Properties

Label 804.2.q.b.193.4
Level 804
Weight 2
Character 804.193
Analytic conductor 6.420
Analytic rank 0
Dimension 60
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(6\) over \(\Q(\zeta_{11})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 193.4
Character \(\chi\) = 804.193
Dual form 804.2.q.b.25.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.654861 + 0.755750i) q^{3} +(1.12656 + 0.723994i) q^{5} +(-0.202268 + 1.40680i) q^{7} +(-0.142315 + 0.989821i) q^{9} +O(q^{10})\) \(q+(0.654861 + 0.755750i) q^{3} +(1.12656 + 0.723994i) q^{5} +(-0.202268 + 1.40680i) q^{7} +(-0.142315 + 0.989821i) q^{9} +(-2.52874 - 1.62512i) q^{11} +(1.08620 + 2.37844i) q^{13} +(0.190580 + 1.32551i) q^{15} +(2.15851 - 0.633795i) q^{17} +(1.08664 + 7.55774i) q^{19} +(-1.19565 + 0.768395i) q^{21} +(5.68168 + 6.55701i) q^{23} +(-1.33211 - 2.91692i) q^{25} +(-0.841254 + 0.540641i) q^{27} -3.39419 q^{29} +(1.49181 - 3.26660i) q^{31} +(-0.427787 - 2.97532i) q^{33} +(-1.24638 + 1.43840i) q^{35} -6.63386 q^{37} +(-1.08620 + 2.37844i) q^{39} +(1.86302 - 0.547031i) q^{41} +(-8.87900 + 2.60711i) q^{43} +(-0.876951 + 1.01206i) q^{45} +(-0.660772 - 0.762571i) q^{47} +(4.77827 + 1.40303i) q^{49} +(1.89251 + 1.21624i) q^{51} +(11.0069 + 3.23191i) q^{53} +(-1.67219 - 3.66158i) q^{55} +(-5.00016 + 5.77049i) q^{57} +(3.66918 - 8.03438i) q^{59} +(8.80650 - 5.65959i) q^{61} +(-1.36370 - 0.400417i) q^{63} +(-0.498313 + 3.46584i) q^{65} +(0.105510 + 8.18467i) q^{67} +(-1.23475 + 8.58786i) q^{69} +(-3.96022 - 1.16283i) q^{71} +(-6.59618 + 4.23911i) q^{73} +(1.33211 - 2.91692i) q^{75} +(2.79770 - 3.22872i) q^{77} +(3.97765 + 8.70984i) q^{79} +(-0.959493 - 0.281733i) q^{81} +(-7.38873 - 4.74845i) q^{83} +(2.89055 + 0.848742i) q^{85} +(-2.22272 - 2.56516i) q^{87} +(7.60486 - 8.77648i) q^{89} +(-3.56569 + 1.04698i) q^{91} +(3.44566 - 1.01174i) q^{93} +(-4.24760 + 9.30095i) q^{95} -5.54010 q^{97} +(1.96846 - 2.27172i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60q + 6q^{3} + 2q^{5} + 2q^{7} - 6q^{9} + O(q^{10}) \) \( 60q + 6q^{3} + 2q^{5} + 2q^{7} - 6q^{9} - 11q^{11} - 2q^{13} + 9q^{15} + 21q^{17} + 10q^{19} - 2q^{21} - 10q^{23} - 36q^{25} + 6q^{27} + 4q^{29} - 24q^{31} - 32q^{35} + 2q^{37} + 2q^{39} + 10q^{41} + 23q^{43} + 2q^{45} + 66q^{47} + 34q^{49} + 23q^{51} - 13q^{53} + 27q^{55} + q^{57} + 35q^{59} + 56q^{61} - 9q^{63} + 48q^{65} + 13q^{67} + 10q^{69} + 76q^{71} - q^{73} + 36q^{75} - 38q^{77} - 46q^{79} - 6q^{81} - 26q^{83} + 42q^{85} + 7q^{87} + 58q^{89} - 40q^{91} - 9q^{93} - 29q^{95} - 46q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(e\left(\frac{6}{11}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.654861 + 0.755750i 0.378084 + 0.436332i
\(4\) 0 0
\(5\) 1.12656 + 0.723994i 0.503812 + 0.323780i 0.767739 0.640762i \(-0.221382\pi\)
−0.263928 + 0.964543i \(0.585018\pi\)
\(6\) 0 0
\(7\) −0.202268 + 1.40680i −0.0764499 + 0.531721i 0.915224 + 0.402946i \(0.132014\pi\)
−0.991674 + 0.128775i \(0.958895\pi\)
\(8\) 0 0
\(9\) −0.142315 + 0.989821i −0.0474383 + 0.329940i
\(10\) 0 0
\(11\) −2.52874 1.62512i −0.762443 0.489992i 0.100722 0.994915i \(-0.467885\pi\)
−0.863165 + 0.504922i \(0.831521\pi\)
\(12\) 0 0
\(13\) 1.08620 + 2.37844i 0.301256 + 0.659660i 0.998356 0.0573146i \(-0.0182538\pi\)
−0.697100 + 0.716974i \(0.745527\pi\)
\(14\) 0 0
\(15\) 0.190580 + 1.32551i 0.0492075 + 0.342245i
\(16\) 0 0
\(17\) 2.15851 0.633795i 0.523515 0.153718i −0.00928835 0.999957i \(-0.502957\pi\)
0.532804 + 0.846239i \(0.321138\pi\)
\(18\) 0 0
\(19\) 1.08664 + 7.55774i 0.249292 + 1.73386i 0.602323 + 0.798253i \(0.294242\pi\)
−0.353030 + 0.935612i \(0.614849\pi\)
\(20\) 0 0
\(21\) −1.19565 + 0.768395i −0.260911 + 0.167678i
\(22\) 0 0
\(23\) 5.68168 + 6.55701i 1.18471 + 1.36723i 0.914578 + 0.404409i \(0.132523\pi\)
0.270135 + 0.962823i \(0.412932\pi\)
\(24\) 0 0
\(25\) −1.33211 2.91692i −0.266422 0.583384i
\(26\) 0 0
\(27\) −0.841254 + 0.540641i −0.161899 + 0.104046i
\(28\) 0 0
\(29\) −3.39419 −0.630286 −0.315143 0.949044i \(-0.602052\pi\)
−0.315143 + 0.949044i \(0.602052\pi\)
\(30\) 0 0
\(31\) 1.49181 3.26660i 0.267936 0.586699i −0.727064 0.686570i \(-0.759116\pi\)
0.995000 + 0.0998707i \(0.0318429\pi\)
\(32\) 0 0
\(33\) −0.427787 2.97532i −0.0744681 0.517937i
\(34\) 0 0
\(35\) −1.24638 + 1.43840i −0.210677 + 0.243134i
\(36\) 0 0
\(37\) −6.63386 −1.09060 −0.545300 0.838241i \(-0.683584\pi\)
