Properties

Label 804.2.e.b.535.25
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.25
Character \(\chi\) = 804.535
Dual form 804.2.e.b.535.26

$q$-expansion

\(f(q)\) \(=\) \(q+(0.946315 - 1.05095i) q^{2} +1.00000 q^{3} +(-0.208975 - 1.98905i) q^{4} -4.42921i q^{5} +(0.946315 - 1.05095i) q^{6} +2.81753 q^{7} +(-2.28814 - 1.66265i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(0.946315 - 1.05095i) q^{2} +1.00000 q^{3} +(-0.208975 - 1.98905i) q^{4} -4.42921i q^{5} +(0.946315 - 1.05095i) q^{6} +2.81753 q^{7} +(-2.28814 - 1.66265i) q^{8} +1.00000 q^{9} +(-4.65486 - 4.19143i) q^{10} +4.49085 q^{11} +(-0.208975 - 1.98905i) q^{12} +6.44697i q^{13} +(2.66628 - 2.96108i) q^{14} -4.42921i q^{15} +(-3.91266 + 0.831325i) q^{16} +1.33300 q^{17} +(0.946315 - 1.05095i) q^{18} +1.70948i q^{19} +(-8.80993 + 0.925594i) q^{20} +2.81753 q^{21} +(4.24976 - 4.71965i) q^{22} +3.41301i q^{23} +(-2.28814 - 1.66265i) q^{24} -14.6179 q^{25} +(6.77542 + 6.10087i) q^{26} +1.00000 q^{27} +(-0.588795 - 5.60422i) q^{28} -3.13779 q^{29} +(-4.65486 - 4.19143i) q^{30} -8.45275 q^{31} +(-2.82893 + 4.89869i) q^{32} +4.49085 q^{33} +(1.26144 - 1.40092i) q^{34} -12.4794i q^{35} +(-0.208975 - 1.98905i) q^{36} +5.75928 q^{37} +(1.79658 + 1.61771i) q^{38} +6.44697i q^{39} +(-7.36422 + 10.1347i) q^{40} +5.15047i q^{41} +(2.66628 - 2.96108i) q^{42} -1.06496 q^{43} +(-0.938477 - 8.93254i) q^{44} -4.42921i q^{45} +(3.58689 + 3.22978i) q^{46} +4.52896i q^{47} +(-3.91266 + 0.831325i) q^{48} +0.938501 q^{49} +(-13.8331 + 15.3626i) q^{50} +1.33300 q^{51} +(12.8234 - 1.34726i) q^{52} +4.63647i q^{53} +(0.946315 - 1.05095i) q^{54} -19.8909i q^{55} +(-6.44692 - 4.68457i) q^{56} +1.70948i q^{57} +(-2.96934 + 3.29764i) q^{58} -10.2820i q^{59} +(-8.80993 + 0.925594i) q^{60} +9.66191i q^{61} +(-7.99897 + 8.88339i) q^{62} +2.81753 q^{63} +(2.47120 + 7.60876i) q^{64} +28.5550 q^{65} +(4.24976 - 4.71965i) q^{66} +(-6.48382 - 4.99600i) q^{67} +(-0.278565 - 2.65142i) q^{68} +3.41301i q^{69} +(-13.1152 - 11.8095i) q^{70} -0.479394i q^{71} +(-2.28814 - 1.66265i) q^{72} +3.68198 q^{73} +(5.45009 - 6.05269i) q^{74} -14.6179 q^{75} +(3.40026 - 0.357240i) q^{76} +12.6531 q^{77} +(6.77542 + 6.10087i) q^{78} +9.91224 q^{79} +(3.68211 + 17.3300i) q^{80} +1.00000 q^{81} +(5.41286 + 4.87397i) q^{82} -8.53248i q^{83} +(-0.588795 - 5.60422i) q^{84} -5.90416i q^{85} +(-1.00779 + 1.11921i) q^{86} -3.13779 q^{87} +(-10.2757 - 7.46671i) q^{88} -11.6876 q^{89} +(-4.65486 - 4.19143i) q^{90} +18.1646i q^{91} +(6.78865 - 0.713234i) q^{92} -8.45275 q^{93} +(4.75969 + 4.28582i) q^{94} +7.57166 q^{95} +(-2.82893 + 4.89869i) q^{96} -13.2311i q^{97} +(0.888118 - 0.986314i) q^{98} +4.49085 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{3} + 2q^{4} + 4q^{7} - 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q + 34q^{3} + 2q^{4} + 4q^{7} - 6q^{8} + 34q^{9} - 6q^{10} + 2q^{12} - 4q^{14} + 2q^{16} - 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} + 34q^{27} - 8q^{28} - 16q^{29} - 6q^{30} - 4q^{31} + 2q^{36} + 12q^{37} + 26q^{38} - 18q^{40} - 4q^{42} - 4q^{43} + 26q^{44} - 4q^{46} + 2q^{48} + 46q^{49} - 18q^{50} + 32q^{52} + 14q^{56} + 4q^{58} - 12q^{60} - 2q^{62} + 4q^{63} + 26q^{64} - 8q^{66} - 18q^{67} - 34q^{68} + 56q^{70} - 6q^{72} + 12q^{73} + 22q^{74} - 34q^{75} - 32q^{76} - 8q^{77} + 10q^{78} - 12q^{79} - 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} - 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} + 32q^{94} - 40q^{95} - 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.946315 1.05095i 0.669146 0.743131i
\(3\) 1.00000 0.577350
\(4\) −0.208975 1.98905i −0.104488 0.994526i
\(5\) 4.42921i 1.98080i −0.138224 0.990401i \(-0.544139\pi\)
0.138224 0.990401i \(-0.455861\pi\)
\(6\) 0.946315 1.05095i 0.386332 0.429047i
\(7\) 2.81753 1.06493 0.532464 0.846453i \(-0.321266\pi\)
0.532464 + 0.846453i \(0.321266\pi\)
\(8\) −2.28814 1.66265i −0.808981 0.587835i
\(9\) 1.00000 0.333333
\(10\) −4.65486 4.19143i −1.47200 1.32545i
\(11\) 4.49085 1.35404 0.677022 0.735963i \(-0.263270\pi\)
0.677022 + 0.735963i \(0.263270\pi\)
\(12\) −0.208975 1.98905i −0.0603259 0.574190i
\(13\) 6.44697i 1.78807i 0.447998 + 0.894035i \(0.352137\pi\)
−0.447998 + 0.894035i \(0.647863\pi\)
\(14\) 2.66628 2.96108i 0.712592 0.791381i
\(15\) 4.42921i 1.14362i
\(16\) −3.91266 + 0.831325i −0.978165 + 0.207831i
\(17\) 1.33300 0.323301 0.161651 0.986848i \(-0.448318\pi\)
0.161651 + 0.986848i \(0.448318\pi\)
\(18\) 0.946315 1.05095i 0.223049 0.247710i
\(19\) 1.70948i 0.392183i 0.980586 + 0.196091i \(0.0628249\pi\)
−0.980586 + 0.196091i \(0.937175\pi\)
\(20\) −8.80993 + 0.925594i −1.96996 + 0.206969i
\(21\) 2.81753 0.614836
\(22\) 4.24976 4.71965i 0.906053 1.00623i
\(23\) 3.41301i 0.711661i 0.934551 + 0.355830i \(0.115802\pi\)
−0.934551 + 0.355830i \(0.884198\pi\)
\(24\) −2.28814 1.66265i −0.467065 0.339387i
\(25\) −14.6179 −2.92358
\(26\) 6.77542 + 6.10087i 1.32877 + 1.19648i
\(27\) 1.00000 0.192450
\(28\) −0.588795 5.60422i −0.111272 1.05910i
\(29\) −3.13779 −0.582672 −0.291336 0.956621i \(-0.594100\pi\)
−0.291336 + 0.956621i \(0.594100\pi\)
\(30\) −4.65486 4.19143i −0.849857 0.765246i
\(31\) −8.45275 −1.51816 −0.759080 0.650998i \(-0.774351\pi\)
−0.759080 + 0.650998i \(0.774351\pi\)
