Properties

Label 804.2.e.b.535.22
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.22
Character \(\chi\) = 804.535
Dual form 804.2.e.b.535.21

$q$-expansion

\(f(q)\) \(=\) \(q+(0.483740 + 1.32891i) q^{2} +1.00000 q^{3} +(-1.53199 + 1.28569i) q^{4} -3.80010i q^{5} +(0.483740 + 1.32891i) q^{6} -0.504221 q^{7} +(-2.44965 - 1.41393i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(0.483740 + 1.32891i) q^{2} +1.00000 q^{3} +(-1.53199 + 1.28569i) q^{4} -3.80010i q^{5} +(0.483740 + 1.32891i) q^{6} -0.504221 q^{7} +(-2.44965 - 1.41393i) q^{8} +1.00000 q^{9} +(5.04998 - 1.83826i) q^{10} -0.340071 q^{11} +(-1.53199 + 1.28569i) q^{12} -4.62451i q^{13} +(-0.243912 - 0.670063i) q^{14} -3.80010i q^{15} +(0.693993 - 3.93934i) q^{16} -5.54179 q^{17} +(0.483740 + 1.32891i) q^{18} -5.66175i q^{19} +(4.88575 + 5.82171i) q^{20} -0.504221 q^{21} +(-0.164506 - 0.451923i) q^{22} +2.26733i q^{23} +(-2.44965 - 1.41393i) q^{24} -9.44073 q^{25} +(6.14555 - 2.23706i) q^{26} +1.00000 q^{27} +(0.772462 - 0.648273i) q^{28} +2.67950 q^{29} +(5.04998 - 1.83826i) q^{30} +3.48870 q^{31} +(5.57073 - 0.983362i) q^{32} -0.340071 q^{33} +(-2.68078 - 7.36452i) q^{34} +1.91609i q^{35} +(-1.53199 + 1.28569i) q^{36} +3.22313 q^{37} +(7.52395 - 2.73882i) q^{38} -4.62451i q^{39} +(-5.37309 + 9.30891i) q^{40} -5.82399i q^{41} +(-0.243912 - 0.670063i) q^{42} +10.1339 q^{43} +(0.520986 - 0.437226i) q^{44} -3.80010i q^{45} +(-3.01308 + 1.09680i) q^{46} +4.07078i q^{47} +(0.693993 - 3.93934i) q^{48} -6.74576 q^{49} +(-4.56686 - 12.5459i) q^{50} -5.54179 q^{51} +(5.94570 + 7.08471i) q^{52} +2.30104i q^{53} +(0.483740 + 1.32891i) q^{54} +1.29230i q^{55} +(1.23517 + 0.712935i) q^{56} -5.66175i q^{57} +(1.29618 + 3.56081i) q^{58} -4.68692i q^{59} +(4.88575 + 5.82171i) q^{60} +5.81766i q^{61} +(1.68762 + 4.63616i) q^{62} -0.504221 q^{63} +(4.00158 + 6.92729i) q^{64} -17.5736 q^{65} +(-0.164506 - 0.451923i) q^{66} +(-1.18570 - 8.09902i) q^{67} +(8.48997 - 7.12503i) q^{68} +2.26733i q^{69} +(-2.54631 + 0.926889i) q^{70} +9.21056i q^{71} +(-2.44965 - 1.41393i) q^{72} +10.5523 q^{73} +(1.55916 + 4.28324i) q^{74} -9.44073 q^{75} +(7.27927 + 8.67376i) q^{76} +0.171471 q^{77} +(6.14555 - 2.23706i) q^{78} +9.58435 q^{79} +(-14.9699 - 2.63724i) q^{80} +1.00000 q^{81} +(7.73954 - 2.81730i) q^{82} +16.5312i q^{83} +(0.772462 - 0.648273i) q^{84} +21.0593i q^{85} +(4.90216 + 13.4670i) q^{86} +2.67950 q^{87} +(0.833055 + 0.480838i) q^{88} -9.37374 q^{89} +(5.04998 - 1.83826i) q^{90} +2.33178i q^{91} +(-2.91509 - 3.47354i) q^{92} +3.48870 q^{93} +(-5.40969 + 1.96920i) q^{94} -21.5152 q^{95} +(5.57073 - 0.983362i) q^{96} +0.449792i q^{97} +(-3.26320 - 8.96449i) q^{98} -0.340071 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{3} + 2q^{4} + 4q^{7} - 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q + 34q^{3} + 2q^{4} + 4q^{7} - 6q^{8} + 34q^{9} - 6q^{10} + 2q^{12} - 4q^{14} + 2q^{16} - 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} + 34q^{27} - 8q^{28} - 16q^{29} - 6q^{30} - 4q^{31} + 2q^{36} + 12q^{37} + 26q^{38} - 18q^{40} - 4q^{42} - 4q^{43} + 26q^{44} - 4q^{46} + 2q^{48} + 46q^{49} - 18q^{50} + 32q^{52} + 14q^{56} + 4q^{58} - 12q^{60} - 2q^{62} + 4q^{63} + 26q^{64} - 8q^{66} - 18q^{67} - 34q^{68} + 56q^{70} - 6q^{72} + 12q^{73} + 22q^{74} - 34q^{75} - 32q^{76} - 8q^{77} + 10q^{78} - 12q^{79} - 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} - 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} + 32q^{94} - 40q^{95} - 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.483740 + 1.32891i 0.342056 + 0.939680i