−0.545300 + 0.838241i \(0.683584\pi\)
\(38\) 0 0
\(39\) −1.08620 + 2.37844i −0.173930 + 0.380855i
\(40\) 0 0
\(41\) 1.86302 0.547031i 0.290954 0.0854319i −0.132998 0.991116i \(-0.542461\pi\)
0.423953 + 0.905684i \(0.360642\pi\)
\(42\) 0 0
\(43\) −8.87900 + 2.60711i −1.35403 + 0.397581i −0.876656 0.481117i \(-0.840231\pi\)
−0.477379 + 0.878698i \(0.658413\pi\)
\(44\) 0 0
\(45\) −0.876951 + 1.01206i −0.130728 + 0.150868i
\(46\) 0 0
\(47\) −0.660772 0.762571i −0.0963835 0.111232i 0.705509 0.708701i \(-0.250719\pi\)
−0.801892 + 0.597469i \(0.796173\pi\)
\(48\) 0 0
\(49\) 4.77827 + 1.40303i 0.682610 + 0.200432i
\(50\) 0 0
\(51\) 1.89251 + 1.21624i 0.265005 + 0.170308i
\(52\) 0 0
\(53\) 11.0069 + 3.23191i 1.51191 + 0.443937i 0.929458 0.368927i \(-0.120275\pi\)
0.582453 + 0.812864i \(0.302093\pi\)
\(54\) 0 0
\(55\) −1.67219 3.66158i −0.225478 0.493728i
\(56\) 0 0
\(57\) −5.00016 + 5.77049i −0.662288 + 0.764321i
\(58\) 0 0
\(59\) 3.66918 8.03438i 0.477687 1.04599i −0.505407 0.862881i \(-0.668657\pi\)
0.983093 0.183106i \(-0.0586152\pi\)
\(60\) 0 0
\(61\) 8.80650 5.65959i 1.12756 0.724637i 0.162508 0.986707i \(-0.448042\pi\)
0.965049 + 0.262071i \(0.0844053\pi\)
\(62\) 0 0
\(63\) −1.36370 0.400417i −0.171810 0.0504479i
\(64\) 0 0
\(65\) −0.498313 + 3.46584i −0.0618081 + 0.429885i
\(66\) 0 0
\(67\) 0.105510 + 8.18467i 0.0128902 + 0.999917i
\(68\) 0 0
\(69\) −1.23475 + 8.58786i −0.148646 + 1.03386i
\(70\) 0 0
\(71\) −3.96022 1.16283i −0.469992 0.138002i 0.0381560 0.999272i \(-0.487852\pi\)
−0.508148 + 0.861270i \(0.669670\pi\)
\(72\) 0 0
\(73\) −6.59618 + 4.23911i −0.772024 + 0.496150i −0.866378 0.499389i \(-0.833558\pi\)
0.0943538 + 0.995539i \(0.469922\pi\)
\(74\) 0 0
\(75\) 1.33211 2.91692i 0.153819 0.336817i
\(76\) 0 0
\(77\) 2.79770 3.22872i 0.318828 0.367947i
\(78\) 0 0
\(79\) 3.97765 + 8.70984i 0.447521 + 0.979934i 0.990156 + 0.139966i \(0.0446992\pi\)
−0.542635 + 0.839968i \(0.682573\pi\)
\(80\) 0 0
\(81\) −0.959493 0.281733i −0.106610 0.0313036i
\(82\) 0 0
\(83\) −7.38873 4.74845i −0.811018 0.521210i 0.0681759 0.997673i \(-0.478282\pi\)
−0.879194 + 0.476463i \(0.841918\pi\)
\(84\) 0 0
\(85\) 2.89055 + 0.848742i 0.313524 + 0.0920589i
\(86\) 0 0
\(87\) −2.22272 2.56516i −0.238301 0.275014i
\(88\) 0 0
\(89\) 7.60486 8.77648i 0.806113 0.930305i −0.192586 0.981280i \(-0.561688\pi\)
0.998700 + 0.0509754i \(0.0162330\pi\)
\(90\) 0 0
\(91\) −3.56569 + 1.04698i −0.373786 + 0.109753i
\(92\) 0 0
\(93\) 3.44566 1.01174i 0.357298 0.104912i
\(94\) 0 0
\(95\) −4.24760 + 9.30095i −0.435795 + 0.954257i
\(96\) 0 0
\(97\) −5.54010 −0.562512 −0.281256 0.959633i \(-0.590751\pi\)
−0.281256 + 0.959633i \(0.590751\pi\)
\(98\) 0 0
\(99\) 1.96846 2.27172i 0.197837 0.228316i
\(100\) 0 0
\(101\) −1.94942 13.5585i −0.193974 1.34912i −0.821360 0.570411i \(-0.806784\pi\)
0.627385 0.778709i \(-0.284125\pi\)
\(102\) 0 0
\(103\) −5.86913 + 12.8516i −0.578303 + 1.26631i 0.363955 + 0.931417i \(0.381426\pi\)
−0.942257 + 0.334890i \(0.891301\pi\)
\(104\) 0 0
\(105\) −1.90328 −0.185741
\(106\) 0 0
\(107\) 11.6790 7.50566i 1.12905 0.725600i 0.163692 0.986511i \(-0.447660\pi\)
0.965363 + 0.260912i \(0.0840232\pi\)
\(108\) 0 0
\(109\) −0.953650 2.08820i −0.0913431 0.200013i 0.858446 0.512904i \(-0.171430\pi\)
−0.949789 + 0.312890i \(0.898703\pi\)
\(110\) 0 0
\(111\) −4.34426 5.01354i −0.412339 0.475864i
\(112\) 0 0
\(113\) 11.3583 7.29951i 1.06849 0.686680i 0.116623 0.993176i \(-0.462793\pi\)
0.951872 + 0.306497i \(0.0991568\pi\)
\(114\) 0 0
\(115\) 1.65350 + 11.5004i 0.154190 + 1.07241i
\(116\) 0 0
\(117\) −2.50881 + 0.736653i −0.231940 + 0.0681036i
\(118\) 0 0
\(119\) 0.455028 + 3.16479i 0.0417124 + 0.290116i
\(120\) 0 0
\(121\) −0.816068 1.78694i −0.0741880 0.162449i
\(122\) 0 0
\(123\) 1.63343 + 1.04974i 0.147282 + 0.0946523i
\(124\) 0 0
\(125\) 1.56403 10.8781i 0.139891 0.972964i
\(126\) 0 0
\(127\) 1.92871 13.4145i 0.171146 1.19034i −0.705323 0.708886i \(-0.749198\pi\)
0.876469 0.481459i \(-0.159893\pi\)
\(128\) 0 0
\(129\) −7.78483 5.00301i −0.685416 0.440490i
\(130\) 0 0
\(131\) 9.57774 + 11.0533i 0.836811 + 0.965731i 0.999782 0.0208995i \(-0.00665300\pi\)
−0.162971 + 0.986631i \(0.552108\pi\)
\(132\) 0 0
\(133\) −10.8520 −0.940991
\(134\) 0 0
\(135\) −1.33914 −0.115255
\(136\) 0 0
\(137\) 3.72372 + 4.29740i 0.318139 + 0.367152i 0.892184 0.451672i \(-0.149172\pi\)
−0.574045 + 0.818823i \(0.694627\pi\)
\(138\) 0 0