\(32\) −2.82893 + 4.89869i −0.500089 + 0.865974i
\(33\) 4.49085 0.781757
\(34\) 1.26144 1.40092i 0.216336 0.240255i
\(35\) 12.4794i 2.10941i
\(36\) −0.208975 1.98905i −0.0348292 0.331509i
\(37\) 5.75928 0.946820 0.473410 0.880842i \(-0.343023\pi\)
0.473410 + 0.880842i \(0.343023\pi\)
\(38\) 1.79658 + 1.61771i 0.291443 + 0.262427i
\(39\) 6.44697i 1.03234i
\(40\) −7.36422 + 10.1347i −1.16438 + 1.60243i
\(41\) 5.15047i 0.804368i 0.915559 + 0.402184i \(0.131749\pi\)
−0.915559 + 0.402184i \(0.868251\pi\)
\(42\) 2.66628 2.96108i 0.411415 0.456904i
\(43\) −1.06496 −0.162404 −0.0812022 0.996698i \(-0.525876\pi\)
−0.0812022 + 0.996698i \(0.525876\pi\)
\(44\) −0.938477 8.93254i −0.141481 1.34663i
\(45\) 4.42921i 0.660267i
\(46\) 3.58689 + 3.22978i 0.528857 + 0.476205i
\(47\) 4.52896i 0.660617i 0.943873 + 0.330308i \(0.107153\pi\)
−0.943873 + 0.330308i \(0.892847\pi\)
\(48\) −3.91266 + 0.831325i −0.564744 + 0.119991i
\(49\) 0.938501 0.134072
\(50\) −13.8331 + 15.3626i −1.95630 + 2.17260i
\(51\) 1.33300 0.186658
\(52\) 12.8234 1.34726i 1.77828 0.186831i
\(53\) 4.63647i 0.636869i 0.947945 + 0.318434i \(0.103157\pi\)
−0.947945 + 0.318434i \(0.896843\pi\)
\(54\) 0.946315 1.05095i 0.128777 0.143016i
\(55\) 19.8909i 2.68209i
\(56\) −6.44692 4.68457i −0.861506 0.626002i
\(57\) 1.70948i 0.226427i
\(58\) −2.96934 + 3.29764i −0.389893 + 0.433002i
\(59\) 10.2820i 1.33860i −0.742991 0.669301i \(-0.766594\pi\)
0.742991 0.669301i \(-0.233406\pi\)
\(60\) −8.80993 + 0.925594i −1.13736 + 0.119494i
\(61\) 9.66191i 1.23708i 0.785753 + 0.618540i \(0.212276\pi\)
−0.785753 + 0.618540i \(0.787724\pi\)
\(62\) −7.99897 + 8.88339i −1.01587 + 1.12819i
\(63\) 2.81753 0.354976
\(64\) 2.47120 + 7.60876i 0.308900 + 0.951095i
\(65\) 28.5550 3.54181
\(66\) 4.24976 4.71965i 0.523110 0.580948i
\(67\) −6.48382 4.99600i −0.792125 0.610359i
\(68\) −0.278565 2.65142i −0.0337810 0.321531i
\(69\) 3.41301i 0.410878i
\(70\) −13.1152 11.8095i −1.56757 1.41150i
\(71\) 0.479394i 0.0568935i −0.999595 0.0284468i \(-0.990944\pi\)
0.999595 0.0284468i \(-0.00905611\pi\)
\(72\) −2.28814 1.66265i −0.269660 0.195945i
\(73\) 3.68198 0.430943 0.215471 0.976510i \(-0.430871\pi\)
0.215471 + 0.976510i \(0.430871\pi\)
\(74\) 5.45009 6.05269i 0.633560 0.703611i
\(75\) −14.6179 −1.68793
\(76\) 3.40026 0.357240i 0.390036 0.0409782i
\(77\) 12.6531 1.44196
\(78\) 6.77542 + 6.10087i 0.767166 + 0.690787i
\(79\) 9.91224 1.11521 0.557607 0.830105i \(-0.311720\pi\)
0.557607 + 0.830105i \(0.311720\pi\)
\(80\) 3.68211 + 17.3300i 0.411673 + 1.93755i
\(81\) 1.00000 0.111111
\(82\) 5.41286 + 4.87397i 0.597751 + 0.538240i
\(83\) 8.53248i 0.936561i −0.883580 0.468281i \(-0.844874\pi\)
0.883580 0.468281i \(-0.155126\pi\)
\(84\) −0.588795 5.60422i −0.0642428 0.611471i
\(85\) 5.90416i 0.640396i
\(86\) −1.00779 + 1.11921i −0.108672 + 0.120688i
\(87\) −3.13779 −0.336406
\(88\) −10.2757 7.46671i −1.09540 0.795954i
\(89\) −11.6876 −1.23888 −0.619441 0.785043i \(-0.712641\pi\)
−0.619441 + 0.785043i \(0.712641\pi\)
\(90\) −4.65486 4.19143i −0.490665 0.441815i
\(91\) 18.1646i 1.90416i
\(92\) 6.78865 0.713234i 0.707765 0.0743597i
\(93\) −8.45275 −0.876510
\(94\) 4.75969 + 4.28582i 0.490925 + 0.442049i
\(95\) 7.57166 0.776836
\(96\) −2.82893 + 4.89869i −0.288727 + 0.499970i
\(97\) 13.2311i 1.34342i −0.740814 0.671710i \(-0.765560\pi\)
0.740814 0.671710i \(-0.234440\pi\)
\(98\) 0.888118 0.986314i 0.0897135 0.0996328i
\(99\) 4.49085 0.451348
\(100\) 3.05477 + 29.0757i 0.305477 + 2.90757i
\(101\) 4.40366i 0.438180i 0.975705 + 0.219090i \(0.0703089\pi\)
−0.975705 + 0.219090i \(0.929691\pi\)
\(102\) 1.26144 1.40092i 0.124901 0.138711i
\(103\) 8.63164i 0.850501i 0.905076 + 0.425250i \(0.139814\pi\)
−0.905076 + 0.425250i \(0.860186\pi\)
\(104\) 10.7191 14.7516i 1.05109 1.44651i
\(105\) 12.4794i 1.21787i
\(106\) 4.87268 + 4.38757i 0.473277 + 0.426158i
\(107\) 4.97798i 0.481239i −0.970620 0.240620i \(-0.922649\pi\)
0.970620 0.240620i \(-0.0773506\pi\)
\(108\) −0.208975 1.98905i −0.0201086 0.191397i
\(109\) 6.06886i 0.581291i 0.956831 + 0.290646i \(0.0938701\pi\)
−0.956831 + 0.290646i \(0.906130\pi\)
\(110\) −20.9043 18.8231i −1.99315 1.79471i
\(111\) 5.75928 0.546647
\(112\) −11.0241 + 2.34229i −1.04167 + 0.221325i
\(113\) 11.7654i 1.10679i −0.832917 0.553397i \(-0.813331\pi\)
0.832917 0.553397i \(-0.186669\pi\)
\(114\) 1.79658 + 1.61771i 0.168265 + 0.151513i
\(115\) 15.1169 1.40966
\(116\) 0.655720 + 6.24122i 0.0608820 + 0.579483i
\(117\) 6.44697i 0.596023i
\(118\) −10.8058 9.73001i −0.994757 0.895720i
\(119\) 3.75579 0.344292
\(120\) −7.36422 + 10.1347i −0.672258 + 0.925164i
\(121\) 9.16777 0.833434
\(122\) 10.1541 + 9.14321i 0.919313 + 0.827787i
\(123\) 5.15047i 0.464402i
\(124\) 1.76642 + 16.8130i 0.158629 + 1.50985i
\(125\) 42.5996i 3.81022i
\(126\) 2.66628 2.96108i 0.237531 0.263794i
\(127\) 6.70864i 0.595296i −0.954676 0.297648i \(-0.903798\pi\)
0.954676 0.297648i \(-0.0962021\pi\)
\(128\) 10.3349 + 4.60319i 0.913487 + 0.406868i
\(129\) −1.06496 −0.0937643
\(130\) 27.0220 30.0098i 2.36999 2.63203i
\(131\) 2.95058i 0.257794i 0.991658 + 0.128897i \(0.0411436\pi\)
−0.991658 + 0.128897i \(0.958856\pi\)
\(132\) −0.938477 8.93254i −0.0816839 0.777478i
\(133\) 4.81653i 0.417646i
\(134\) −11.3863 + 2.08636i −0.983624 + 0.180234i