\(3\) 1.00000 0.577350
\(4\) −1.53199 + 1.28569i −0.765996 + 0.642846i
\(5\) 3.80010i 1.69945i −0.527222 0.849727i \(-0.676767\pi\)
0.527222 0.849727i \(-0.323233\pi\)
\(6\) 0.483740 + 1.32891i 0.197486 + 0.542524i
\(7\) −0.504221 −0.190578 −0.0952888 0.995450i \(-0.530377\pi\)
−0.0952888 + 0.995450i \(0.530377\pi\)
\(8\) −2.44965 1.41393i −0.866082 0.499901i
\(9\) 1.00000 0.333333
\(10\) 5.04998 1.83826i 1.59694 0.581308i
\(11\) −0.340071 −0.102535 −0.0512676 0.998685i \(-0.516326\pi\)
−0.0512676 + 0.998685i \(0.516326\pi\)
\(12\) −1.53199 + 1.28569i −0.442248 + 0.371147i
\(13\) 4.62451i 1.28261i −0.767287 0.641304i \(-0.778394\pi\)
0.767287 0.641304i \(-0.221606\pi\)
\(14\) −0.243912 0.670063i −0.0651882 0.179082i
\(15\) 3.80010i 0.981181i
\(16\) 0.693993 3.93934i 0.173498 0.984834i
\(17\) −5.54179 −1.34408 −0.672040 0.740514i \(-0.734582\pi\)
−0.672040 + 0.740514i \(0.734582\pi\)
\(18\) 0.483740 + 1.32891i 0.114019 + 0.313227i
\(19\) 5.66175i 1.29890i −0.760406 0.649448i \(-0.775000\pi\)
0.760406 0.649448i \(-0.225000\pi\)
\(20\) 4.88575 + 5.82171i 1.09249 + 1.30177i
\(21\) −0.504221 −0.110030
\(22\) −0.164506 0.451923i −0.0350728 0.0963503i
\(23\) 2.26733i 0.472772i 0.971659 + 0.236386i \(0.0759630\pi\)
−0.971659 + 0.236386i \(0.924037\pi\)
\(24\) −2.44965 1.41393i −0.500033 0.288618i
\(25\) −9.44073 −1.88815
\(26\) 6.14555 2.23706i 1.20524 0.438724i
\(27\) 1.00000 0.192450
\(28\) 0.772462 0.648273i 0.145982 0.122512i
\(29\) 2.67950 0.497571 0.248785 0.968559i \(-0.419969\pi\)
0.248785 + 0.968559i \(0.419969\pi\)
\(30\) 5.04998 1.83826i 0.921995 0.335619i
\(31\) 3.48870 0.626589 0.313295 0.949656i \(-0.398567\pi\)
0.313295 + 0.949656i \(0.398567\pi\)
\(32\) 5.57073 0.983362i 0.984775 0.173836i
\(33\) −0.340071 −0.0591987
\(34\) −2.68078 7.36452i −0.459751 1.26301i
\(35\) 1.91609i 0.323878i
\(36\) −1.53199 + 1.28569i −0.255332 + 0.214282i
\(37\) 3.22313 0.529879 0.264939 0.964265i \(-0.414648\pi\)
0.264939 + 0.964265i \(0.414648\pi\)
\(38\) 7.52395 2.73882i 1.22055 0.444295i
\(39\) 4.62451i 0.740514i
\(40\) −5.37309 + 9.30891i −0.849559 + 1.47187i
\(41\) 5.82399i 0.909554i −0.890605 0.454777i \(-0.849719\pi\)
0.890605 0.454777i \(-0.150281\pi\)
\(42\) −0.243912 0.670063i −0.0376364 0.103393i
\(43\) 10.1339 1.54540 0.772701 0.634771i \(-0.218905\pi\)
0.772701 + 0.634771i \(0.218905\pi\)
\(44\) 0.520986 0.437226i 0.0785415 0.0659143i
\(45\) 3.80010i 0.566485i
\(46\) −3.01308 + 1.09680i −0.444254 + 0.161714i
\(47\) 4.07078i 0.593784i 0.954911 + 0.296892i \(0.0959501\pi\)
−0.954911 + 0.296892i \(0.904050\pi\)
\(48\) 0.693993 3.93934i 0.100169 0.568594i
\(49\) −6.74576 −0.963680
\(50\) −4.56686 12.5459i −0.645852 1.77425i
\(51\) −5.54179 −0.776005
\(52\) 5.94570 + 7.08471i 0.824520 + 0.982472i
\(53\) 2.30104i 0.316072i 0.987433 + 0.158036i \(0.0505162\pi\)
−0.987433 + 0.158036i \(0.949484\pi\)
\(54\) 0.483740 + 1.32891i 0.0658287 + 0.180841i
\(55\) 1.29230i 0.174254i
\(56\) 1.23517 + 0.712935i 0.165056 + 0.0952700i