\(139\) −11.7701 7.56419i −0.998328 0.641587i −0.0639811 0.997951i \(-0.520380\pi\)
−0.934347 + 0.356365i \(0.884016\pi\)
\(140\) 0 0
\(141\) 0.143599 0.998756i 0.0120933 0.0841104i
\(142\) 0 0
\(143\) 1.11854 7.77964i 0.0935373 0.650566i
\(144\) 0 0
\(145\) −3.82375 2.45738i −0.317545 0.204074i
\(146\) 0 0
\(147\) 2.06877 + 4.52997i 0.170629 + 0.373625i
\(148\) 0 0
\(149\) −3.09970 21.5589i −0.253938 1.76617i −0.574074 0.818803i \(-0.694638\pi\)
0.320137 0.947371i \(-0.396271\pi\)
\(150\) 0 0
\(151\) 9.93981 2.91859i 0.808890 0.237512i 0.148965 0.988843i \(-0.452406\pi\)
0.659926 + 0.751331i \(0.270588\pi\)
\(152\) 0 0
\(153\) 0.320156 + 2.22674i 0.0258831 + 0.180021i
\(154\) 0 0
\(155\) 4.04561 2.59995i 0.324951 0.208833i
\(156\) 0 0
\(157\) 1.48075 + 1.70888i 0.118177 + 0.136383i 0.811755 0.583998i \(-0.198512\pi\)
−0.693578 + 0.720381i \(0.743967\pi\)
\(158\) 0 0
\(159\) 4.76546 + 10.4349i 0.377925 + 0.827541i
\(160\) 0 0
\(161\) −10.3736 + 6.66673i −0.817557 + 0.525412i
\(162\) 0 0
\(163\) 16.1499 1.26496 0.632479 0.774577i \(-0.282037\pi\)
0.632479 + 0.774577i \(0.282037\pi\)
\(164\) 0 0
\(165\) 1.67219 3.66158i 0.130180 0.285054i
\(166\) 0 0
\(167\) −0.874032 6.07902i −0.0676346 0.470409i −0.995288 0.0969660i \(-0.969086\pi\)
0.927653 0.373443i \(-0.121823\pi\)
\(168\) 0 0
\(169\) 4.03605 4.65785i 0.310465 0.358296i
\(170\) 0 0
\(171\) −7.63546 −0.583898
\(172\) 0 0
\(173\) 2.01439 4.41090i 0.153151 0.335355i −0.817468 0.575974i \(-0.804623\pi\)
0.970620 + 0.240619i \(0.0773504\pi\)
\(174\) 0 0
\(175\) 4.37297 1.28402i 0.330565 0.0970627i
\(176\) 0 0
\(177\) 8.47478 2.48842i 0.637004 0.187041i
\(178\) 0 0
\(179\) −14.9942 + 17.3042i −1.12072 + 1.29338i −0.169267 + 0.985570i \(0.554140\pi\)
−0.951449 + 0.307806i \(0.900405\pi\)
\(180\) 0 0
\(181\) −7.12283 8.22018i −0.529435 0.611001i 0.426532 0.904472i \(-0.359735\pi\)
−0.955968 + 0.293471i \(0.905190\pi\)
\(182\) 0 0
\(183\) 10.0443 + 2.94926i 0.742493 + 0.218016i
\(184\) 0 0
\(185\) −7.47343 4.80288i −0.549457 0.353115i
\(186\) 0 0
\(187\) −6.48830 1.90514i −0.474471 0.139317i
\(188\) 0 0
\(189\) −0.590416 1.29283i −0.0429464 0.0940396i
\(190\) 0 0
\(191\) 10.8396 12.5095i 0.784323 0.905157i −0.213091 0.977032i \(-0.568353\pi\)
0.997414 + 0.0718758i \(0.0228985\pi\)
\(192\) 0 0
\(193\) 4.01603 8.79387i 0.289080 0.632997i −0.708255 0.705957i \(-0.750517\pi\)
0.997335 + 0.0729601i \(0.0232446\pi\)
\(194\) 0 0
\(195\) −2.94564 + 1.89305i −0.210941 + 0.135564i
\(196\) 0 0
\(197\) 4.17889 + 1.22703i 0.297734 + 0.0874226i 0.427188 0.904163i \(-0.359504\pi\)
−0.129454 + 0.991585i \(0.541322\pi\)
\(198\) 0 0
\(199\) 2.24247 15.5967i 0.158964 1.10562i −0.741582 0.670862i \(-0.765924\pi\)
0.900547 0.434759i \(-0.143166\pi\)
\(200\) 0 0
\(201\) −6.11647 + 5.43956i −0.431422 + 0.383677i
\(202\) 0 0
\(203\) 0.686535 4.77495i 0.0481853 0.335136i
\(204\) 0 0
\(205\) 2.49484 + 0.732551i 0.174247 + 0.0511636i
\(206\) 0 0
\(207\) −7.29886 + 4.69069i −0.507306 + 0.326026i
\(208\) 0 0
\(209\) 9.53442 20.8775i 0.659510 1.44412i
\(210\) 0 0
\(211\) −9.34056 + 10.7796i −0.643031 + 0.742097i −0.979908 0.199451i \(-0.936084\pi\)
0.336877 + 0.941549i \(0.390629\pi\)
\(212\) 0 0
\(213\) −1.71459 3.75443i −0.117482 0.257249i
\(214\) 0 0
\(215\) −11.8902 3.49129i −0.810907 0.238104i
\(216\) 0 0
\(217\) 4.29372 + 2.75940i 0.291476 + 0.187321i
\(218\) 0 0
\(219\) −7.52328 2.20903i −0.508376 0.149273i
\(220\) 0 0
\(221\) 3.85201 + 4.44545i 0.259114 + 0.299033i
\(222\) 0 0
\(223\) 14.7457 17.0174i 0.987444 1.13957i −0.00276766 0.999996i \(-0.500881\pi\)
0.990212 0.139575i \(-0.0445736\pi\)
\(224\) 0 0
\(225\) 3.07681 0.903432i 0.205120 0.0602288i
\(226\) 0 0
\(227\) −9.14491 + 2.68519i −0.606969 + 0.178222i −0.570753 0.821122i \(-0.693349\pi\)
−0.0362160 + 0.999344i \(0.511530\pi\)
\(228\) 0 0
\(229\) −2.91562 + 6.38432i −0.192670 + 0.421888i −0.981170 0.193147i \(-0.938131\pi\)
0.788500 + 0.615034i \(0.210858\pi\)
\(230\) 0 0
\(231\) 4.27221 0.281091
\(232\) 0 0
\(233\) 6.11516 7.05727i 0.400617 0.462337i −0.519218 0.854642i \(-0.673777\pi\)
0.919835 + 0.392305i \(0.128322\pi\)
\(234\) 0 0
\(235\) −0.192300 1.33748i −0.0125443 0.0872473i
\(236\) 0 0
\(237\) −3.97765 + 8.70984i −0.258376 + 0.565765i
\(238\) 0 0
\(239\) −26.4821 −1.71299 −0.856493 0.516158i \(-0.827362\pi\)
−0.856493 + 0.516158i \(0.827362\pi\)
\(240\) 0 0
\(241\) −18.3896 + 11.8182i −1.18458 + 0.761280i −0.976222 0.216773i \(-0.930447\pi\)