\(135\) 4.42921i 0.381206i
\(136\) −3.05011 2.21632i −0.261544 0.190048i
\(137\) 6.89136i 0.588769i −0.955687 0.294384i \(-0.904885\pi\)
0.955687 0.294384i \(-0.0951146\pi\)
\(138\) 3.58689 + 3.22978i 0.305336 + 0.274937i
\(139\) 3.31586 0.281247 0.140624 0.990063i \(-0.455089\pi\)
0.140624 + 0.990063i \(0.455089\pi\)
\(140\) −24.8223 + 2.60789i −2.09786 + 0.220407i
\(141\) 4.52896i 0.381407i
\(142\) −0.503817 0.453657i −0.0422794 0.0380701i
\(143\) 28.9524i 2.42112i
\(144\) −3.91266 + 0.831325i −0.326055 + 0.0692771i
\(145\) 13.8979i 1.15416i
\(146\) 3.48431 3.86956i 0.288364 0.320247i
\(147\) 0.938501 0.0774063
\(148\) −1.20355 11.4555i −0.0989309 0.941637i
\(149\) −19.2320 −1.57555 −0.787773 0.615966i \(-0.788766\pi\)
−0.787773 + 0.615966i \(0.788766\pi\)
\(150\) −13.8331 + 15.3626i −1.12947 + 1.25435i
\(151\) 11.1412i 0.906658i −0.891343 0.453329i \(-0.850236\pi\)
0.891343 0.453329i \(-0.149764\pi\)
\(152\) 2.84227 3.91155i 0.230539 0.317268i
\(153\) 1.33300 0.107767
\(154\) 11.9739 13.2978i 0.964881 1.07156i
\(155\) 37.4390i 3.00717i
\(156\) 12.8234 1.34726i 1.02669 0.107867i
\(157\) −10.8432 −0.865384 −0.432692 0.901542i \(-0.642436\pi\)
−0.432692 + 0.901542i \(0.642436\pi\)
\(158\) 9.38010 10.4172i 0.746241 0.828750i
\(159\) 4.63647i 0.367696i
\(160\) 21.6973 + 12.5299i 1.71532 + 0.990577i
\(161\) 9.61626i 0.757868i
\(162\) 0.946315 1.05095i 0.0743495 0.0825701i
\(163\) 17.2780i 1.35331i −0.736299 0.676657i \(-0.763428\pi\)
0.736299 0.676657i \(-0.236572\pi\)
\(164\) 10.2446 1.07632i 0.799965 0.0840465i
\(165\) 19.8909i 1.54851i
\(166\) −8.96718 8.07442i −0.695988 0.626696i
\(167\) 12.4165i 0.960814i −0.877046 0.480407i \(-0.840489\pi\)
0.877046 0.480407i \(-0.159511\pi\)
\(168\) −6.44692 4.68457i −0.497391 0.361422i
\(169\) −28.5635 −2.19719
\(170\) −6.20495 5.58719i −0.475898 0.428518i
\(171\) 1.70948i 0.130728i
\(172\) 0.222550 + 2.11826i 0.0169692 + 0.161515i
\(173\) 18.7820 1.42797 0.713986 0.700160i \(-0.246888\pi\)
0.713986 + 0.700160i \(0.246888\pi\)
\(174\) −2.96934 + 3.29764i −0.225105 + 0.249994i
\(175\) −41.1864 −3.11340
\(176\) −17.5712 + 3.73336i −1.32448 + 0.281413i
\(177\) 10.2820i 0.772843i
\(178\) −11.0601 + 12.2830i −0.828993 + 0.920652i
\(179\) 0.502646 0.0375695 0.0187848 0.999824i \(-0.494020\pi\)
0.0187848 + 0.999824i \(0.494020\pi\)
\(180\) −8.80993 + 0.925594i −0.656653 + 0.0689897i
\(181\) −15.4255 −1.14657 −0.573285 0.819356i \(-0.694331\pi\)
−0.573285 + 0.819356i \(0.694331\pi\)
\(182\) 19.0900 + 17.1894i 1.41504 + 1.27416i
\(183\) 9.66191i 0.714229i
\(184\) 5.67463 7.80945i 0.418339 0.575720i
\(185\) 25.5090i 1.87546i
\(186\) −7.99897 + 8.88339i −0.586513 + 0.651362i
\(187\) 5.98633 0.437764
\(188\) 9.00834 0.946440i 0.657001 0.0690262i
\(189\) 2.81753 0.204945
\(190\) 7.16518 7.95741i 0.519817 0.577291i
\(191\) 6.61535 0.478670 0.239335 0.970937i \(-0.423071\pi\)
0.239335 + 0.970937i \(0.423071\pi\)
\(192\) 2.47120 + 7.60876i 0.178343 + 0.549115i
\(193\) −7.57636 −0.545358 −0.272679 0.962105i \(-0.587910\pi\)
−0.272679 + 0.962105i \(0.587910\pi\)
\(194\) −13.9052 12.5208i −0.998337 0.898944i
\(195\) 28.5550 2.04487
\(196\) −0.196123 1.86673i −0.0140088 0.133338i
\(197\) 7.80716i 0.556237i 0.960547 + 0.278119i \(0.0897108\pi\)
−0.960547 + 0.278119i \(0.910289\pi\)
\(198\) 4.24976 4.71965i 0.302018 0.335411i
\(199\) 6.41107i 0.454469i −0.973840 0.227234i \(-0.927032\pi\)
0.973840 0.227234i \(-0.0729684\pi\)
\(200\) 33.4478 + 24.3044i 2.36512 + 1.71858i
\(201\) −6.48382 4.99600i −0.457334 0.352391i
\(202\) 4.62801 + 4.16725i 0.325626 + 0.293207i
\(203\) −8.84082 −0.620504
\(204\) −0.278565 2.65142i −0.0195034 0.185636i
\(205\) 22.8125 1.59329
\(206\) 9.07139 + 8.16825i 0.632033 + 0.569109i
\(207\) 3.41301i 0.237220i
\(208\) −5.35953 25.2248i −0.371617 1.74903i
\(209\) 7.67705i 0.531033i
\(210\) −13.1152 11.8095i −0.905036 0.814932i
\(211\) 9.57658i 0.659279i 0.944107 + 0.329639i \(0.106927\pi\)
−0.944107 + 0.329639i \(0.893073\pi\)
\(212\) 9.22219 0.968908i 0.633383 0.0665449i
\(213\) 0.479394i 0.0328475i
\(214\) −5.23158 4.71073i −0.357624 0.322019i
\(215\) 4.71692i 0.321691i
\(216\) −2.28814 1.66265i −0.155688 0.113129i
\(217\) −23.8159 −1.61673
\(218\) 6.37804 + 5.74305i 0.431976 + 0.388969i
\(219\) 3.68198 0.248805
\(220\) −39.5641 + 4.15671i −2.66741 + 0.280245i
\(221\) 8.59385i 0.578085i
\(222\) 5.45009 6.05269i 0.365786 0.406230i
\(223\) 20.5887i 1.37872i −0.724418 0.689361i \(-0.757892\pi\)
0.724418 0.689361i \(-0.242108\pi\)
\(224\) −7.97061 + 13.8022i −0.532559 + 0.922200i
\(225\) −14.6179 −0.974525
\(226\) −12.3648 11.1338i −0.822493 0.740607i
\(227\) 8.99211i 0.596827i 0.954437 + 0.298414i \(0.0964575\pi\)
−0.954437 + 0.298414i \(0.903542\pi\)
\(228\) 3.40026 0.357240i 0.225187 0.0236588i
\(229\) 2.72243i 0.179903i −0.995946 0.0899515i \(-0.971329\pi\)
0.995946 0.0899515i \(-0.0286712\pi\)
\(230\) 14.3054 15.8871i 0.943268 1.04756i
\(231\) 12.6531 0.832515
\(232\) 7.17971 + 5.21704i 0.471371 + 0.342515i
\(233\) 18.8884i 1.23742i −0.785620 0.618709i \(-0.787656\pi\)
0.785620 0.618709i \(-0.212344\pi\)
\(234\) 6.77542 + 6.10087i 0.442923 + 0.398826i
\(235\) 20.0597 1.30855
\(236\) −20.4514 + 2.14868i −1.33128 + 0.139867i
\(237\) 9.91224 0.643869