\(57\) 5.66175i 0.749918i
\(58\) 1.29618 + 3.56081i 0.170197 + 0.467557i
\(59\) 4.68692i 0.610185i −0.952323 0.305092i \(-0.901313\pi\)
0.952323 0.305092i \(-0.0986874\pi\)
\(60\) 4.88575 + 5.82171i 0.630748 + 0.751580i
\(61\) 5.81766i 0.744875i 0.928057 + 0.372437i \(0.121478\pi\)
−0.928057 + 0.372437i \(0.878522\pi\)
\(62\) 1.68762 + 4.63616i 0.214329 + 0.588793i
\(63\) −0.504221 −0.0635259
\(64\) 4.00158 + 6.92729i 0.500198 + 0.865911i
\(65\) −17.5736 −2.17973
\(66\) −0.164506 0.451923i −0.0202493 0.0556278i
\(67\) −1.18570 8.09902i −0.144856 0.989453i
\(68\) 8.48997 7.12503i 1.02956 0.864037i
\(69\) 2.26733i 0.272955i
\(70\) −2.54631 + 0.926889i −0.304342 + 0.110784i
\(71\) 9.21056i 1.09309i 0.837429 + 0.546546i \(0.184058\pi\)
−0.837429 + 0.546546i \(0.815942\pi\)
\(72\) −2.44965 1.41393i −0.288694 0.166634i
\(73\) 10.5523 1.23505 0.617525 0.786551i \(-0.288135\pi\)
0.617525 + 0.786551i \(0.288135\pi\)
\(74\) 1.55916 + 4.28324i 0.181248 + 0.497916i
\(75\) −9.44073 −1.09012
\(76\) 7.27927 + 8.67376i 0.834989 + 0.994948i
\(77\) 0.171471 0.0195409
\(78\) 6.14555 2.23706i 0.695846 0.253297i
\(79\) 9.58435 1.07832 0.539162 0.842202i \(-0.318741\pi\)
0.539162 + 0.842202i \(0.318741\pi\)
\(80\) −14.9699 2.63724i −1.67368 0.294853i
\(81\) 1.00000 0.111111
\(82\) 7.73954 2.81730i 0.854690 0.311118i
\(83\) 16.5312i 1.81454i 0.420554 + 0.907268i \(0.361836\pi\)
−0.420554 + 0.907268i \(0.638164\pi\)
\(84\) 0.772462 0.648273i 0.0842825 0.0707324i
\(85\) 21.0593i 2.28420i
\(86\) 4.90216 + 13.4670i 0.528614 + 1.45218i
\(87\) 2.67950 0.287273
\(88\) 0.833055 + 0.480838i 0.0888040 + 0.0512575i
\(89\) −9.37374 −0.993614 −0.496807 0.867861i \(-0.665494\pi\)
−0.496807 + 0.867861i \(0.665494\pi\)
\(90\) 5.04998 1.83826i 0.532314 0.193769i
\(91\) 2.33178i 0.244437i
\(92\) −2.91509 3.47354i −0.303920 0.362141i
\(93\) 3.48870 0.361761
\(94\) −5.40969 + 1.96920i −0.557967 + 0.203107i
\(95\) −21.5152 −2.20741
\(96\) 5.57073 0.983362i 0.568560 0.100364i
\(97\) 0.449792i 0.0456695i 0.999739 + 0.0228347i \(0.00726916\pi\)
−0.999739 + 0.0228347i \(0.992731\pi\)
\(98\) −3.26320 8.96449i −0.329632 0.905551i
\(99\) −0.340071 −0.0341784
\(100\) 14.4631 12.1379i 1.44631 1.21379i
\(101\) 5.32681i 0.530038i −0.964243 0.265019i \(-0.914622\pi\)
0.964243 0.265019i \(-0.0853782\pi\)
\(102\) −2.68078 7.36452i −0.265437 0.729196i
\(103\) 1.81617i 0.178953i −0.995989 0.0894763i \(-0.971481\pi\)
0.995989 0.0894763i \(-0.0285193\pi\)
\(104\) −6.53875 + 11.3284i −0.641177 + 1.11084i
\(105\) 1.91609i 0.186991i
\(106\) −3.05787 + 1.11310i −0.297006 + 0.108114i
\(107\) 3.66598i 0.354404i 0.984175 + 0.177202i \(0.0567045\pi\)
−0.984175 + 0.177202i \(0.943295\pi\)
\(108\) −1.53199 + 1.28569i −0.147416 + 0.123716i
\(109\) 6.47504i 0.620196i 0.950705 + 0.310098i \(0.100362\pi\)
−0.950705 + 0.310098i \(0.899638\pi\)
\(110\) −1.71735 + 0.625138i −0.163743 + 0.0596046i
\(111\) 3.22313 0.305926
\(112\) −0.349926 + 1.98630i −0.0330649 + 0.187687i
\(113\) 12.8033i 1.20444i −0.798332 0.602218i \(-0.794284\pi\)
0.798332 0.602218i \(-0.205716\pi\)
\(114\) 7.52395 2.73882i 0.704682 0.256514i
\(115\) 8.61609 0.803455
\(116\) −4.10497 + 3.44501i −0.381137 + 0.319861i
\(117\) 4.62451i 0.427536i
\(118\) 6.22848 2.26725i 0.573378 0.208717i
\(119\) 2.79429 0.256152
