0.809784 0.586728i \(-0.199584\pi\)
−0.973715 + 0.227769i \(0.926857\pi\)
\(492\) 0 0
\(493\) −0.714458 4.96916i −0.0321776 0.223800i
\(494\) 0 0
\(495\) −0.831794 5.78525i −0.0373864 0.260028i
\(496\) 0 0
\(497\) −11.1936 + 7.19369i −0.502101 + 0.322681i
\(498\) 0 0
\(499\) −28.2167 −1.26315 −0.631575 0.775314i \(-0.717591\pi\)
−0.631575 + 0.775314i \(0.717591\pi\)
\(500\) 0 0
\(501\) 0.305517 + 0.668989i 0.0136495 + 0.0298882i
\(502\) 0 0
\(503\) −18.0907 + 20.8778i −0.806625 + 0.930895i −0.998725 0.0504802i \(-0.983925\pi\)
0.192100 + 0.981375i \(0.438470\pi\)
\(504\) 0 0
\(505\) −9.58488 + 6.15983i −0.426522 + 0.274109i
\(506\) 0 0
\(507\) 12.9771 0.576334
\(508\) 0 0
\(509\) 36.5184 10.7228i 1.61865 0.475278i 0.657994 0.753023i \(-0.271405\pi\)
0.960655 + 0.277745i \(0.0895870\pi\)
\(510\) 0 0
\(511\) −0.583444 0.374957i −0.0258100 0.0165871i
\(512\) 0 0
\(513\) −0.743578 + 1.62821i −0.0328298 + 0.0718871i
\(514\) 0 0
\(515\) 22.6697 6.65643i 0.998948 0.293318i
\(516\) 0 0
\(517\) −4.73837 + 5.46837i −0.208393 + 0.240498i
\(518\) 0 0
\(519\) 3.50103 + 24.3502i 0.153678 + 1.06885i
\(520\) 0 0
\(521\) 14.4210 16.6428i 0.631797 0.729133i −0.346105 0.938196i \(-0.612496\pi\)
0.977902 + 0.209063i \(0.0670413\pi\)
\(522\) 0 0
\(523\) 26.2701 + 16.8828i 1.14871 + 0.738232i 0.969382 0.245557i \(-0.0789709\pi\)
0.179329 + 0.983789i \(0.442607\pi\)
\(524\) 0 0
\(525\) 5.16337 + 1.51610i 0.225348 + 0.0661682i
\(526\) 0 0
\(527\) −2.53916 2.93034i −0.110607 0.127648i
\(528\) 0 0
\(529\) 14.7762 + 17.0526i 0.642442 + 0.741418i
\(530\) 0 0
\(531\) −11.0095 3.23269i −0.477774 0.140287i
\(532\) 0 0
\(533\) −0.574563 + 1.25812i −0.0248871 + 0.0544951i
\(534\) 0 0
\(535\) 10.8778 0.470290
\(536\) 0 0
\(537\) 11.3826 0.491195
\(538\) 0 0
\(539\) −8.17323 + 17.8969i −0.352046 + 0.770873i
\(540\) 0 0
\(541\) 32.3709 + 9.50495i 1.39173 + 0.408650i 0.889837 0.456279i \(-0.150818\pi\)
0.501896 + 0.864928i \(0.332636\pi\)
\(542\) 0 0
\(543\) −6.68084 7.71010i −0.286702 0.330872i
\(544\) 0 0
\(545\) −17.0199 19.6421i −0.729054 0.841373i
\(546\) 0 0
\(547\) 4.46969 + 1.31242i 0.191110 + 0.0561151i 0.375887 0.926665i \(-0.377338\pi\)
−0.184777 + 0.982781i \(0.559156\pi\)
\(548\) 0 0
\(549\) 10.2775 + 6.60494i 0.438632 + 0.281892i
\(550\) 0 0
\(551\) −2.58784 + 2.98653i −0.110246 + 0.127230i
\(552\) 0 0