\(238\) 3.55416 3.94713i 0.230382 0.255854i
\(239\) 26.7279 1.72888 0.864441 0.502734i \(-0.167672\pi\)
0.864441 + 0.502734i \(0.167672\pi\)
\(240\) 3.68211 + 17.3300i 0.237679 + 1.11865i
\(241\) 12.0626 0.777023 0.388511 0.921444i \(-0.372989\pi\)
0.388511 + 0.921444i \(0.372989\pi\)
\(242\) 8.67560 9.63483i 0.557689 0.619351i
\(243\) 1.00000 0.0641500
\(244\) 19.2180 2.01910i 1.23031 0.129260i
\(245\) 4.15682i 0.265569i
\(246\) 5.41286 + 4.87397i 0.345112 + 0.310753i
\(247\) −11.0210 −0.701250
\(248\) 19.3411 + 14.0540i 1.22816 + 0.892427i
\(249\) 8.53248i 0.540724i
\(250\) 44.7699 + 40.3126i 2.83150 + 2.54960i
\(251\) 25.4913 1.60900 0.804499 0.593955i \(-0.202434\pi\)
0.804499 + 0.593955i \(0.202434\pi\)
\(252\) −0.588795 5.60422i −0.0370906 0.353033i
\(253\) 15.3273i 0.963620i
\(254\) −7.05042 6.34849i −0.442383 0.398340i
\(255\) 5.90416i 0.369733i
\(256\) 14.6178 6.50538i 0.913612 0.406586i
\(257\) 12.9570 0.808235 0.404118 0.914707i \(-0.367579\pi\)
0.404118 + 0.914707i \(0.367579\pi\)
\(258\) −1.00779 + 1.11921i −0.0627420 + 0.0696791i
\(259\) 16.2270 1.00829
\(260\) −5.96728 56.7974i −0.370075 3.52242i
\(261\) −3.13779 −0.194224
\(262\) 3.10090 + 2.79218i 0.191574 + 0.172502i
\(263\) 1.56509i 0.0965074i −0.998835 0.0482537i \(-0.984634\pi\)
0.998835 0.0482537i \(-0.0153656\pi\)
\(264\) −10.2757 7.46671i −0.632427 0.459544i
\(265\) 20.5359 1.26151
\(266\) 5.06192 + 4.55796i 0.310366 + 0.279466i
\(267\) −11.6876 −0.715269
\(268\) −8.58235 + 13.9407i −0.524250 + 0.851564i
\(269\) 6.01649 0.366832 0.183416 0.983035i \(-0.441285\pi\)
0.183416 + 0.983035i \(0.441285\pi\)
\(270\) −4.65486 4.19143i −0.283286 0.255082i
\(271\) 25.6297 1.55689 0.778446 0.627712i \(-0.216008\pi\)
0.778446 + 0.627712i \(0.216008\pi\)
\(272\) −5.21559 + 1.10816i −0.316242 + 0.0671921i
\(273\) 18.1646i 1.09937i
\(274\) −7.24245 6.52140i −0.437532 0.393972i
\(275\) −65.6468 −3.95865
\(276\) 6.78865 0.713234i 0.408629 0.0429316i
\(277\) 5.21072 0.313082 0.156541 0.987671i \(-0.449966\pi\)
0.156541 + 0.987671i \(0.449966\pi\)
\(278\) 3.13784 3.48479i 0.188195 0.209004i
\(279\) −8.45275 −0.506053
\(280\) −20.7489 + 28.5548i −1.23999 + 1.70647i
\(281\) 24.6197i 1.46869i −0.678778 0.734344i \(-0.737490\pi\)
0.678778 0.734344i \(-0.262510\pi\)
\(282\) 4.75969 + 4.28582i 0.283436 + 0.255217i
\(283\) 8.75201i 0.520253i −0.965575 0.260126i \(-0.916236\pi\)
0.965575 0.260126i \(-0.0837642\pi\)
\(284\) −0.953539 + 0.100181i −0.0565821 + 0.00594467i
\(285\) 7.57166 0.448507
\(286\) 30.4274 + 27.3981i 1.79921 + 1.62008i
\(287\) 14.5116i 0.856594i
\(288\) −2.82893 + 4.89869i −0.166696 + 0.288658i
\(289\) −15.2231 −0.895476
\(290\) 14.6060 + 13.1518i 0.857691 + 0.772300i
\(291\) 13.2311i 0.775624i
\(292\) −0.769442 7.32364i −0.0450282 0.428584i
\(293\) −12.2547 −0.715929 −0.357965 0.933735i \(-0.616529\pi\)
−0.357965 + 0.933735i \(0.616529\pi\)
\(294\) 0.888118 0.986314i 0.0517961 0.0575230i
\(295\) −45.5411 −2.65151
\(296\) −13.1781 9.57566i −0.765959 0.556574i
\(297\) 4.49085 0.260586
\(298\) −18.1995 + 20.2118i −1.05427 + 1.17084i
\(299\) −22.0036 −1.27250
\(300\) 3.05477 + 29.0757i 0.176367 + 1.67869i
\(301\) −3.00055 −0.172949
\(302\) −11.7088 10.5431i −0.673766 0.606686i
\(303\) 4.40366i 0.252984i
\(304\) −1.42114 6.68863i −0.0815078 0.383619i
\(305\) 42.7946 2.45041
\(306\) 1.26144 1.40092i 0.0721119 0.0800850i
\(307\) 20.6834i 1.18046i 0.807234 + 0.590232i \(0.200964\pi\)
−0.807234 + 0.590232i \(0.799036\pi\)
\(308\) −2.64419 25.1678i −0.150667 1.43407i
\(309\) 8.63164i 0.491037i
\(310\) 39.3464 + 35.4291i 2.23472 + 2.01224i
\(311\) 6.74222 0.382316 0.191158 0.981559i \(-0.438776\pi\)
0.191158 + 0.981559i \(0.438776\pi\)
\(312\) 10.7191 14.7516i 0.606847 0.835145i
\(313\) 6.93434i 0.391952i −0.980609 0.195976i \(-0.937213\pi\)
0.980609 0.195976i \(-0.0627875\pi\)
\(314\) −10.2611 + 11.3957i −0.579068 + 0.643094i
\(315\) 12.4794i 0.703137i
\(316\) −2.07141 19.7160i −0.116526 1.10911i
\(317\) −17.2122 −0.966732 −0.483366 0.875418i \(-0.660586\pi\)
−0.483366 + 0.875418i \(0.660586\pi\)
\(318\) 4.87268 + 4.38757i 0.273247 + 0.246042i
\(319\) −14.0913 −0.788964
\(320\) 33.7008 10.9454i 1.88393 0.611869i
\(321\) 4.97798i 0.277843i
\(322\) 10.1062 + 9.10002i 0.563195 + 0.507124i
\(323\) 2.27875i 0.126793i
\(324\) −0.208975 1.98905i −0.0116097 0.110503i
\(325\) 94.2411i 5.22756i
\(326\) −18.1582 16.3504i −1.00569 0.905564i
\(327\) 6.06886i 0.335609i
\(328\) 8.56342 11.7850i 0.472836 0.650718i
\(329\) 12.7605i 0.703509i
\(330\) −20.9043 18.8231i −1.15074 1.03618i
\(331\) −11.8004 −0.648611 −0.324306 0.945952i \(-0.605131\pi\)
−0.324306 + 0.945952i \(0.605131\pi\)
\(332\) −16.9716 + 1.78308i −0.931435 + 0.0978590i
\(333\) 5.75928 0.315607
\(334\) −13.0490 11.7499i −0.714011 0.642925i
\(335\) −22.1283 + 28.7182i −1.20900 + 1.56904i
\(336\) −11.0241 + 2.34229i −0.601411 + 0.127782i
\(337\) 26.7813i 1.45887i 0.684051 + 0.729434i \(0.260216\pi\)
−0.684051 + 0.729434i \(0.739784\pi\)
\(338\) −27.0301 + 30.0187i −1.47024 + 1.63280i
\(339\) 11.7654i 0.639008i
\(340\) −11.7437 + 1.23382i −0.636890 + 0.0669134i
\(341\) −37.9601 −2.05565
\(342\) 1.79658 + 1.61771i 0.0971477 + 0.0874758i
\(343\) −17.0785 −0.922151
\(344\) 2.43677 + 1.77065i 0.131382 + 0.0954670i