−0.208353 + 0.978054i \(0.566810\pi\)
\(242\) 0 0
\(243\) −0.415415 0.909632i −0.0266489 0.0583529i
\(244\) 0 0
\(245\) 4.36721 + 5.04003i 0.279011 + 0.321996i
\(246\) 0 0
\(247\) −16.7953 + 10.7937i −1.06866 + 0.686786i
\(248\) 0 0
\(249\) −1.24995 8.69360i −0.0792124 0.550935i
\(250\) 0 0
\(251\) −8.16027 + 2.39607i −0.515072 + 0.151239i −0.528930 0.848665i \(-0.677407\pi\)
0.0138586 + 0.999904i \(0.495589\pi\)
\(252\) 0 0
\(253\) −3.71155 25.8144i −0.233343 1.62294i
\(254\) 0 0
\(255\) 1.25147 + 2.74034i 0.0783701 + 0.171607i
\(256\) 0 0
\(257\) 10.2447 + 6.58389i 0.639049 + 0.410692i 0.819650 0.572865i \(-0.194168\pi\)
−0.180601 + 0.983556i \(0.557804\pi\)
\(258\) 0 0
\(259\) 1.34182 9.33253i 0.0833763 0.579895i
\(260\) 0 0
\(261\) 0.483044 3.35964i 0.0298997 0.207957i
\(262\) 0 0
\(263\) 8.47112 + 5.44406i 0.522352 + 0.335695i 0.775102 0.631837i \(-0.217699\pi\)
−0.252750 + 0.967532i \(0.581335\pi\)
\(264\) 0 0
\(265\) 10.0600 + 11.6099i 0.617981 + 0.713188i
\(266\) 0 0
\(267\) 11.6129 0.710700
\(268\) 0 0
\(269\) 14.3381 0.874208 0.437104 0.899411i \(-0.356004\pi\)
0.437104 + 0.899411i \(0.356004\pi\)
\(270\) 0 0
\(271\) 1.12115 + 1.29388i 0.0681050 + 0.0785974i 0.788780 0.614676i \(-0.210713\pi\)
−0.720675 + 0.693273i \(0.756168\pi\)
\(272\) 0 0
\(273\) −3.12629 2.00914i −0.189211 0.121599i
\(274\) 0 0
\(275\) −1.37178 + 9.54096i −0.0827217 + 0.575342i
\(276\) 0 0
\(277\) 0.214899 1.49466i 0.0129120 0.0898052i −0.982346 0.187071i \(-0.940101\pi\)
0.995258 + 0.0972657i \(0.0310097\pi\)
\(278\) 0 0
\(279\) 3.02105 + 1.94151i 0.180865 + 0.116235i
\(280\) 0 0
\(281\) 2.61728 + 5.73104i 0.156134 + 0.341885i 0.971492 0.237071i \(-0.0761875\pi\)
−0.815359 + 0.578956i \(0.803460\pi\)
\(282\) 0 0
\(283\) 2.63994 + 18.3612i 0.156928 + 1.09146i 0.904252 + 0.426999i \(0.140429\pi\)
−0.747324 + 0.664460i \(0.768662\pi\)
\(284\) 0 0
\(285\) −9.81077 + 2.88070i −0.581140 + 0.170638i
\(286\) 0 0
\(287\) 0.392736 + 2.73154i 0.0231825 + 0.161238i
\(288\) 0 0
\(289\) −10.0438 + 6.45479i −0.590814 + 0.379693i
\(290\) 0 0
\(291\) −3.62799 4.18693i −0.212677 0.245442i
\(292\) 0 0
\(293\) −2.59390 5.67986i −0.151537 0.331821i 0.818605 0.574357i \(-0.194748\pi\)
−0.970142 + 0.242536i \(0.922021\pi\)
\(294\) 0 0
\(295\) 9.95039 6.39473i 0.579334 0.372315i
\(296\) 0 0
\(297\) 3.00592 0.174421
\(298\) 0 0
\(299\) −9.42402 + 20.6357i −0.545005 + 1.19339i
\(300\) 0 0
\(301\) −1.87175 13.0183i −0.107886 0.750364i
\(302\) 0 0
\(303\) 8.97022 10.3522i 0.515326 0.594718i
\(304\) 0 0
\(305\) 14.0185 0.802699
\(306\) 0 0
\(307\) 8.79483 19.2580i 0.501948 1.09911i −0.473884 0.880587i \(-0.657148\pi\)
0.975831 0.218524i \(-0.0701243\pi\)
\(308\) 0 0
\(309\) −13.5561 + 3.98042i −0.771177 + 0.226438i
\(310\) 0 0
\(311\) 11.5887 3.40276i 0.657137 0.192953i 0.0638697 0.997958i \(-0.479656\pi\)
0.593268 + 0.805005i \(0.297838\pi\)
\(312\) 0 0
\(313\) 9.62902 11.1125i 0.544265 0.628115i −0.415273 0.909697i \(-0.636314\pi\)
0.959537 + 0.281582i \(0.0908592\pi\)
\(314\) 0 0
\(315\) −1.24638 1.43840i −0.0702257 0.0810448i
\(316\) 0 0
\(317\) −27.7406 8.14537i −1.55807 0.457490i −0.614567 0.788865i \(-0.710669\pi\)
−0.943499 + 0.331375i \(0.892487\pi\)
\(318\) 0 0
\(319\) 8.58302 + 5.51597i 0.480557 + 0.308835i
\(320\) 0 0
\(321\) 13.3205 + 3.91126i 0.743480 + 0.218305i
\(322\) 0 0
\(323\) 7.13558 + 15.6247i 0.397034 + 0.869384i
\(324\) 0 0
\(325\) 5.49077 6.33669i 0.304573 0.351496i
\(326\) 0 0
\(327\) 0.953650 2.08820i 0.0527370 0.115478i
\(328\) 0 0
\(329\) 1.20644 0.775331i 0.0665132 0.0427454i
\(330\) 0 0
\(331\) −15.3580 4.50953i −0.844154 0.247866i −0.169068 0.985604i \(-0.554076\pi\)
−0.675087 + 0.737738i \(0.735894\pi\)
\(332\) 0 0
\(333\) 0.944097 6.56634i 0.0517362 0.359833i
\(334\) 0 0
\(335\) −5.80679 + 9.29689i −0.317259 + 0.507943i
\(336\) 0 0
\(337\) −2.75983 + 19.1950i −0.150337 + 1.04562i 0.765317 + 0.643654i \(0.222582\pi\)
−0.915654 + 0.401966i \(0.868327\pi\)
\(338\) 0 0
\(339\) 12.9547 + 3.80384i 0.703601 + 0.206596i
\(340\) 0 0
\(341\) −9.08101 + 5.83601i −0.491764 + 0.316038i
\(342\) 0 0
\(343\) −7.07318 + 15.4881i −0.381916 + 0.836279i
\(344\) 0 0
\(345\) −7.60858 + 8.78076i −0.409632 + 0.472740i
\(346\) 0 0
\(347\) 7.53963 + 16.5095i 0.404749 + 0.886276i 0.996767 + 0.0803511i \(0.0256041\pi\)
−0.592018 + 0.805925i \(0.701669\pi\)
\(348\) 0 0
