Newspace parameters
Level: | \( N \) | = | \( 804 = 2^{2} \cdot 3 \cdot 67 \) |
Weight: | \( k \) | = | \( 2 \) |
Character orbit: | \([\chi]\) | = | 804.i (of order \(3\) and degree \(2\)) |
Newform invariants
Self dual: | No |
Analytic conductor: | \(6.41997232251\) |
Analytic rank: | \(1\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-3}) \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 1 \) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.
Character Values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).
\(n\) | \(269\) | \(337\) | \(403\) |
\(\chi(n)\) | \(1\) | \(-\zeta_{6}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 |
|
0 | −1.00000 | 0 | −2.00000 | 0 | 1.50000 | − | 2.59808i | 0 | 1.00000 | 0 | ||||||||||||||||||||||
565.1 | 0 | −1.00000 | 0 | −2.00000 | 0 | 1.50000 | + | 2.59808i | 0 | 1.00000 | 0 |
Inner twists
Char. orbit | Parity | Mult. | Self Twist | Proved |
---|---|---|---|---|
1.a | Even | 1 | trivial | yes |
67.c | Even | 1 | yes |
Hecke kernels
This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(804, [\chi])\):
\( T_{5} + 2 \) |
\( T_{7}^{2} - 3 T_{7} + 9 \) |