\(345\) 15.1169 0.813867
\(346\) 17.7737 19.7389i 0.955522 1.06117i
\(347\) −11.4891 −0.616766 −0.308383 0.951262i \(-0.599788\pi\)
−0.308383 + 0.951262i \(0.599788\pi\)
\(348\) 0.655720 + 6.24122i 0.0351503 + 0.334565i
\(349\) −16.4608 −0.881127 −0.440563 0.897722i \(-0.645221\pi\)
−0.440563 + 0.897722i \(0.645221\pi\)
\(350\) −38.9753 + 43.2847i −2.08332 + 2.31366i
\(351\) 6.44697i 0.344114i
\(352\) −12.7043 + 21.9993i −0.677142 + 1.17257i
\(353\) 3.89747i 0.207441i 0.994606 + 0.103721i \(0.0330748\pi\)
−0.994606 + 0.103721i \(0.966925\pi\)
\(354\) −10.8058 9.73001i −0.574323 0.517144i
\(355\) −2.12333 −0.112695
\(356\) 2.44242 + 23.2472i 0.129448 + 1.23210i
\(357\) 3.75579 0.198777
\(358\) 0.475661 0.528253i 0.0251395 0.0279191i
\(359\) 29.8392i 1.57485i −0.616408 0.787427i \(-0.711413\pi\)
0.616408 0.787427i \(-0.288587\pi\)
\(360\) −7.36422 + 10.1347i −0.388128 + 0.534144i
\(361\) 16.0777 0.846193
\(362\) −14.5974 + 16.2114i −0.767223 + 0.852052i
\(363\) 9.16777 0.481183
\(364\) 36.1303 3.79594i 1.89374 0.198962i
\(365\) 16.3082i 0.853612i
\(366\) 10.1541 + 9.14321i 0.530766 + 0.477923i
\(367\) 37.1530 1.93937 0.969686 0.244355i \(-0.0785764\pi\)
0.969686 + 0.244355i \(0.0785764\pi\)
\(368\) −2.83732 13.3539i −0.147905 0.696122i
\(369\) 5.15047i 0.268123i
\(370\) −26.8086 24.1396i −1.39371 1.25496i
\(371\) 13.0634i 0.678219i
\(372\) 1.76642 + 16.8130i 0.0915844 + 0.871712i
\(373\) 31.6985i 1.64129i 0.571441 + 0.820643i \(0.306384\pi\)
−0.571441 + 0.820643i \(0.693616\pi\)
\(374\) 5.66496 6.29131i 0.292928 0.325316i
\(375\) 42.5996i 2.19983i
\(376\) 7.53007 10.3629i 0.388334 0.534426i
\(377\) 20.2292i 1.04186i
\(378\) 2.66628 2.96108i 0.137138 0.152301i
\(379\) −31.8816 −1.63765 −0.818823 0.574046i \(-0.805373\pi\)
−0.818823 + 0.574046i \(0.805373\pi\)
\(380\) −1.58229 15.0604i −0.0811698 0.772584i
\(381\) 6.70864i 0.343694i
\(382\) 6.26021 6.95238i 0.320300 0.355715i
\(383\) −29.9214 −1.52891 −0.764457 0.644675i \(-0.776993\pi\)
−0.764457 + 0.644675i \(0.776993\pi\)
\(384\) 10.3349 + 4.60319i 0.527402 + 0.234905i
\(385\) 56.0434i 2.85623i
\(386\) −7.16962 + 7.96234i −0.364924 + 0.405273i
\(387\) −1.06496 −0.0541348
\(388\) −26.3174 + 2.76498i −1.33607 + 0.140371i
\(389\) 28.6071 1.45044 0.725220 0.688518i \(-0.241738\pi\)
0.725220 + 0.688518i \(0.241738\pi\)
\(390\) 27.0220 30.0098i 1.36831 1.51960i
\(391\) 4.54955i 0.230081i
\(392\) −2.14743 1.56040i −0.108461 0.0788120i
\(393\) 2.95058i 0.148837i
\(394\) 8.20490 + 7.38803i 0.413357 + 0.372204i
\(395\) 43.9034i 2.20902i
\(396\) −0.938477 8.93254i −0.0471602 0.448877i
\(397\) −26.0821 −1.30902 −0.654511 0.756053i \(-0.727125\pi\)
−0.654511 + 0.756053i \(0.727125\pi\)
\(398\) −6.73769 6.06690i −0.337730 0.304106i
\(399\) 4.81653i 0.241128i
\(400\) 57.1948 12.1522i 2.85974 0.607611i
\(401\) 1.63624i 0.0817100i −0.999165 0.0408550i \(-0.986992\pi\)
0.999165 0.0408550i \(-0.0130082\pi\)
\(402\) −11.3863 + 2.08636i −0.567895 + 0.104058i
\(403\) 54.4947i 2.71457i
\(404\) 8.75911 0.920255i 0.435782 0.0457844i
\(405\) 4.42921i 0.220089i
\(406\) −8.36620 + 9.29123i −0.415208 + 0.461116i
\(407\) 25.8641 1.28203
\(408\) −3.05011 2.21632i −0.151003 0.109724i
\(409\) 1.01269i 0.0500744i −0.999687 0.0250372i \(-0.992030\pi\)
0.999687 0.0250372i \(-0.00797042\pi\)
\(410\) 21.5878 23.9747i 1.06615 1.18403i
\(411\) 6.89136i 0.339926i
\(412\) 17.1688 1.80380i 0.845845 0.0888668i
\(413\) 28.9699i 1.42552i
\(414\) 3.58689 + 3.22978i 0.176286 + 0.158735i
\(415\) −37.7921 −1.85514
\(416\) −31.5817 18.2380i −1.54842 0.894194i
\(417\) 3.31586 0.162378
\(418\) 8.06816 + 7.26491i 0.394627 + 0.355338i
\(419\) 9.62094i 0.470013i 0.971994 + 0.235007i \(0.0755112\pi\)
−0.971994 + 0.235007i \(0.924489\pi\)
\(420\) −24.8223 + 2.60789i −1.21120 + 0.127252i
\(421\) 10.2672 0.500393 0.250196 0.968195i \(-0.419505\pi\)
0.250196 + 0.968195i \(0.419505\pi\)
\(422\) 10.0645 + 9.06246i 0.489930 + 0.441154i
\(423\) 4.52896i 0.220206i
\(424\) 7.70883 10.6089i 0.374374 0.515215i
\(425\) −19.4857 −0.945196
\(426\) −0.503817 0.453657i −0.0244100 0.0219798i
\(427\) 27.2228i 1.31740i
\(428\) −9.90145 + 1.04027i −0.478605 + 0.0502835i
\(429\) 28.9524i 1.39784i
\(430\) 4.95723 + 4.46369i 0.239059 + 0.215258i
\(431\) 6.49042i 0.312632i −0.987707 0.156316i \(-0.950038\pi\)
0.987707 0.156316i \(-0.0499619\pi\)
\(432\) −3.91266 + 0.831325i −0.188248 + 0.0399971i
\(433\) 24.5663i 1.18058i 0.807192 + 0.590289i \(0.200986\pi\)
−0.807192 + 0.590289i \(0.799014\pi\)
\(434\) −22.5374 + 25.0293i −1.08183 + 1.20144i
\(435\) 13.8979i 0.666354i
\(436\) 12.0713 1.26824i 0.578109 0.0607377i
\(437\) −5.83448 −0.279101
\(438\) 3.48431 3.86956i 0.166487 0.184895i
\(439\) 10.4351i 0.498042i 0.968498 + 0.249021i \(0.0801089\pi\)
−0.968498 + 0.249021i \(0.919891\pi\)
\(440\) −33.0716 + 45.5133i −1.57663 + 2.16976i
\(441\) 0.938501 0.0446905
\(442\) 9.03167 + 8.13249i 0.429593 + 0.386823i
\(443\) 2.65628 0.126204 0.0631018 0.998007i \(-0.479901\pi\)
0.0631018 + 0.998007i \(0.479901\pi\)
\(444\) −1.20355 11.4555i −0.0571178 0.543654i
\(445\) 51.7668i 2.45398i
\(446\) −21.6376 19.4834i −1.02457 0.922566i
\(447\) −19.2320 −0.909642
\(448\) 6.96269 + 21.4379i 0.328956 + 1.01285i