\(120\) −5.37309 + 9.30891i −0.490493 + 0.849783i
\(121\) −10.8844 −0.989487
\(122\) −7.73113 + 2.81423i −0.699944 + 0.254789i
\(123\) 5.82399i 0.525131i
\(124\) −5.34466 + 4.48539i −0.479965 + 0.402800i
\(125\) 16.8752i 1.50936i
\(126\) −0.243912 0.670063i −0.0217294 0.0596940i
\(127\) 13.0192i 1.15527i −0.816295 0.577635i \(-0.803976\pi\)
0.816295 0.577635i \(-0.196024\pi\)
\(128\) −7.27000 + 8.66874i −0.642584 + 0.766216i
\(129\) 10.1339 0.892238
\(130\) −8.50105 23.3537i −0.745591 2.04825i
\(131\) 18.9830i 1.65855i −0.558840 0.829276i \(-0.688753\pi\)
0.558840 0.829276i \(-0.311247\pi\)
\(132\) 0.520986 0.437226i 0.0453460 0.0380557i
\(133\) 2.85478i 0.247540i
\(134\) 10.1893 5.49351i 0.880220 0.474567i
\(135\) 3.80010i 0.327060i
\(136\) 13.5754 + 7.83572i 1.16408 + 0.671908i
\(137\) 0.648578i 0.0554118i 0.999616 + 0.0277059i \(0.00882018\pi\)
−0.999616 + 0.0277059i \(0.991180\pi\)
\(138\) −3.01308 + 1.09680i −0.256490 + 0.0933659i
\(139\) 15.1383 1.28402 0.642009 0.766697i \(-0.278101\pi\)
0.642009 + 0.766697i \(0.278101\pi\)
\(140\) −2.46350 2.93543i −0.208204 0.248089i
\(141\) 4.07078i 0.342821i
\(142\) −12.2400 + 4.45552i −1.02716 + 0.373899i
\(143\) 1.57266i 0.131513i
\(144\) 0.693993 3.93934i 0.0578328 0.328278i
\(145\) 10.1824i 0.845599i
\(146\) 5.10456 + 14.0230i 0.422456 + 1.16055i
\(147\) −6.74576 −0.556381
\(148\) −4.93780 + 4.14395i −0.405885 + 0.340631i
\(149\) −16.4646 −1.34883 −0.674414 0.738353i \(-0.735604\pi\)
−0.674414 + 0.738353i \(0.735604\pi\)
\(150\) −4.56686 12.5459i −0.372883 1.02437i
\(151\) 22.4874i 1.83000i 0.403459 + 0.914998i \(0.367808\pi\)
−0.403459 + 0.914998i \(0.632192\pi\)
\(152\) −8.00535 + 13.8693i −0.649319 + 1.12495i
\(153\) −5.54179 −0.448027
\(154\) 0.0829473 + 0.227869i 0.00668409 + 0.0183622i
\(155\) 13.2574i 1.06486i
\(156\) 5.94570 + 7.08471i 0.476037 + 0.567231i
\(157\) 4.28597 0.342058 0.171029 0.985266i \(-0.445291\pi\)
0.171029 + 0.985266i \(0.445291\pi\)
\(158\) 4.63634 + 12.7367i 0.368847 + 1.01328i
\(159\) 2.30104i 0.182484i
\(160\) −3.73687 21.1693i −0.295426 1.67358i
\(161\) 1.14324i 0.0900998i
\(162\) 0.483740 + 1.32891i 0.0380062 + 0.104409i
\(163\) 1.28405i 0.100574i −0.998735 0.0502871i \(-0.983986\pi\)
0.998735 0.0502871i \(-0.0160136\pi\)
\(164\) 7.48786 + 8.92230i 0.584703 + 0.696715i
\(165\) 1.29230i 0.100606i
\(166\) −21.9684 + 7.99681i −1.70508 + 0.620672i
\(167\) 2.23120i 0.172655i 0.996267 + 0.0863275i \(0.0275132\pi\)
−0.996267 + 0.0863275i \(0.972487\pi\)
\(168\) 1.23517 + 0.712935i 0.0952951 + 0.0550042i
\(169\) −8.38610 −0.645084
\(170\) −27.9859 + 10.1872i −2.14642 + 0.781326i
\(171\) 5.66175i 0.432965i
\(172\) −15.5250 + 13.0290i −1.18377 + 0.993455i
\(173\) 8.76686 0.666532 0.333266 0.942833i \(-0.391849\pi\)
0.333266 + 0.942833i \(0.391849\pi\)
\(174\) 1.29618 + 3.56081i 0.0982633 + 0.269944i
\(175\) 4.76022 0.359839
\(176\) −0.236007 + 1.33965i −0.0177897 + 0.100980i
\(177\) 4.68692i 0.352290i
\(178\) −4.53445 12.4568i −0.339872 0.933679i
\(179\) −18.6985 −1.39759 −0.698795 0.715322i \(-0.746280\pi\)
−0.698795 + 0.715322i \(0.746280\pi\)
\(180\) 4.88575 + 5.82171i 0.364162 + 0.433925i
\(181\) 15.0472 1.11845 0.559225 0.829016i \(-0.311099\pi\)
0.559225 + 0.829016i \(0.311099\pi\)
\(182\) −3.09871 + 1.12797i −0.229692 + 0.0836110i