\(553\) −4.59469 31.9568i −0.195386 1.35894i
\(554\) 0 0
\(555\) 4.12244 4.75755i 0.174988 0.201947i
\(556\) 0 0
\(557\) 11.4980 3.37613i 0.487188 0.143051i −0.0289082 0.999582i \(-0.509203\pi\)
0.516096 + 0.856531i \(0.327385\pi\)
\(558\) 0 0
\(559\) 0.0222983 0.0488264i 0.000943116 0.00206514i
\(560\) 0 0
\(561\) 5.95471 + 3.82686i 0.251408 + 0.161570i
\(562\) 0 0
\(563\) −12.2202 + 3.58817i −0.515020 + 0.151224i −0.528907 0.848680i \(-0.677398\pi\)
0.0138865 + 0.999904i \(0.495580\pi\)
\(564\) 0 0
\(565\) 14.2264 0.598509
\(566\) 0 0
\(567\) −3.07036 + 1.97320i −0.128943 + 0.0828666i
\(568\) 0 0
\(569\) −6.38741 + 7.37146i −0.267774 + 0.309028i −0.873673 0.486514i \(-0.838268\pi\)
0.605899 + 0.795542i \(0.292814\pi\)
\(570\) 0 0
\(571\) −13.6240 29.8325i −0.570149 1.24845i −0.946718 0.322063i \(-0.895624\pi\)
0.376570 0.926388i \(-0.377104\pi\)
\(572\) 0 0
\(573\) −9.99093 −0.417377
\(574\) 0 0
\(575\) −0.819186 + 0.526459i −0.0341624 + 0.0219548i
\(576\) 0 0
\(577\) 3.11666 + 21.6768i 0.129748 + 0.902418i 0.945872 + 0.324541i \(0.105210\pi\)
−0.816124 + 0.577877i \(0.803881\pi\)
\(578\) 0 0
\(579\) −0.269316 1.87314i −0.0111924 0.0778448i
\(580\) 0 0
\(581\) 10.4133 + 22.8019i 0.432015 + 0.945981i
\(582\) 0 0
\(583\) 1.40430 3.07500i 0.0581603 0.127353i
\(584\) 0 0
\(585\) 0.0404162 0.281101i 0.00167100 0.0116221i
\(586\) 0 0
\(587\) −40.1456 11.7878i −1.65699 0.486535i −0.686387 0.727237i \(-0.740804\pi\)
−0.970599 + 0.240702i \(0.922622\pi\)
\(588\) 0 0
\(589\) −0.434363 + 3.02106i −0.0178976 + 0.124481i
\(590\) 0 0
\(591\) 14.1605 + 9.10039i 0.582485 + 0.374340i
\(592\) 0 0
\(593\) −10.3443 22.6509i −0.424790 0.930160i −0.994144 0.108067i \(-0.965534\pi\)
0.569354 0.822093i \(-0.307194\pi\)
\(594\) 0 0
\(595\) 13.1095 8.42494i 0.537435 0.345389i
\(596\) 0 0
\(597\) −14.3519 + 4.21410i −0.587384 + 0.172472i
\(598\) 0 0
\(599\) −0.761522 + 5.29650i −0.0311150 + 0.216409i −0.999447 0.0332573i \(-0.989412\pi\)
0.968332 + 0.249667i \(0.0803210\pi\)
\(600\) 0 0
\(601\) −10.7870 12.4488i −0.440010 0.507799i 0.491818 0.870698i \(-0.336332\pi\)
−0.931828 + 0.362899i \(0.881787\pi\)
\(602\) 0 0
\(603\) 1.17232 8.10097i 0.0477405 0.329897i
\(604\) 0 0
\(605\) −1.61132 1.85956i −0.0655093 0.0756018i
\(606\) 0 0
\(607\) −5.69852 + 39.6341i −0.231296 + 1.60870i 0.461215 + 0.887289i \(0.347414\pi\)