\(449\) −10.1088 −0.477063 −0.238531 0.971135i \(-0.576666\pi\)
−0.238531 + 0.971135i \(0.576666\pi\)
\(450\) −13.8331 + 15.3626i −0.652100 + 0.724200i
\(451\) 23.1300i 1.08915i
\(452\) −23.4020 + 2.45867i −1.10074 + 0.115646i
\(453\) 11.1412i 0.523459i
\(454\) 9.45022 + 8.50937i 0.443521 + 0.399365i
\(455\) 80.4547 3.77177
\(456\) 2.84227 3.91155i 0.133102 0.183175i
\(457\) 9.51702 0.445187 0.222594 0.974911i \(-0.428548\pi\)
0.222594 + 0.974911i \(0.428548\pi\)
\(458\) −2.86112 2.57627i −0.133691 0.120381i
\(459\) 1.33300 0.0622193
\(460\) −3.15906 30.0683i −0.147292 1.40194i
\(461\) −38.4051 −1.78870 −0.894351 0.447366i \(-0.852362\pi\)
−0.894351 + 0.447366i \(0.852362\pi\)
\(462\) 11.9739 13.2978i 0.557074 0.618668i
\(463\) −15.1386 −0.703549 −0.351774 0.936085i \(-0.614422\pi\)
−0.351774 + 0.936085i \(0.614422\pi\)
\(464\) 12.2771 2.60852i 0.569950 0.121098i
\(465\) 37.4390i 1.73619i
\(466\) −19.8506 17.8743i −0.919563 0.828013i
\(467\) 30.8798i 1.42895i 0.699662 + 0.714474i \(0.253334\pi\)
−0.699662 + 0.714474i \(0.746666\pi\)
\(468\) 12.8234 1.34726i 0.592760 0.0622770i
\(469\) −18.2684 14.0764i −0.843556 0.649988i
\(470\) 18.9828 21.0817i 0.875611 0.972425i
\(471\) −10.8432 −0.499630
\(472\) −17.0954 + 23.5267i −0.786878 + 1.08290i
\(473\) −4.78257 −0.219903
\(474\) 9.38010 10.4172i 0.430842 0.478479i
\(475\) 24.9890i 1.14658i
\(476\) −0.784866 7.47046i −0.0359743 0.342408i
\(477\) 4.63647i 0.212290i
\(478\) 25.2930 28.0896i 1.15687 1.28479i
\(479\) 25.5835i 1.16894i −0.811416 0.584469i \(-0.801303\pi\)
0.811416 0.584469i \(-0.198697\pi\)
\(480\) 21.6973 + 12.5299i 0.990342 + 0.571910i
\(481\) 37.1299i 1.69298i
\(482\) 11.4151 12.6772i 0.519942 0.577430i
\(483\) 9.61626i 0.437555i
\(484\) −1.91584 18.2352i −0.0870835 0.828872i
\(485\) −58.6035 −2.66105
\(486\) 0.946315 1.05095i 0.0429257 0.0476719i
\(487\) −21.7976 −0.987745 −0.493872 0.869534i \(-0.664419\pi\)
−0.493872 + 0.869534i \(0.664419\pi\)
\(488\) 16.0644 22.1078i 0.727199 1.00077i
\(489\) 17.2780i 0.781336i
\(490\) −4.36859 3.93366i −0.197353 0.177705i
\(491\) 29.7112i 1.34085i −0.741978 0.670424i \(-0.766112\pi\)
0.741978 0.670424i \(-0.233888\pi\)
\(492\) 10.2446 1.07632i 0.461860 0.0485243i
\(493\) −4.18268 −0.188379
\(494\) −10.4293 + 11.5825i −0.469238 + 0.521121i
\(495\) 19.8909i 0.894031i
\(496\) 33.0727 7.02699i 1.48501 0.315521i
\(497\) 1.35071i 0.0605875i
\(498\) −8.96718 8.07442i −0.401829 0.361823i
\(499\) 13.0259 0.583120 0.291560 0.956552i \(-0.405826\pi\)
0.291560 + 0.956552i \(0.405826\pi\)
\(500\) 84.7328 8.90226i 3.78937 0.398121i
\(501\) 12.4165i 0.554726i
\(502\) 24.1228 26.7900i 1.07665 1.19570i
\(503\) −14.1739 −0.631985 −0.315992 0.948762i \(-0.602337\pi\)
−0.315992 + 0.948762i \(0.602337\pi\)
\(504\) −6.44692 4.68457i −0.287169 0.208667i
\(505\) 19.5047 0.867949
\(506\) 16.1082 + 14.5045i 0.716096 + 0.644802i
\(507\) −28.5635 −1.26855
\(508\) −13.3438 + 1.40194i −0.592037 + 0.0622010i
\(509\) 0.469183 0.0207962 0.0103981 0.999946i \(-0.496690\pi\)
0.0103981 + 0.999946i \(0.496690\pi\)
\(510\) −6.20495 5.58719i −0.274760 0.247405i
\(511\) 10.3741 0.458923
\(512\) 6.99624 21.5187i 0.309193 0.950999i
\(513\) 1.70948i 0.0754756i
\(514\) 12.2614 13.6171i 0.540827 0.600625i
\(515\) 38.2313 1.68467
\(516\) 0.222550 + 2.11826i 0.00979720 + 0.0932510i
\(517\) 20.3389i 0.894504i
\(518\) 15.3558 17.0537i 0.674696 0.749295i
\(519\) 18.7820 0.824440
\(520\) −65.3379 47.4769i −2.86526 2.08200i
\(521\) 26.8304i 1.17546i 0.809056 + 0.587731i \(0.199979\pi\)
−0.809056 + 0.587731i \(0.800021\pi\)
\(522\) −2.96934 + 3.29764i −0.129964 + 0.144334i
\(523\) 6.00603i 0.262625i 0.991341 + 0.131313i \(0.0419192\pi\)
−0.991341 + 0.131313i \(0.958081\pi\)
\(524\) 5.86886 0.616599i 0.256383 0.0269362i
\(525\) −41.1864 −1.79752
\(526\) −1.64482 1.48107i −0.0717177 0.0645775i
\(527\) −11.2676 −0.490823
\(528\) −17.5712 + 3.73336i −0.764687 + 0.162474i
\(529\) 11.3514 0.493539
\(530\) 19.4334 21.5821i 0.844135 0.937468i
\(531\) 10.2820i 0.446201i
\(532\) 9.58034 1.00654i 0.415360 0.0436389i
\(533\) −33.2049 −1.43827
\(534\) −11.0601 + 12.2830i −0.478619 + 0.531539i
\(535\) −22.0485 −0.953239
\(536\) 6.52932 + 22.2119i 0.282024 + 0.959407i
\(537\) 0.502646 0.0216908
\(538\) 5.69349 6.32300i 0.245464 0.272604i
\(539\) 4.21467 0.181539
\(540\) −8.80993 + 0.925594i −0.379119 + 0.0398312i
\(541\) 19.1448i 0.823101i 0.911387 + 0.411550i \(0.135013\pi\)
−0.911387 + 0.411550i \(0.864987\pi\)
\(542\) 24.2537 26.9354i 1.04179 1.15697i
\(543\) −15.4255 −0.661973
\(544\) −3.77098 + 6.52998i −0.161679 + 0.279970i
\(545\) 26.8802 1.15142
\(546\) 19.0900 + 17.1894i 0.816976 + 0.735639i
\(547\) 35.4826 1.51713 0.758563 0.651599i \(-0.225902\pi\)
0.758563 + 0.651599i \(0.225902\pi\)
\(548\) −13.7073 + 1.44012i −0.585546 + 0.0615190i
\(549\) 9.66191i 0.412360i
\(550\) −62.1225 + 68.9912i −2.64891 + 2.94180i
\(551\) 5.36400i 0.228514i
\(552\) 5.67463 7.80945i 0.241528 0.332392i
\(553\) 27.9281 1.18762
\(554\) 4.93098 5.47618i 0.209497 0.232661i
\(555\) 25.5090i 1.08280i
\(556\) −0.692931 6.59541i −0.0293868 0.279708i
\(557\) 18.7124 0.792870 0.396435 0.918063i \(-0.370247\pi\)
0.396435 + 0.918063i \(0.370247\pi\)
\(558\) −7.99897 + 8.88339i −0.338623 + 0.376064i
\(559\) 6.86575i 0.290390i