\(183\) 5.81766i 0.430054i
\(184\) 3.20586 5.55418i 0.236339 0.409460i
\(185\) 12.2482i 0.900505i
\(186\) 1.68762 + 4.63616i 0.123743 + 0.339940i
\(187\) 1.88460 0.137816
\(188\) −5.23377 6.23640i −0.381712 0.454836i
\(189\) −0.504221 −0.0366767
\(190\) −10.4078 28.5917i −0.755059 2.07426i
\(191\) 15.4232 1.11599 0.557993 0.829846i \(-0.311572\pi\)
0.557993 + 0.829846i \(0.311572\pi\)
\(192\) 4.00158 + 6.92729i 0.288789 + 0.499934i
\(193\) 20.7634 1.49458 0.747291 0.664497i \(-0.231354\pi\)
0.747291 + 0.664497i \(0.231354\pi\)
\(194\) −0.597733 + 0.217583i −0.0429147 + 0.0156215i
\(195\) −17.5736 −1.25847
\(196\) 10.3344 8.67297i 0.738175 0.619498i
\(197\) 19.2813i 1.37374i −0.726781 0.686869i \(-0.758985\pi\)
0.726781 0.686869i \(-0.241015\pi\)
\(198\) −0.164506 0.451923i −0.0116909 0.0321168i
\(199\) 3.70408i 0.262575i −0.991344 0.131288i \(-0.958089\pi\)
0.991344 0.131288i \(-0.0419112\pi\)
\(200\) 23.1265 + 13.3486i 1.63529 + 0.943886i
\(201\) −1.18570 8.09902i −0.0836328 0.571261i
\(202\) 7.07884 2.57679i 0.498066 0.181302i
\(203\) −1.35106 −0.0948259
\(204\) 8.48997 7.12503i 0.594417 0.498852i
\(205\) −22.1317 −1.54575
\(206\) 2.41352 0.878554i 0.168158 0.0612118i
\(207\) 2.26733i 0.157591i
\(208\) −18.2175 3.20938i −1.26316 0.222530i
\(209\) 1.92540i 0.133183i
\(210\) −2.54631 + 0.926889i −0.175712 + 0.0639614i
\(211\) 8.23671i 0.567039i −0.958967 0.283519i \(-0.908498\pi\)
0.958967 0.283519i \(-0.0915020\pi\)
\(212\) −2.95842 3.52517i −0.203185 0.242110i
\(213\) 9.21056i 0.631097i
\(214\) −4.87175 + 1.77338i −0.333026 + 0.121226i
\(215\) 38.5097i 2.62634i
\(216\) −2.44965 1.41393i −0.166678 0.0962060i
\(217\) −1.75908 −0.119414
\(218\) −8.60473 + 3.13224i −0.582786 + 0.212142i
\(219\) 10.5523 0.713057
\(220\) −1.66150 1.97980i −0.112018 0.133478i
\(221\) 25.6281i 1.72393i
\(222\) 1.55916 + 4.28324i 0.104644 + 0.287472i
\(223\) 28.5150i 1.90951i 0.297401 + 0.954753i \(0.403880\pi\)
−0.297401 + 0.954753i \(0.596120\pi\)
\(224\) −2.80888 + 0.495832i −0.187676 + 0.0331292i
\(225\) −9.44073 −0.629382
\(226\) 17.0144 6.19348i 1.13178 0.411984i
\(227\) 22.6375i 1.50250i 0.660017 + 0.751251i \(0.270549\pi\)
−0.660017 + 0.751251i \(0.729451\pi\)
\(228\) 7.27927 + 8.67376i 0.482081 + 0.574433i
\(229\) 23.6814i 1.56491i −0.622708 0.782455i \(-0.713967\pi\)
0.622708 0.782455i \(-0.286033\pi\)
\(230\) 4.16795 + 11.4500i 0.274826 + 0.754990i
\(231\) 0.171471 0.0112820
\(232\) −6.56384 3.78864i −0.430937 0.248736i
\(233\) 5.29881i 0.347136i 0.984822 + 0.173568i \(0.0555297\pi\)
−0.984822 + 0.173568i \(0.944470\pi\)
\(234\) 6.14555 2.23706i 0.401747 0.146241i
\(235\) 15.4693 1.00911
\(236\) 6.02593 + 7.18032i 0.392255 + 0.467399i
\(237\) 9.58435 0.622571
\(238\) 1.35171 + 3.71335i 0.0876182 + 0.240701i
\(239\) −2.32000 −0.150068 −0.0750341 0.997181i \(-0.523907\pi\)
−0.0750341 + 0.997181i \(0.523907\pi\)
\(240\) −14.9699 2.63724i −0.966300 0.170233i
\(241\) −3.69645 −0.238109 −0.119055 0.992888i \(-0.537986\pi\)
−0.119055 + 0.992888i \(0.537986\pi\)
\(242\) −5.26520 14.4643i −0.338460 0.929800i
\(243\) 1.00000 0.0641500
\(244\) −7.47972 8.91260i −0.478840 0.570571i
\(245\) 25.6345i 1.63773i
\(246\) 7.73954 2.81730i 0.493455 0.179624i
\(247\) −26.1828 −1.66597
\(248\) −8.54610 4.93279i −0.542678 0.313233i