\(349\) 18.6250 + 5.46879i 0.996973 + 0.292738i 0.739213 0.673471i \(-0.235198\pi\)
0.257760 + 0.966209i \(0.417016\pi\)
\(350\) 0 0
\(351\) −2.19965 1.41363i −0.117408 0.0754538i
\(352\) 0 0
\(353\) 4.25790 + 1.25023i 0.226625 + 0.0665432i 0.393074 0.919507i \(-0.371412\pi\)
−0.166448 + 0.986050i \(0.553230\pi\)
\(354\) 0 0
\(355\) −3.61954 4.17717i −0.192105 0.221701i
\(356\) 0 0
\(357\) −2.09381 + 2.41638i −0.110816 + 0.127889i
\(358\) 0 0
\(359\) −5.39866 + 1.58519i −0.284930 + 0.0836631i −0.421075 0.907026i \(-0.638347\pi\)
0.136144 + 0.990689i \(0.456529\pi\)
\(360\) 0 0
\(361\) −37.7083 + 11.0722i −1.98465 + 0.582745i
\(362\) 0 0
\(363\) 0.816068 1.78694i 0.0428325 0.0937900i
\(364\) 0 0
\(365\) −10.5001 −0.549598
\(366\) 0 0
\(367\) −10.2868 + 11.8716i −0.536966 + 0.619692i −0.957796 0.287447i \(-0.907193\pi\)
0.420830 + 0.907139i \(0.361739\pi\)
\(368\) 0 0
\(369\) 0.276328 + 1.92190i 0.0143851 + 0.100050i
\(370\) 0 0
\(371\) −6.77299 + 14.8308i −0.351636 + 0.769976i
\(372\) 0 0
\(373\) 13.5332 0.700723 0.350361 0.936615i \(-0.386059\pi\)
0.350361 + 0.936615i \(0.386059\pi\)
\(374\) 0 0
\(375\) 9.24532 5.94161i 0.477426 0.306823i
\(376\) 0 0
\(377\) −3.68676 8.07287i −0.189878 0.415774i
\(378\) 0 0
\(379\) 12.5546 + 14.4888i 0.644886 + 0.744238i 0.980231 0.197857i \(-0.0633982\pi\)
−0.335345 + 0.942096i \(0.608853\pi\)
\(380\) 0 0
\(381\) 11.4010 7.32701i 0.584093 0.375374i
\(382\) 0 0
\(383\) −4.66462 32.4431i −0.238351 1.65777i −0.660191 0.751097i \(-0.729525\pi\)
0.421840 0.906670i \(-0.361384\pi\)
\(384\) 0 0
\(385\) 5.48935 1.61182i 0.279763 0.0821459i
\(386\) 0 0
\(387\) −1.31696 9.15966i −0.0669448 0.465611i
\(388\) 0 0
\(389\) −2.93841 6.43422i −0.148983 0.326228i 0.820396 0.571795i \(-0.193753\pi\)
−0.969379 + 0.245568i \(0.921026\pi\)
\(390\) 0 0
\(391\) 16.4198 + 10.5523i 0.830383 + 0.533655i
\(392\) 0 0
\(393\) −2.08144 + 14.4767i −0.104995 + 0.730255i
\(394\) 0 0
\(395\) −1.82482 + 12.6919i −0.0918169 + 0.638601i
\(396\) 0 0
\(397\) −0.325544 0.209214i −0.0163386 0.0105002i 0.532446 0.846464i \(-0.321273\pi\)
−0.548785 + 0.835964i \(0.684909\pi\)
\(398\) 0 0
\(399\) −7.10657 8.20142i −0.355774 0.410585i
\(400\) 0 0
\(401\) 9.41238 0.470032 0.235016 0.971992i \(-0.424486\pi\)
0.235016 + 0.971992i \(0.424486\pi\)
\(402\) 0 0
\(403\) 9.38980 0.467739
\(404\) 0 0
\(405\) −0.876951 1.01206i −0.0435760 0.0502894i
\(406\) 0 0
\(407\) 16.7753 + 10.7808i 0.831521 + 0.534386i
\(408\) 0 0
\(409\) 0.104187 0.724633i 0.00515169 0.0358308i −0.987083 0.160207i \(-0.948784\pi\)
0.992235 + 0.124376i \(0.0396929\pi\)
\(410\) 0 0
\(411\) −0.809241 + 5.62840i −0.0399169 + 0.277628i
\(412\) 0 0
\(413\) 10.5606 + 6.78690i 0.519654 + 0.333962i
\(414\) 0 0
\(415\) −4.88598 10.6988i −0.239843 0.525183i
\(416\) 0 0
\(417\) −1.99115 13.8488i −0.0975070 0.678176i
\(418\) 0 0
\(419\) −20.3895 + 5.98689i −0.996091 + 0.292479i −0.738851 0.673869i \(-0.764631\pi\)
−0.257240 + 0.966348i \(0.582813\pi\)
\(420\) 0 0
\(421\) 4.74139 + 32.9771i 0.231081 + 1.60721i 0.693441 + 0.720514i \(0.256094\pi\)
−0.462359 + 0.886693i \(0.652997\pi\)
\(422\) 0 0
\(423\) 0.848847 0.545521i 0.0412724 0.0265241i
\(424\) 0 0
\(425\) −4.72410 5.45191i −0.229153 0.264456i
\(426\) 0 0
\(427\) 6.18066 + 13.5337i 0.299103 + 0.654944i
\(428\) 0 0
\(429\) 6.61195 4.24924i 0.319228 0.205155i
\(430\) 0 0
\(431\) 18.1531 0.874402 0.437201 0.899364i \(-0.355970\pi\)
0.437201 + 0.899364i \(0.355970\pi\)
\(432\) 0 0
\(433\) −4.44435 + 9.73177i −0.213582 + 0.467679i −0.985853 0.167614i \(-0.946394\pi\)
0.772271 + 0.635294i \(0.219121\pi\)
\(434\) 0 0
\(435\) −0.646864 4.49904i −0.0310148 0.215712i
\(436\) 0 0
\(437\) −43.3823 + 50.0658i −2.07525 + 2.39497i
\(438\) 0 0
\(439\) 13.5190 0.645229 0.322614 0.946531i \(-0.395438\pi\)
0.322614 + 0.946531i \(0.395438\pi\)
\(440\) 0 0
\(441\) −2.06877 + 4.52997i −0.0985127 + 0.215713i
\(442\) 0 0
\(443\) −3.50537 + 1.02927i −0.166545 + 0.0489020i −0.363942 0.931422i \(-0.618569\pi\)
0.197397 + 0.980324i \(0.436751\pi\)
\(444\) 0 0
\(445\) 14.9214 4.38133i 0.707344 0.207695i
\(446\) 0 0
\(447\) 14.2633 16.4607i 0.674629 0.778564i
\(448\) 0 0
\(449\) 22.3267 + 25.7664i 1.05366 + 1.21599i 0.975717 + 0.219035i \(0.0702908\pi\)
0.0779464 + 0.996958i \(0.475164\pi\)
\(450\) 0 0
\(451\) −5.60007 1.64433i −0.263697 0.0774284i
\(452\) 0 0
\(453\) 8.71492 + 5.60074i 0.409462 + 0.263146i
\(454\) 0 0