−0.692510 + 0.721408i \(0.743495\pi\)
\(608\) 0 0
\(609\) −7.73123 + 2.27009i −0.313285 + 0.0919888i
\(610\) 0 0
\(611\) −0.295764 + 0.190076i −0.0119653 + 0.00768966i
\(612\) 0 0
\(613\) −15.8609 34.7306i −0.640617 1.40276i −0.899532 0.436856i \(-0.856092\pi\)
0.258915 0.965900i \(-0.416635\pi\)
\(614\) 0 0
\(615\) −14.4446 9.28296i −0.582461 0.374325i
\(616\) 0 0
\(617\) 4.04520 28.1350i 0.162854 1.13267i −0.730367 0.683055i \(-0.760651\pi\)
0.893221 0.449618i \(-0.148440\pi\)
\(618\) 0 0
\(619\) 37.3405 + 10.9642i 1.50084 + 0.440687i 0.925983 0.377564i \(-0.123238\pi\)
0.574860 + 0.818252i \(0.305057\pi\)
\(620\) 0 0
\(621\) 0.0939888 0.653706i 0.00377164 0.0262323i
\(622\) 0 0
\(623\) 3.98863 8.73389i 0.159801 0.349916i
\(624\) 0 0
\(625\) −6.41973 14.0572i −0.256789 0.562289i
\(626\) 0 0
\(627\) −0.792951 5.51509i −0.0316674 0.220252i
\(628\) 0 0
\(629\) 1.08499 + 7.54625i 0.0432613 + 0.300889i
\(630\) 0 0
\(631\) −19.8377 + 12.7489i −0.789726 + 0.507526i −0.872248 0.489063i \(-0.837339\pi\)
0.0825222 + 0.996589i \(0.473702\pi\)
\(632\) 0 0
\(633\) −2.07470 −0.0824617
\(634\) 0 0
\(635\) 2.61176 + 5.71896i 0.103645 + 0.226950i
\(636\) 0 0
\(637\) −0.626037 + 0.722485i −0.0248045 + 0.0286259i
\(638\) 0 0
\(639\) 3.06696 1.97101i 0.121327 0.0779721i
\(640\) 0 0
\(641\) 9.27567 0.366367 0.183183 0.983079i \(-0.441360\pi\)
0.183183 + 0.983079i \(0.441360\pi\)
\(642\) 0 0
\(643\) −14.4824 + 4.25242i −0.571131 + 0.167699i −0.554531 0.832163i \(-0.687102\pi\)
−0.0165997 + 0.999862i \(0.505284\pi\)
\(644\) 0 0
\(645\) 0.560580 + 0.360263i 0.0220728 + 0.0141853i
\(646\) 0 0
\(647\) −18.8893 + 41.3618i −0.742614 + 1.62610i 0.0365914 + 0.999330i \(0.488350\pi\)
−0.779206 + 0.626768i \(0.784377\pi\)
\(648\) 0 0
\(649\) 34.2706 10.0627i 1.34524 0.394997i
\(650\) 0 0
\(651\) −4.07539 + 4.70325i −0.159727 + 0.184335i
\(652\) 0 0
\(653\) −5.89912 41.0293i −0.230850 1.60560i −0.694441 0.719550i \(-0.744348\pi\)
0.463591 0.886050i \(-0.346561\pi\)
\(654\) 0 0
\(655\) 14.5160 16.7523i 0.567185 0.654567i
\(656\) 0 0
\(657\) 0.159859 + 0.102735i 0.00623669 + 0.00400808i
\(658\) 0 0
\(659\) −40.2471 11.8176i −1.56781 0.460349i −0.621444 0.783459i \(-0.713454\pi\)
−0.946362 + 0.323109i \(0.895272\pi\)
\(660\) 0 0
\(661\) −26.5427 30.6319i −1.03239 1.19144i −0.981247 0.192752i \(-0.938259\pi\)