\(249\) 16.5312i 1.04762i
\(250\) −22.4256 + 8.16321i −1.41832 + 0.516287i
\(251\) −5.87230 −0.370656 −0.185328 0.982677i \(-0.559335\pi\)
−0.185328 + 0.982677i \(0.559335\pi\)
\(252\) 0.772462 0.648273i 0.0486605 0.0408374i
\(253\) 0.771055i 0.0484758i
\(254\) 17.3014 6.29792i 1.08558 0.395167i
\(255\) 21.0593i 1.31879i
\(256\) −15.0367 5.46775i −0.939797 0.341734i
\(257\) 19.7965 1.23487 0.617437 0.786620i \(-0.288171\pi\)
0.617437 + 0.786620i \(0.288171\pi\)
\(258\) 4.90216 + 13.4670i 0.305195 + 0.838418i
\(259\) −1.62517 −0.100983
\(260\) 26.9226 22.5942i 1.66967 1.40123i
\(261\) 2.67950 0.165857
\(262\) 25.2266 9.18283i 1.55851 0.567317i
\(263\) 22.7728i 1.40423i −0.712062 0.702116i \(-0.752239\pi\)
0.712062 0.702116i \(-0.247761\pi\)
\(264\) 0.833055 + 0.480838i 0.0512710 + 0.0295935i
\(265\) 8.74416 0.537150
\(266\) −3.79373 + 1.38097i −0.232609 + 0.0846727i
\(267\) −9.37374 −0.573663
\(268\) 12.2293 + 10.8832i 0.747025 + 0.664796i
\(269\) 25.2625 1.54028 0.770142 0.637872i \(-0.220185\pi\)
0.770142 + 0.637872i \(0.220185\pi\)
\(270\) 5.04998 1.83826i 0.307332 0.111873i
\(271\) −28.1672 −1.71103 −0.855517 0.517774i \(-0.826761\pi\)
−0.855517 + 0.517774i \(0.826761\pi\)
\(272\) −3.84596 + 21.8310i −0.233196 + 1.32370i
\(273\) 2.33178i 0.141125i
\(274\) −0.861900 + 0.313743i −0.0520693 + 0.0189539i
\(275\) 3.21052 0.193601
\(276\) −2.91509 3.47354i −0.175468 0.209082i
\(277\) −11.1117 −0.667640 −0.333820 0.942637i \(-0.608338\pi\)
−0.333820 + 0.942637i \(0.608338\pi\)
\(278\) 7.32302 + 20.1175i 0.439206 + 1.20656i
\(279\) 3.48870 0.208863
\(280\) 2.70922 4.69375i 0.161907 0.280505i
\(281\) 17.7385i 1.05819i 0.848563 + 0.529094i \(0.177468\pi\)
−0.848563 + 0.529094i \(0.822532\pi\)
\(282\) −5.40969 + 1.96920i −0.322142 + 0.117264i
\(283\) 1.11568i 0.0663202i −0.999450 0.0331601i \(-0.989443\pi\)
0.999450 0.0331601i \(-0.0105571\pi\)
\(284\) −11.8419 14.1105i −0.702690 0.837304i
\(285\) −21.5152 −1.27445
\(286\) −2.08992 + 0.760759i −0.123580 + 0.0449846i
\(287\) 2.93658i 0.173341i
\(288\) 5.57073 0.983362i 0.328258 0.0579452i
\(289\) 13.7114 0.806553
\(290\) 13.5314 4.92561i 0.794592 0.289242i
\(291\) 0.449792i 0.0263673i
\(292\) −16.1660 + 13.5670i −0.946043 + 0.793947i
\(293\) 14.1069 0.824134 0.412067 0.911154i \(-0.364807\pi\)
0.412067 + 0.911154i \(0.364807\pi\)
\(294\) −3.26320 8.96449i −0.190313 0.522820i
\(295\) −17.8107 −1.03698
\(296\) −7.89554 4.55729i −0.458919 0.264887i
\(297\) −0.340071 −0.0197329
\(298\) −7.96456 21.8799i −0.461375 1.26747i
\(299\) 10.4853 0.606381
\(300\) 14.4631 12.1379i 0.835028 0.700780i
\(301\) −5.10971 −0.294519
\(302\) −29.8836 + 10.8780i −1.71961 + 0.625961i
\(303\) 5.32681i 0.306017i
\(304\) −22.3036 3.92922i −1.27920 0.225356i
\(305\) 22.1077 1.26588
\(306\) −2.68078 7.36452i −0.153250 0.421002i
\(307\) 9.22285i 0.526376i 0.964745 + 0.263188i \(0.0847739\pi\)
−0.964745 + 0.263188i \(0.915226\pi\)
\(308\) −0.262692 + 0.220459i −0.0149683 + 0.0125618i
\(309\) 1.81617i 0.103318i
\(310\) 17.6179 6.41314i 1.00063 0.364242i
\(311\) 12.4064 0.703503 0.351752 0.936093i \(-0.385586\pi\)
0.351752 + 0.936093i \(0.385586\pi\)
\(312\) −6.53875 + 11.3284i −0.370184 + 0.641346i
\(313\) 24.7560i 1.39929i −0.714490 0.699646i \(-0.753341\pi\)
0.714490 0.699646i \(-0.246659\pi\)