\(560\) 10.3745 + 48.8278i 0.438402 + 2.06335i
\(561\) 5.98633 0.252743
\(562\) −25.8740 23.2980i −1.09143 0.982766i
\(563\) 22.6150 0.953108 0.476554 0.879145i \(-0.341886\pi\)
0.476554 + 0.879145i \(0.341886\pi\)
\(564\) 9.00834 0.946440i 0.379320 0.0398523i
\(565\) −52.1113 −2.19234
\(566\) −9.19789 8.28216i −0.386616 0.348125i
\(567\) 2.81753 0.118325
\(568\) −0.797063 + 1.09692i −0.0334440 + 0.0460258i
\(569\) 18.0974 0.758681 0.379341 0.925257i \(-0.376151\pi\)
0.379341 + 0.925257i \(0.376151\pi\)
\(570\) 7.16518 7.95741i 0.300116 0.333299i
\(571\) 12.8629i 0.538294i 0.963099 + 0.269147i \(0.0867417\pi\)
−0.963099 + 0.269147i \(0.913258\pi\)
\(572\) 57.5879 6.05034i 2.40787 0.252977i
\(573\) 6.61535 0.276360
\(574\) 15.2509 + 13.7326i 0.636562 + 0.573186i
\(575\) 49.8909i 2.08060i
\(576\) 2.47120 + 7.60876i 0.102967 + 0.317032i
\(577\) 22.5707i 0.939630i −0.882765 0.469815i \(-0.844321\pi\)
0.882765 0.469815i \(-0.155679\pi\)
\(578\) −14.4058 + 15.9987i −0.599204 + 0.665456i
\(579\) −7.57636 −0.314863
\(580\) 27.6437 2.90432i 1.14784 0.120595i
\(581\) 24.0406i 0.997370i
\(582\) −13.9052 12.5208i −0.576390 0.519005i
\(583\) 20.8217i 0.862348i
\(584\) −8.42489 6.12183i −0.348624 0.253323i
\(585\) 28.5550 1.18060
\(586\) −11.5968 + 12.8791i −0.479061 + 0.532029i
\(587\) 44.5937 1.84058 0.920290 0.391238i \(-0.127953\pi\)
0.920290 + 0.391238i \(0.127953\pi\)
\(588\) −0.196123 1.86673i −0.00808800 0.0769826i
\(589\) 14.4499i 0.595396i
\(590\) −43.0963 + 47.8613i −1.77424 + 1.97042i
\(591\) 7.80716i 0.321144i
\(592\) −22.5341 + 4.78783i −0.926145 + 0.196779i
\(593\) 9.87000i 0.405312i −0.979250 0.202656i \(-0.935043\pi\)
0.979250 0.202656i \(-0.0649573\pi\)
\(594\) 4.24976 4.71965i 0.174370 0.193649i
\(595\) 16.6352i 0.681975i
\(596\) 4.01901 + 38.2534i 0.164625 + 1.56692i
\(597\) 6.41107i 0.262388i
\(598\) −20.8223 + 23.1246i −0.851487 + 0.945634i
\(599\) −4.78024 −0.195315 −0.0976576 0.995220i \(-0.531135\pi\)
−0.0976576 + 0.995220i \(0.531135\pi\)
\(600\) 33.4478 + 24.3044i 1.36550 + 0.992223i
\(601\) −7.77550 −0.317169 −0.158585 0.987345i \(-0.550693\pi\)
−0.158585 + 0.987345i \(0.550693\pi\)
\(602\) −2.83947 + 3.15342i −0.115728 + 0.128524i
\(603\) −6.48382 4.99600i −0.264042 0.203453i
\(604\) −22.1604 + 2.32823i −0.901695 + 0.0947345i
\(605\) 40.6060i 1.65087i
\(606\) 4.62801 + 4.16725i 0.188000 + 0.169283i
\(607\) 39.5661i 1.60594i 0.596020 + 0.802969i \(0.296748\pi\)
−0.596020 + 0.802969i \(0.703252\pi\)
\(608\) −8.37423 4.83601i −0.339620 0.196126i
\(609\) −8.84082 −0.358248
\(610\) 40.4972 44.9748i 1.63968 1.82098i
\(611\) −29.1981 −1.18123
\(612\) −0.278565 2.65142i −0.0112603 0.107177i
\(613\) −5.66134 −0.228659 −0.114330 0.993443i \(-0.536472\pi\)
−0.114330 + 0.993443i \(0.536472\pi\)
\(614\) 21.7371 + 19.5730i 0.877240 + 0.789903i
\(615\) 22.8125 0.919889
\(616\) −28.9522 21.0377i −1.16652 0.847634i
\(617\) −6.40871 −0.258005 −0.129003 0.991644i \(-0.541178\pi\)
−0.129003 + 0.991644i \(0.541178\pi\)
\(618\) 9.07139 + 8.16825i 0.364905 + 0.328575i
\(619\) 35.6982i 1.43483i 0.696645 + 0.717416i \(0.254675\pi\)
−0.696645 + 0.717416i \(0.745325\pi\)
\(620\) 74.4681 7.82382i 2.99071 0.314212i
\(621\) 3.41301i 0.136959i
\(622\) 6.38027 7.08571i 0.255825 0.284111i
\(623\) −32.9302 −1.31932
\(624\) −5.35953 25.2248i −0.214553 1.00980i
\(625\) 115.593 4.62372
\(626\) −7.28762 6.56207i −0.291272 0.262273i
\(627\) 7.67705i 0.306592i
\(628\) 2.26597 + 21.5678i 0.0904219 + 0.860647i
\(629\) 7.67715 0.306108
\(630\) −13.1152 11.8095i −0.522523 0.470501i
\(631\) −3.22001 −0.128187 −0.0640934 0.997944i \(-0.520416\pi\)
−0.0640934 + 0.997944i \(0.520416\pi\)
\(632\) −22.6806 16.4806i −0.902187 0.655562i
\(633\) 9.57658i 0.380635i
\(634\) −16.2881 + 18.0891i −0.646885 + 0.718409i
\(635\) −29.7140 −1.17916
\(636\) 9.22219 0.968908i 0.365684 0.0384197i
\(637\) 6.05049i 0.239729i
\(638\) −13.3349 + 14.8092i −0.527932 + 0.586303i
\(639\) 0.479394i 0.0189645i
\(640\) 20.3885 45.7755i 0.805925 1.80944i
\(641\) 19.1452i 0.756189i −0.925767 0.378095i \(-0.876579\pi\)
0.925767 0.378095i \(-0.123421\pi\)
\(642\) −5.23158 4.71073i −0.206474 0.185918i
\(643\) 15.3290i 0.604516i 0.953226 + 0.302258i \(0.0977405\pi\)
−0.953226 + 0.302258i \(0.902260\pi\)
\(644\) 19.1273 2.00956i 0.753719 0.0791878i
\(645\) 4.71692i 0.185728i
\(646\) 2.39485 + 2.15642i 0.0942239 + 0.0848431i
\(647\) −5.79937 −0.227997 −0.113998 0.993481i \(-0.536366\pi\)
−0.113998 + 0.993481i \(0.536366\pi\)
\(648\) −2.28814 1.66265i −0.0898868 0.0653150i
\(649\) 46.1750i 1.81253i
\(650\) −99.0423 89.1818i −3.88476 3.49800i
\(651\) −23.8159 −0.933420
\(652\) −34.3667 + 3.61066i −1.34591 + 0.141404i
\(653\) 26.4803i 1.03626i −0.855303 0.518128i \(-0.826629\pi\)
0.855303 0.518128i \(-0.173371\pi\)
\(654\) 6.37804 + 5.74305i 0.249401 + 0.224571i
\(655\) 13.0687 0.510638
\(656\) −4.28171 20.1520i −0.167173 0.786804i
\(657\) 3.68198 0.143648
\(658\) 13.4106 + 12.0755i 0.522800 + 0.470750i
\(659\) 21.1839i 0.825206i −0.910911 0.412603i \(-0.864620\pi\)
0.910911 0.412603i \(-0.135380\pi\)
\(660\) −39.5641 + 4.15671i −1.54003 + 0.161800i
\(661\) 22.0683i 0.858356i 0.903220 + 0.429178i \(0.141197\pi\)
−0.903220 + 0.429178i \(0.858803\pi\)
\(662\) −11.1669 + 12.4016i −0.434016 + 0.482003i