−0.0511443 0.998691i \(-0.516287\pi\)
\(662\) 0 0
\(663\) 0.225228 + 0.259927i 0.00874713 + 0.0100947i
\(664\) 0 0
\(665\) −11.7696 3.45587i −0.456406 0.134013i
\(666\) 0 0
\(667\) 0.605693 1.32628i 0.0234525 0.0513539i
\(668\) 0 0
\(669\) 16.6030 0.641907
\(670\) 0 0
\(671\) −38.0287 −1.46808
\(672\) 0 0
\(673\) 12.4346 27.2280i 0.479319 1.04956i −0.503332 0.864093i \(-0.667893\pi\)
0.982650 0.185468i \(-0.0593801\pi\)
\(674\) 0 0
\(675\) −1.41472 0.415400i −0.0544527 0.0159888i
\(676\) 0 0
\(677\) −11.1167 12.8294i −0.427250 0.493072i 0.500782 0.865573i \(-0.333046\pi\)
−0.928032 + 0.372501i \(0.878500\pi\)
\(678\) 0 0
\(679\) −14.3751 16.5898i −0.551667 0.636658i
\(680\) 0 0
\(681\) −7.36070 2.16130i −0.282062 0.0828210i
\(682\) 0 0
\(683\) −29.1879 18.7579i −1.11684 0.717753i −0.154071 0.988060i \(-0.549238\pi\)
−0.962774 + 0.270307i \(0.912875\pi\)
\(684\) 0 0
\(685\) 1.38262 1.59563i 0.0528272 0.0609659i
\(686\) 0 0
\(687\) −0.323485 2.24988i −0.0123417 0.0858384i
\(688\) 0 0
\(689\) 0.107564 0.124136i 0.00409786 0.00472919i
\(690\) 0 0
\(691\) −5.52113 + 1.62115i −0.210033 + 0.0616714i −0.385057 0.922893i \(-0.625818\pi\)
0.175023 + 0.984564i \(0.444000\pi\)
\(692\) 0 0
\(693\) 4.71950 10.3343i 0.179279 0.392567i
\(694\) 0 0
\(695\) −33.1045 21.2750i −1.25573 0.807007i
\(696\) 0 0
\(697\) 19.9521 5.85845i 0.755738 0.221905i
\(698\) 0 0
\(699\) 5.15171 0.194856
\(700\) 0 0
\(701\) −28.8091 + 18.5145i −1.08810 + 0.699282i −0.956416 0.292009i \(-0.905676\pi\)
−0.131689 + 0.991291i \(0.542040\pi\)
\(702\) 0 0
\(703\) 3.92994 4.53539i 0.148220 0.171055i
\(704\) 0 0
\(705\) −1.81311 3.97015i −0.0682856 0.149525i
\(706\) 0 0
\(707\) −22.1467 −0.832912
\(708\) 0 0
\(709\) −18.8465 + 12.1119i −0.707796 + 0.454873i −0.844372 0.535757i \(-0.820026\pi\)
0.136576 + 0.990630i \(0.456390\pi\)
\(710\) 0 0
\(711\) 1.25891 + 8.75589i 0.0472127 + 0.328372i
\(712\) 0 0
\(713\) −0.160263 1.11466i −0.00600191 0.0417442i
\(714\) 0 0
\(715\) 0.367231 + 0.804123i 0.0137336 + 0.0300725i
\(716\) 0 0
\(717\) 5.00106 10.9508i 0.186768 0.408965i
\(718\) 0 0
\(719\) 1.86702 12.9854i 0.0696280 0.484273i −0.924934 0.380128i \(-0.875880\pi\)
0.994562 0.104146i \(-0.0332108\pi\)
\(720\) 0 0
\(721\) 44.0651 + 12.9387i 1.64107 + 0.481862i
\(722\) 0 0
\(723\) 1.19582 8.31715i 0.0444732 0.309318i
\(724\) 0 0