\(314\) 2.07330 + 5.69566i 0.117003 + 0.321425i
\(315\) 1.91609i 0.107959i
\(316\) −14.6831 + 12.3225i −0.825991 + 0.693196i
\(317\) −9.58106 −0.538126 −0.269063 0.963123i \(-0.586714\pi\)
−0.269063 + 0.963123i \(0.586714\pi\)
\(318\) −3.05787 + 1.11310i −0.171477 + 0.0624198i
\(319\) −0.911220 −0.0510185
\(320\) 26.3244 15.2064i 1.47158 0.850063i
\(321\) 3.66598i 0.204615i
\(322\) 1.51926 0.553030i 0.0846649 0.0308192i
\(323\) 31.3762i 1.74582i
\(324\) −1.53199 + 1.28569i −0.0851106 + 0.0714273i
\(325\) 43.6588i 2.42175i
\(326\) 1.70638 0.621144i 0.0945075 0.0344020i
\(327\) 6.47504i 0.358070i
\(328\) −8.23474 + 14.2667i −0.454687 + 0.787749i
\(329\) 2.05257i 0.113162i
\(330\) −1.71735 + 0.625138i −0.0945370 + 0.0344127i
\(331\) −5.90506 −0.324572 −0.162286 0.986744i \(-0.551887\pi\)
−0.162286 + 0.986744i \(0.551887\pi\)
\(332\) −21.2540 25.3257i −1.16647 1.38993i
\(333\) 3.22313 0.176626
\(334\) −2.96505 + 1.07932i −0.162240 + 0.0590577i
\(335\) −30.7771 + 4.50577i −1.68153 + 0.246177i
\(336\) −0.349926 + 1.98630i −0.0190900 + 0.108361i
\(337\) 30.3217i 1.65173i 0.563869 + 0.825864i \(0.309312\pi\)
−0.563869 + 0.825864i \(0.690688\pi\)
\(338\) −4.05669 11.1443i −0.220655 0.606173i
\(339\) 12.8033i 0.695381i
\(340\) −27.0758 32.2627i −1.46839 1.74969i
\(341\) −1.18641 −0.0642475
\(342\) 7.52395 2.73882i 0.406848 0.148098i
\(343\) 6.93090 0.374234
\(344\) −24.8245 14.3286i −1.33845 0.772548i
\(345\) 8.61609 0.463875
\(346\) 4.24088 + 11.6504i 0.227991 + 0.626327i
\(347\) −25.4209 −1.36466 −0.682331 0.731043i \(-0.739034\pi\)
−0.682331 + 0.731043i \(0.739034\pi\)
\(348\) −4.10497 + 3.44501i −0.220049 + 0.184672i
\(349\) 28.2378 1.51154 0.755768 0.654840i \(-0.227264\pi\)
0.755768 + 0.654840i \(0.227264\pi\)
\(350\) 2.30271 + 6.32589i 0.123085 + 0.338133i
\(351\) 4.62451i 0.246838i
\(352\) −1.89444 + 0.334413i −0.100974 + 0.0178243i
\(353\) 3.21842i 0.171299i −0.996325 0.0856496i \(-0.972703\pi\)
0.996325 0.0856496i \(-0.0272965\pi\)
\(354\) 6.22848 2.26725i 0.331040 0.120503i
\(355\) 35.0010 1.85766
\(356\) 14.3605 12.0517i 0.761104 0.638741i
\(357\) 2.79429 0.147889
\(358\) −9.04520 24.8485i −0.478054 1.31329i
\(359\) 10.2583i 0.541410i 0.962662 + 0.270705i \(0.0872568\pi\)
−0.962662 + 0.270705i \(0.912743\pi\)
\(360\) −5.37309 + 9.30891i −0.283186 + 0.490623i
\(361\) −13.0554 −0.687129
\(362\) 7.27894 + 19.9964i 0.382573 + 1.05099i
\(363\) −10.8844 −0.571280
\(364\) −2.99795 3.57226i −0.157135 0.187237i
\(365\) 40.0997i 2.09891i
\(366\) −7.73113 + 2.81423i −0.404113 + 0.147102i
\(367\) −10.4326 −0.544577 −0.272288 0.962216i \(-0.587780\pi\)
−0.272288 + 0.962216i \(0.587780\pi\)
\(368\) 8.93180 + 1.57352i 0.465602 + 0.0820251i
\(369\) 5.82399i 0.303185i
\(370\) 16.2767 5.92494i 0.846186 0.308023i
\(371\) 1.16023i 0.0602362i
\(372\) −5.34466 + 4.48539i −0.277108 + 0.232557i
\(373\) 18.9000i 0.978603i −0.872115 0.489301i \(-0.837252\pi\)
0.872115 0.489301i \(-0.162748\pi\)
\(374\) 0.911657 + 2.50446i 0.0471406 + 0.129503i
\(375\) 16.8752i 0.871432i
\(376\) 5.75581 9.97199i 0.296833 0.514266i
\(377\) 12.3914i 0.638188i
\(378\) −0.243912 0.670063i −0.0125455 0.0344643i
\(379\) 37.2326 1.91251 0.956255 0.292536i \(-0.0944990\pi\)
0.956255 + 0.292536i \(0.0944990\pi\)
\(380\) 32.9611 27.6619i 1.69087 1.41903i