\(455\) −4.77496 1.40206i −0.223854 0.0657294i
\(456\) 0 0
\(457\) 9.00452 + 19.7172i 0.421214 + 0.922330i 0.994672 + 0.103094i \(0.0328744\pi\)
−0.573458 + 0.819235i \(0.694398\pi\)
\(458\) 0 0
\(459\) −1.47320 + 1.70016i −0.0687630 + 0.0793567i
\(460\) 0 0
\(461\) −7.24083 + 15.8552i −0.337239 + 0.738450i −0.999946 0.0104288i \(-0.996680\pi\)
0.662707 + 0.748879i \(0.269408\pi\)
\(462\) 0 0
\(463\) 32.5779 20.9366i 1.51402 0.973004i 0.521198 0.853436i \(-0.325485\pi\)
0.992826 0.119569i \(-0.0381512\pi\)
\(464\) 0 0
\(465\) 4.61422 + 1.35486i 0.213980 + 0.0628301i
\(466\) 0 0
\(467\) −4.81787 + 33.5091i −0.222945 + 1.55061i 0.503869 + 0.863780i \(0.331909\pi\)
−0.726814 + 0.686834i \(0.759000\pi\)
\(468\) 0 0
\(469\) −11.5356 1.50706i −0.532662 0.0695896i
\(470\) 0 0
\(471\) −0.321798 + 2.23815i −0.0148277 + 0.103129i
\(472\) 0 0
\(473\) 26.6895 + 7.83675i 1.22719 + 0.360334i
\(474\) 0 0
\(475\) 20.5978 13.2374i 0.945091 0.607373i
\(476\) 0 0
\(477\) −4.76546 + 10.4349i −0.218195 + 0.477781i
\(478\) 0 0
\(479\) −6.59804 + 7.61455i −0.301472 + 0.347918i −0.886192 0.463318i \(-0.846659\pi\)
0.584720 + 0.811235i \(0.301204\pi\)
\(480\) 0 0
\(481\) −7.20567 15.7782i −0.328550 0.719425i
\(482\) 0 0
\(483\) −11.8317 3.47409i −0.538359 0.158077i
\(484\) 0 0
\(485\) −6.24124 4.01100i −0.283400 0.182130i
\(486\) 0 0
\(487\) −27.1679 7.97722i −1.23110 0.361482i −0.399433 0.916763i \(-0.630793\pi\)
−0.831663 + 0.555280i \(0.812611\pi\)
\(488\) 0 0
\(489\) 10.5759 + 12.2053i 0.478260 + 0.551942i
\(490\) 0 0
\(491\) −22.6326 + 26.1194i −1.02139 + 1.17875i −0.0376286 + 0.999292i \(0.511980\pi\)
−0.983765 + 0.179460i \(0.942565\pi\)
\(492\) 0 0
\(493\) −7.32639 + 2.15122i −0.329964 + 0.0968862i
\(494\) 0 0
\(495\) 3.86229 1.13407i 0.173597 0.0509727i
\(496\) 0 0
\(497\) 2.43689 5.33605i 0.109310 0.239354i
\(498\) 0 0
\(499\) 1.49914 0.0671108 0.0335554 0.999437i \(-0.489317\pi\)
0.0335554 + 0.999437i \(0.489317\pi\)
\(500\) 0 0
\(501\) 4.02185 4.64146i 0.179683 0.207365i
\(502\) 0 0
\(503\) 1.10404 + 7.67875i 0.0492266 + 0.342379i 0.999519 + 0.0310191i \(0.00987526\pi\)
−0.950292 + 0.311360i \(0.899216\pi\)
\(504\) 0 0
\(505\) 7.62014 16.6858i 0.339092 0.742507i
\(506\) 0 0
\(507\) 6.16322 0.273718
\(508\) 0 0
\(509\) 7.04353 4.52660i 0.312199 0.200638i −0.375152 0.926963i \(-0.622410\pi\)
0.687351 + 0.726325i \(0.258773\pi\)
\(510\) 0 0
\(511\) −4.62939 10.1369i −0.204792 0.448432i
\(512\) 0 0
\(513\) −5.00016 5.77049i −0.220763 0.254774i
\(514\) 0 0
\(515\) −15.9164 + 10.2289i −0.701360 + 0.450737i
\(516\) 0 0
\(517\) 0.431648 + 3.00218i 0.0189839 + 0.132036i
\(518\) 0 0
\(519\) 4.65268 1.36615i 0.204230 0.0599674i
\(520\) 0 0
\(521\) −4.66783 32.4655i −0.204502 1.42234i −0.790716 0.612183i \(-0.790291\pi\)
0.586214 0.810156i \(-0.300618\pi\)
\(522\) 0 0
\(523\) −2.29293 5.02082i −0.100263 0.219545i 0.852853 0.522152i \(-0.174870\pi\)
−0.953116 + 0.302606i \(0.902143\pi\)
\(524\) 0 0
\(525\) 3.83408 + 2.46401i 0.167333 + 0.107538i
\(526\) 0 0
\(527\) 1.14972 7.99649i 0.0500827 0.348333i
\(528\) 0 0
\(529\) −7.43964 + 51.7438i −0.323463 + 2.24973i
\(530\) 0 0
\(531\) 7.43043 + 4.77524i 0.322453 + 0.207228i
\(532\) 0 0
\(533\) 3.32468 + 3.83688i 0.144008 + 0.166194i
\(534\) 0 0
\(535\) 18.5912 0.803766
\(536\) 0 0
\(537\) −22.8967 −0.988067
\(538\) 0 0
\(539\) −9.80291 11.3132i −0.422241 0.487292i
\(540\) 0 0
\(541\) −25.5915 16.4466i −1.10026 0.707096i −0.141112 0.989994i \(-0.545068\pi\)
−0.959150 + 0.282898i \(0.908704\pi\)
\(542\) 0 0
\(543\) 1.54794 10.7661i 0.0664284 0.462020i
\(544\) 0 0
\(545\) 0.437505 3.04292i 0.0187407 0.130344i
\(546\) 0 0
\(547\) −18.3111 11.7678i −0.782924 0.503155i 0.0870789 0.996201i \(-0.472247\pi\)
−0.870003 + 0.493047i \(0.835883\pi\)
\(548\) 0 0
\(549\) 4.34869 + 9.52231i 0.185598 + 0.406402i
\(550\) 0 0
\(551\) −3.68826 25.6524i −0.157125 1.09283i
\(552\) 0 0
\(553\) −13.0576 + 3.83405i −0.555264 + 0.163040i
\(554\) 0 0
\(555\) −1.26428 8.79326i −0.0536657 0.373253i
\(556\) 0 0
\(557\) −22.9401 + 14.7427i −0.972004 + 0.624669i −0.927295 0.374331i \(-0.877872\pi\)
−0.0447088 + 0.999000i \(0.514236\pi\)
\(558\) 0 0
\(559\) −15.8452 18.2863i −0.670180 0.773428i
\(560\) 0 0
\(561\) −2.80913 6.15113i −0.118601 0.259701i
\(562\) 0 0
\(563\) −11.7296 + 7.53816i −0.494344 + 0.317695i −0.763950 0.645275i \(-0.776743\pi\)
0.269607 + 0.962971i \(0.413106\pi\)
\(564\) 0 0