\(663\) 8.59385i 0.333757i
\(664\) −14.1865 + 19.5235i −0.550544 + 0.757660i
\(665\) 21.3334 0.827275
\(666\) 5.45009 6.05269i 0.211187 0.234537i
\(667\) 10.7093i 0.414665i
\(668\) −24.6970 + 2.59473i −0.955555 + 0.100393i
\(669\) 20.5887i 0.796005i
\(670\) 9.24092 + 50.4321i 0.357008 + 1.94836i
\(671\) 43.3902i 1.67506i
\(672\) −7.97061 + 13.8022i −0.307473 + 0.532432i
\(673\) 32.4767i 1.25188i 0.779870 + 0.625942i \(0.215285\pi\)
−0.779870 + 0.625942i \(0.784715\pi\)
\(674\) 28.1457 + 25.3435i 1.08413 + 0.976195i
\(675\) −14.6179 −0.562643
\(676\) 5.96906 + 56.8143i 0.229579 + 2.18516i
\(677\) 28.8665i 1.10943i 0.832040 + 0.554715i \(0.187173\pi\)
−0.832040 + 0.554715i \(0.812827\pi\)
\(678\) −12.3648 11.1338i −0.474867 0.427590i
\(679\) 37.2792i 1.43065i
\(680\) −9.81654 + 13.5096i −0.376447 + 0.518068i
\(681\) 8.99211i 0.344578i
\(682\) −35.9222 + 39.8940i −1.37553 + 1.52762i
\(683\) 17.2983 0.661901 0.330951 0.943648i \(-0.392631\pi\)
0.330951 + 0.943648i \(0.392631\pi\)
\(684\) 3.40026 0.357240i 0.130012 0.0136594i
\(685\) −30.5233 −1.16623
\(686\) −16.1616 + 17.9486i −0.617054 + 0.685279i
\(687\) 2.72243i 0.103867i
\(688\) 4.16681 0.885326i 0.158858 0.0337527i
\(689\) −29.8912 −1.13877
\(690\) 14.3054 15.8871i 0.544596 0.604810i
\(691\) 28.2517i 1.07475i −0.843345 0.537373i \(-0.819417\pi\)
0.843345 0.537373i \(-0.180583\pi\)
\(692\) −3.92498 37.3585i −0.149205 1.42016i
\(693\) 12.6531 0.480653
\(694\) −10.8723 + 12.0744i −0.412707 + 0.458338i
\(695\) 14.6866i 0.557095i
\(696\) 7.17971 + 5.21704i 0.272146 + 0.197751i
\(697\) 6.86560i 0.260053i
\(698\) −15.5771 + 17.2994i −0.589602 + 0.654793i
\(699\) 18.8884i 0.714423i
\(700\) 8.60693 + 81.9219i 0.325311 + 3.09636i
\(701\) 19.9558i 0.753719i −0.926270 0.376860i \(-0.877004\pi\)
0.926270 0.376860i \(-0.122996\pi\)
\(702\) 6.77542 + 6.10087i 0.255722 + 0.230262i
\(703\) 9.84540i 0.371326i
\(704\) 11.0978 + 34.1698i 0.418264 + 1.28782i
\(705\) 20.0597 0.755492
\(706\) 4.09603 + 3.68823i 0.154156 + 0.138808i
\(707\) 12.4075i 0.466631i
\(708\) −20.4514 + 2.14868i −0.768612 + 0.0807525i
\(709\) 2.92170 0.109727 0.0548633 0.998494i \(-0.482528\pi\)
0.0548633 + 0.998494i \(0.482528\pi\)
\(710\) −2.00934 + 2.23151i −0.0754093 + 0.0837470i
\(711\) 9.91224 0.371738
\(712\) 26.7429 + 19.4324i 1.00223 + 0.728259i
\(713\) 28.8493i 1.08041i
\(714\) 3.55416 3.94713i 0.133011 0.147718i
\(715\) 128.236 4.79577
\(716\) −0.105040 0.999789i −0.00392555 0.0373639i
\(717\) 26.7279 0.998171
\(718\) −31.3594 28.2373i −1.17032 1.05381i
\(719\) 16.4667i 0.614103i 0.951693 + 0.307051i \(0.0993424\pi\)
−0.951693 + 0.307051i \(0.900658\pi\)
\(720\) 3.68211 + 17.3300i 0.137224 + 0.645850i
\(721\) 24.3199i 0.905722i
\(722\) 15.2145 16.8968i 0.566226 0.628832i
\(723\) 12.0626 0.448614
\(724\) 3.22355 + 30.6822i 0.119802 + 1.14029i
\(725\) 45.8678 1.70349
\(726\) 8.67560 9.63483i 0.321982 0.357582i
\(727\) −0.181194 −0.00672011 −0.00336006 0.999994i \(-0.501070\pi\)
−0.00336006 + 0.999994i \(0.501070\pi\)
\(728\) 30.2013 41.5631i 1.11933 1.54043i
\(729\) 1.00000 0.0370370
\(730\) −17.1391 15.4327i −0.634346 0.571191i
\(731\) −1.41959 −0.0525056
\(732\) 19.2180 2.01910i 0.710319 0.0746280i
\(733\) 18.0519i 0.666764i 0.942792 + 0.333382i \(0.108190\pi\)
−0.942792 + 0.333382i \(0.891810\pi\)
\(734\) 35.1585 39.0458i 1.29772 1.44121i
\(735\) 4.15682i 0.153327i
\(736\) −16.7193 9.65516i −0.616280 0.355894i
\(737\) −29.1179 22.4363i −1.07257 0.826452i
\(738\) 5.41286 + 4.87397i 0.199250 + 0.179413i
\(739\) 9.27764 0.341284 0.170642 0.985333i \(-0.445416\pi\)
0.170642 + 0.985333i \(0.445416\pi\)
\(740\) −50.7388 + 5.33076i −1.86520 + 0.195962i
\(741\) −11.0210 −0.404867
\(742\) 13.7290 + 12.3621i 0.504006 + 0.453828i
\(743\) 1.38908i 0.0509605i −0.999675 0.0254802i \(-0.991889\pi\)
0.999675 0.0254802i \(-0.00811149\pi\)
\(744\) 19.3411 + 14.0540i 0.709079 + 0.515243i
\(745\) 85.1825i 3.12084i
\(746\) 33.3134 + 29.9968i 1.21969 + 1.09826i
\(747\) 8.53248i 0.312187i
\(748\) −1.25099 11.9071i −0.0457409 0.435368i
\(749\) 14.0256i 0.512485i
\(750\) 44.7699 + 40.3126i 1.63476 + 1.47201i
\(751\) 23.9459i 0.873799i 0.899510 + 0.436900i \(0.143924\pi\)
−0.899510 + 0.436900i \(0.856076\pi\)
\(752\) −3.76504 17.7203i −0.137297 0.646192i
\(753\) 25.4913 0.928955
\(754\) −21.2598 19.1432i −0.774237 0.697155i
\(755\) −49.3467 −1.79591
\(756\) −0.588795 5.60422i −0.0214143 0.203824i
\(757\) 11.8148i 0.429418i −0.976678 0.214709i \(-0.931120\pi\)
0.976678 0.214709i \(-0.0688803\pi\)
\(758\) −30.1700 + 33.5058i −1.09582 + 1.21699i
\(759\) 15.3273i 0.556346i
\(760\) −17.3251 12.5890i −0.628446 0.456652i
\(761\) 22.1353 0.802405 0.401202 0.915989i \(-0.368592\pi\)
0.401202 + 0.915989i \(0.368592\pi\)
\(762\) −7.05042 6.34849i −0.255410 0.229982i
\(763\) 17.0992i 0.619033i
\(764\) −1.38244 13.1583i −0.0500151 0.476050i
\(765\) 5.90416i 0.213465i
\(766\) −28.3151 + 31.4458i −1.02307 + 1.13618i
\(767\) 66.2878 2.39351
\(768\) 14.6178 6.50538i 0.527474 0.234743i
\(769\) 27.5107i 0.992062i −0.868305 0.496031i \(-0.834790\pi\)
0.868305 0.496031i \(-0.165210\pi\)
\(770\) −58.8986 53.0347i −2.12256 1.91124i
\(771\) 12.9570 0.466635
\(772\) 1.58327 + 15.0698i 0.0569832 + 0.542373i
\(773\)