\(725\) −2.73843 1.75988i −0.101703 0.0653603i
\(726\) 0 0
\(727\) −5.99097 13.1184i −0.222193 0.486534i 0.765403 0.643551i \(-0.222540\pi\)
−0.987596 + 0.157017i \(0.949812\pi\)
\(728\) 0 0
\(729\) 0.841254 0.540641i 0.0311575 0.0200237i
\(730\) 0 0
\(731\) −0.774321 + 0.227361i −0.0286393 + 0.00840926i
\(732\) 0 0
\(733\) 4.96003 34.4977i 0.183203 1.27420i −0.665926 0.746018i \(-0.731963\pi\)
0.849129 0.528186i \(-0.177128\pi\)
\(734\) 0 0
\(735\) −7.77181 8.96915i −0.286668 0.330832i
\(736\) 0 0
\(737\) 10.5633 + 23.1866i 0.389104 + 0.854088i
\(738\) 0 0
\(739\) 27.7273 + 31.9990i 1.01996 + 1.17710i 0.984077 + 0.177745i \(0.0568803\pi\)
0.0358875 + 0.999356i \(0.488574\pi\)
\(740\) 0 0
\(741\) 0.0385288 0.267974i 0.00141539 0.00984426i
\(742\) 0 0
\(743\) 32.2711 9.47566i 1.18391 0.347628i 0.370232 0.928939i \(-0.379278\pi\)
0.813681 + 0.581311i \(0.197460\pi\)
\(744\) 0 0
\(745\) 21.3309 13.7085i 0.781503 0.502242i
\(746\) 0 0
\(747\) −2.85315 6.24753i −0.104391 0.228585i
\(748\) 0 0
\(749\) 17.7876 + 11.4314i 0.649946 + 0.417695i
\(750\) 0 0
\(751\) −3.31150 + 23.0320i −0.120838 + 0.840448i 0.835772 + 0.549077i \(0.185021\pi\)
−0.956610 + 0.291371i \(0.905888\pi\)
\(752\) 0 0
\(753\) −2.88242 0.846355i −0.105041 0.0308429i
\(754\) 0 0
\(755\) 0.0896717 0.623680i 0.00326349 0.0226980i
\(756\) 0 0
\(757\) −3.48582 + 7.63289i −0.126694 + 0.277422i −0.962341 0.271846i \(-0.912366\pi\)
0.835646 + 0.549268i \(0.185093\pi\)
\(758\) 0 0
\(759\) 0.854004 + 1.87001i 0.0309984 + 0.0678770i
\(760\) 0 0
\(761\) 3.62796 + 25.2330i 0.131514 + 0.914697i 0.943583 + 0.331136i \(0.107432\pi\)
−0.812069 + 0.583561i \(0.801659\pi\)
\(762\) 0 0
\(763\) −7.18965 50.0051i −0.260283 1.81031i
\(764\) 0 0
\(765\) −3.59189 + 2.30836i −0.129865 + 0.0834591i
\(766\) 0 0
\(767\) 1.73548 0.0626644
\(768\) 0 0
\(769\) −5.58070 12.2200i −0.201245 0.440666i 0.781921 0.623377i \(-0.214240\pi\)
−0.983167 + 0.182712i \(0.941513\pi\)
\(770\) 0 0
\(771\) 12.0153 13.8663i 0.432719 0.499384i
\(772\) 0 0
\(773\) 21.8186 14.0219i 0.784759 0.504334i −0.0858507 0.996308i \(-0.527361\pi\)
0.870610 + 0.491974i \(0.163724\pi\)
\(774\) 0 0
\(775\) −2.51413 −0.0903102
\(776\) 0 0
\(777\) 11.7408 3.44740i 0.421198 0.123675i
\(778\) 0 0
\(779\) −13.7700 8.84946i −0.493363 0.317065i
\(780\) 0 0
\(781\) −4.71427 + 10.3228i −0.168690 + 0.369379i