\(565\) 18.0805 0.760653
\(566\) 0 0
\(567\) 0.590416 1.29283i 0.0247951 0.0542938i
\(568\) 0 0
\(569\) 0.736629 + 5.12337i 0.0308811 + 0.214783i 0.999419 0.0340833i \(-0.0108512\pi\)
−0.968538 + 0.248866i \(0.919942\pi\)
\(570\) 0 0
\(571\) 4.73028 5.45904i 0.197956 0.228454i −0.648089 0.761564i \(-0.724432\pi\)
0.846045 + 0.533111i \(0.178977\pi\)
\(572\) 0 0
\(573\) 16.5525 0.691489
\(574\) 0 0
\(575\) 11.5576 25.3077i 0.481986 1.05540i
\(576\) 0 0
\(577\) 21.1778 6.21837i 0.881645 0.258874i 0.190584 0.981671i \(-0.438962\pi\)
0.691061 + 0.722797i \(0.257144\pi\)
\(578\) 0 0
\(579\) 9.27590 2.72365i 0.385493 0.113191i
\(580\) 0 0
\(581\) 8.17462 9.43402i 0.339140 0.391389i
\(582\) 0 0
\(583\) −22.5813 26.0602i −0.935221 1.07930i
\(584\) 0 0
\(585\) −3.35965 0.986482i −0.138904 0.0407860i
\(586\) 0 0
\(587\) −8.22817 5.28793i −0.339613 0.218256i 0.359706 0.933066i \(-0.382877\pi\)
−0.699319 + 0.714810i \(0.746513\pi\)
\(588\) 0 0
\(589\) 26.3092 + 7.72507i 1.08405 + 0.318306i
\(590\) 0 0
\(591\) 1.80926 + 3.96173i 0.0744231 + 0.162964i
\(592\) 0 0
\(593\) −14.3954 + 16.6132i −0.591148 + 0.682221i −0.969963 0.243252i \(-0.921786\pi\)
0.378816 + 0.925472i \(0.376331\pi\)
\(594\) 0 0
\(595\) −1.77867 + 3.89475i −0.0729186 + 0.159669i
\(596\) 0 0
\(597\) 13.2557 8.51892i 0.542520 0.348656i
\(598\) 0 0
\(599\) −41.6630 12.2334i −1.70230 0.499841i −0.721102 0.692829i \(-0.756364\pi\)
−0.981201 + 0.192988i \(0.938182\pi\)
\(600\) 0 0
\(601\) −0.313733 + 2.18206i −0.0127974 + 0.0890080i −0.995219 0.0976669i \(-0.968862\pi\)
0.982422 + 0.186675i \(0.0597711\pi\)
\(602\) 0 0
\(603\) −8.11638 1.06036i −0.330525 0.0431814i
\(604\) 0 0
\(605\) 0.374387 2.60392i 0.0152210 0.105864i
\(606\) 0 0
\(607\) 34.4626 + 10.1191i 1.39879 + 0.410723i 0.892270 0.451502i \(-0.149112\pi\)
0.506525 + 0.862226i \(0.330930\pi\)
\(608\) 0 0
\(609\) 4.05825 2.60808i 0.164449 0.105685i
\(610\) 0 0
\(611\) 1.09600 2.39991i 0.0443394 0.0970898i
\(612\) 0 0
\(613\) −1.28231 + 1.47986i −0.0517918 + 0.0597710i −0.781054 0.624463i \(-0.785318\pi\)
0.729263 + 0.684234i \(0.239863\pi\)
\(614\) 0 0
\(615\) 1.08015 + 2.36519i 0.0435558 + 0.0953738i
\(616\) 0 0
\(617\) 8.62792 + 2.53339i 0.347347 + 0.101990i 0.450752 0.892649i \(-0.351156\pi\)
−0.103405 + 0.994639i \(0.532974\pi\)
\(618\) 0 0
\(619\) 7.30225 + 4.69287i 0.293502 + 0.188622i 0.679102 0.734044i \(-0.262369\pi\)
−0.385600 + 0.922666i \(0.626006\pi\)
\(620\) 0 0
\(621\) −8.32472 2.44436i −0.334060 0.0980888i
\(622\) 0 0
\(623\) 10.8085 + 12.4737i 0.433035 + 0.499749i
\(624\) 0 0
\(625\) −0.862081 + 0.994895i −0.0344833 + 0.0397958i
\(626\) 0 0
\(627\) 22.0219 6.46620i 0.879468 0.258235i
\(628\) 0 0
\(629\) −14.3193 + 4.20451i −0.570946 + 0.167645i
\(630\) 0 0
\(631\) 6.08155 13.3167i 0.242103 0.530131i −0.749104 0.662452i \(-0.769516\pi\)
0.991207 + 0.132321i \(0.0422431\pi\)
\(632\) 0 0
\(633\) −14.2634 −0.566921
\(634\) 0 0
\(635\) 11.8848 13.7158i 0.471635 0.544296i
\(636\) 0 0
\(637\) 1.85313 + 12.8888i 0.0734236 + 0.510672i
\(638\) 0 0
\(639\) 1.71459 3.75443i 0.0678281 0.148523i
\(640\) 0 0
\(641\) 11.8875 0.469526 0.234763 0.972053i \(-0.424569\pi\)
0.234763 + 0.972053i \(0.424569\pi\)
\(642\) 0 0
\(643\) 29.4878 18.9507i 1.16288 0.747341i 0.190721 0.981644i \(-0.438917\pi\)
0.972164 + 0.234303i \(0.0752809\pi\)
\(644\) 0 0
\(645\) −5.14791 11.2723i −0.202699 0.443848i
\(646\) 0 0
\(647\) −29.7892 34.3785i −1.17113 1.35156i −0.923914 0.382600i \(-0.875029\pi\)
−0.247219 0.968960i \(-0.579517\pi\)
\(648\) 0 0
\(649\) −22.3352 + 14.3540i −0.876735 + 0.563443i
\(650\) 0 0
\(651\) 0.726368 + 5.05200i 0.0284686 + 0.198003i
\(652\) 0 0
\(653\) 42.0184 12.3377i 1.64431 0.482812i 0.676908 0.736068i \(-0.263320\pi\)
0.967399 + 0.253256i \(0.0815013\pi\)
\(654\) 0 0
\(655\) 2.78734 + 19.3864i 0.108911 + 0.757490i
\(656\) 0 0
\(657\) −3.25722 7.13232i −0.127076 0.278258i
\(658\) 0 0
\(659\) −11.3357 7.28503i −0.441577 0.283785i 0.300900 0.953656i \(-0.402713\pi\)
−0.742477 + 0.669871i \(0.766349\pi\)
\(660\) 0 0
\(661\) −4.48663 + 31.2052i −0.174510 + 1.21374i 0.694700 + 0.719299i \(0.255537\pi\)
−0.869210 + 0.494443i \(0.835372\pi\)
\(662\) 0 0
\(663\) −0.837121 + 5.82230i −0.0325111 + 0.226119i
\(664\) 0 0
\(665\) −12.2254 7.85681i −0.474082 0.304674i
\(666\) 0 0
\(667\) −19.2847 22.2558i −0.746707 0.861746i
\(668\) 0 0
\(669\) 22.5173 0.870568
\(670\) 0 0
\(671\) −31.4669 −1.21476
\(672\) 0 0
\(673\) −27.0163 31.1784i −1.04140 1.20184i −0.979015 0.203789i \(-0.934674\pi\)
−0.0623859 0.998052i \(-0.519871\pi\)
\(674\) 0 0
\(675\) 2.69765 + 1.73367i 0.103833 + 0.0667291i
\(676\) 0 0
\(677\) −7.19945 + 50.0733i −0.276697 + 1.92447i 0.0937016 + 0.995600i \(0.470130\pi\)
−0.370399 + 0.928873i \(0.620779\pi\)
\(678\) 0 0
\(679\) 1.12058 7.79382i 0.0430040 0.299099i
\(680\) 0 0
\(681\) −8.01797 5.15284i −0.307249 0.197457i
\(682\) 0 0
\(683\) −13.2896 29.1002i −0.508512 1.11349i −0.973608 0.228226i \(-0.926707\pi\)
0.465096 0.885260i \(-0.346020\pi\)
\(684\) 0 0
\(685\) 1.08369 + 7.53722i 0.0414056 + 0.287982i
\(686\) 0 0
\(687\) −6.73427 + 1.97736i −0.256928 + 0.0754410i
\(688\) 0 0
\(689\) 4.26873 + 29.6897i 0.162626 + 1.13109i
\(690\) 0 0
\(691\) −29.2522 + 18.7993i −1.11281 + 0.715158i −0.961903 0.273390i \(-0.911855\pi\)
−0.150904 + 0.988548i \(0.548219\pi\)
\(692\) 0 0
\(693\) 2.79770 + 3.22872i 0.106276 + 0.122649i
\(694\) 0 0
\(695\) −7.78327 17.0430i −0.295236 0.646478i
\(696\) 0 0
\(697\) 3.67463 2.36154i 0.139187 0.0894498i
\(698\) 0 0
\(699\) 9.33811 0.353200
\(700\) 0 0
\(701\) −4.30651 + 9.42994i −0.162655 + 0.356164i −0.973357 0.229294i \(-0.926358\pi\)
0.810702 + 0.585458i \(0.199085\pi\)
\(702\) 0 0
\(703\) −7.20862 50.1370i −0.271878 1.89095i
\(704\) 0 0
\(705\) 0.884867 1.02119i 0.0333260 0.0384603i
\(706\) 0 0
\(707\) 19.4684 0.732185
\(708\) 0 0
\(709\) 7.78656 17.0502i 0.292431 0.640334i −0.705209 0.708999i \(-0.749147\pi\)
0.997640 + 0.0686658i \(0.0218742\pi\)
\(710\) 0 0
\(711\) −9.18727 + 2.69763i −0.344550 + 0.101169i
\(712\) 0 0
\(713\) 29.8951 8.77800i 1.11958 0.328739i
\(714\) 0 0
\(715\) 6.89252 7.95439i 0.257766 0.297477i
\(716\) 0 0
\(717\) −17.3421 20.0139i −0.647653 0.747431i
\(718\) 0 0
\(719\) 2.89873 + 0.851145i 0.108104 + 0.0317423i 0.335337 0.942098i \(-0.391150\pi\)
−0.227233 + 0.973840i \(0.572968\pi\)
\(720\) 0 0
\(721\) −16.8925 10.8562i −0.629110 0.404305i
\(722\) 0 0
\(723\) −20.9742 6.15859i −0.780040 0.229040i
\(724\) 0 0
\(725\) 4.52144 + 9.90058i 0.167922 + 0.367698i
\(726\) 0 0
\(727\) 19.9419 23.0141i 0.739603 0.853547i −0.253915 0.967227i \(-0.581718\pi\)
0.993517 + 0.113680i \(0.0362638\pi\)
\(728\) 0 0
\(729\) 0.415415 0.909632i 0.0153857 0.0336901i
\(730\) 0 0
\(731\) −17.5130 + 11.2549i −0.647743 + 0.416279i
\(732\) 0 0
\(733\) 4.42962 + 1.30065i 0.163612 + 0.0480408i 0.362513 0.931979i \(-0.381919\pi\)
−0.198901 + 0.980020i \(0.563737\pi\)
\(734\) 0 0
\(735\) −0.949086 + 6.60104i −0.0350076 + 0.243483i
\(736\) 0 0
\(737\) 13.0343 20.8684i 0.480124 0.768696i
\(738\) 0 0
\(739\) 4.41634 30.7163i 0.162458 1.12992i −0.731524 0.681815i \(-0.761191\pi\)
0.893982 0.448103i \(-0.147900\pi\)
\(740\) 0 0
\(741\) −19.1559 5.62468i −0.703710 0.206628i
\(742\) 0 0
\(743\) 4.00743 2.57542i 0.147018 0.0944830i −0.465064 0.885277i \(-0.653969\pi\)
0.612082 + 0.790794i \(0.290332\pi\)
\(744\) 0 0
\(745\) 12.1165 26.5315i 0.443916 0.972039i
\(746\) 0 0
\(747\) 5.75164 6.63775i 0.210442 0.242862i
\(748\) 0 0
\(749\) 8.19668 + 17.9482i 0.299500 + 0.655814i
\(750\) 0 0
\(751\) 18.2482 + 5.35816i 0.665886 + 0.195522i 0.597170 0.802114i \(-0.296292\pi\)
0.0687160 + 0.997636i \(0.478110\pi\)
\(752\) 0 0
\(753\) −7.15467 4.59803i −0.260731 0.167561i
\(754\) 0 0
\(755\) 13.3108 + 3.90841i 0.484430 + 0.142241i
\(756\) 0 0
\(757\) −3.76964 4.35040i −0.137010 0.158118i 0.683098 0.730327i \(-0.260632\pi\)
−0.820108 + 0.572209i \(0.806087\pi\)
\(758\) 0 0
\(759\) 17.0787 19.7098i 0.619916 0.715422i
\(760\) 0 0
\(761\) −25.5030 + 7.48836i −0.924483 + 0.271453i −0.709125 0.705083i \(-0.750910\pi\)
−0.215358 + 0.976535i \(0.569092\pi\)
\(762\) 0 0
\(763\) 3.13058 0.919221i 0.113335 0.0332780i
\(764\) 0 0
\(765\) −1.25147 + 2.74034i −0.0452470 + 0.0990771i
\(766\) 0 0
\(767\) 23.0947 0.833902
\(768\) 0 0
\(769\) 10.0105 11.5528i 0.360989 0.416604i −0.545982 0.837797i \(-0.683843\pi\)
0.906971 + 0.421193i \(0.138389\pi\)
\(770\) 0 0
\(771\) 1.73310 + 12.0540i 0.0624161 + 0.434113i
\(772\) 0 0
\(773\) −12.4743 + 27.3149i −0.448669 + 0.982447i 0.541257 + 0.840857i \(0.317949\pi\)
−0.989925 + 0.141590i \(0.954779\pi\)
\(774\) 0 0
\(775\) −11.5157 −0.413655
\(776\) 0 0
\(777\) 7.93176 5.09743i 0.284550 0.182869i
\(778\) 0 0
\(779\) 6.15874 + 13.4858i 0.220660 + 0.483178i
\(780\) 0 0
\(781\) 8.12464 + 9.37633i 0.290722 + 0.335511i