\(381\) 13.0192i 0.666995i
\(382\) 7.46083 + 20.4960i 0.381729 + 1.04867i
\(383\) 27.8686 1.42402 0.712009 0.702171i \(-0.247786\pi\)
0.712009 + 0.702171i \(0.247786\pi\)
\(384\) −7.27000 + 8.66874i −0.370996 + 0.442375i
\(385\) 0.651606i 0.0332089i
\(386\) 10.0441 + 27.5926i 0.511230 + 1.40443i
\(387\) 10.1339 0.515134
\(388\) −0.578294 0.689078i −0.0293584 0.0349826i
\(389\) −31.7538 −1.60998 −0.804990 0.593288i \(-0.797829\pi\)
−0.804990 + 0.593288i \(0.797829\pi\)
\(390\) −8.50105 23.3537i −0.430467 1.18256i
\(391\) 12.5651i 0.635444i
\(392\) 16.5248 + 9.53806i 0.834626 + 0.481745i
\(393\) 18.9830i 0.957565i
\(394\) 25.6231 9.32715i 1.29087 0.469895i
\(395\) 36.4215i 1.83256i
\(396\) 0.520986 0.437226i 0.0261805 0.0219714i
\(397\) 30.5857 1.53505 0.767526 0.641018i \(-0.221488\pi\)
0.767526 + 0.641018i \(0.221488\pi\)
\(398\) 4.92238 1.79181i 0.246737 0.0898154i
\(399\) 2.85478i 0.142918i
\(400\) −6.55180 + 37.1902i −0.327590 + 1.85951i
\(401\) 1.33382i 0.0666076i 0.999445 + 0.0333038i \(0.0106029\pi\)
−0.999445 + 0.0333038i \(0.989397\pi\)
\(402\) 10.1893 5.49351i 0.508195 0.273991i
\(403\) 16.1335i 0.803669i
\(404\) 6.84864 + 8.16063i 0.340732 + 0.406006i
\(405\) 3.80010i 0.188828i
\(406\) −0.653562 1.79543i −0.0324357 0.0891059i
\(407\) −1.09609 −0.0543313
\(408\) 13.5754 + 7.83572i 0.672085 + 0.387926i
\(409\) 17.0811i 0.844607i −0.906454 0.422304i \(-0.861222\pi\)
0.906454 0.422304i \(-0.138778\pi\)
\(410\) −10.7060 29.4110i −0.528732 1.45251i
\(411\) 0.648578i 0.0319920i
\(412\) 2.33503 + 2.78236i 0.115039 + 0.137077i
\(413\) 2.36324i 0.116288i
\(414\) −3.01308 + 1.09680i −0.148085 + 0.0539048i
\(415\) 62.8202 3.08372
\(416\) −4.54757 25.7619i −0.222963 1.26308i
\(417\) 15.1383 0.741328
\(418\) −2.55868 + 0.931392i −0.125149 + 0.0455559i
\(419\) 30.8172i 1.50552i 0.658295 + 0.752760i \(0.271278\pi\)
−0.658295 + 0.752760i \(0.728722\pi\)
\(420\) −2.46350 2.93543i −0.120206 0.143234i
\(421\) −10.1332 −0.493861 −0.246930 0.969033i \(-0.579422\pi\)
−0.246930 + 0.969033i \(0.579422\pi\)
\(422\) 10.9458 3.98443i 0.532835 0.193959i
\(423\) 4.07078i 0.197928i
\(424\) 3.25351 5.63674i 0.158005 0.273744i
\(425\) 52.3185 2.53782
\(426\) −12.2400 + 4.45552i −0.593029 + 0.215871i
\(427\) 2.93339i 0.141957i
\(428\) −4.71332 5.61625i −0.227827 0.271472i
\(429\) 1.57266i 0.0759288i
\(430\) 51.1758 18.6287i 2.46792 0.898355i
\(431\) 21.3334i 1.02759i 0.857912 + 0.513797i \(0.171762\pi\)
−0.857912 + 0.513797i \(0.828238\pi\)
\(432\) 0.693993 3.93934i 0.0333898 0.189531i
\(433\) 35.9047i 1.72547i −0.505655 0.862736i \(-0.668749\pi\)
0.505655 0.862736i \(-0.331251\pi\)
\(434\) −0.850936 2.33765i −0.0408462 0.112211i
\(435\) 10.1824i 0.488207i
\(436\) −8.32490 9.91970i −0.398691 0.475067i
\(437\) 12.8371 0.614081
\(438\) 5.10456 + 14.0230i 0.243905 + 0.670045i
\(439\) 15.4552i 0.737638i 0.929501 + 0.368819i \(0.120238\pi\)
−0.929501 + 0.368819i \(0.879762\pi\)
\(440\) 1.82723 3.16569i 0.0871098 0.150918i
\(441\) −6.74576 −0.321227
\(442\) −34.0573 + 12.3973i −1.61994 + 0.589680i
\(443\) −0.526859 −0.0250318 −0.0125159 0.999922i \(-0.503984\pi\)
−0.0125159 + 0.999922i \(0.503984\pi\)
\(444\) −4.93780 + 4.14395i −0.234338 + 0.196663i
\(445\) 35.6211i 1.68860i
\(446\) −37.8938 + 13.7938i −1.79432 + 0.653158i
\(447\) −16.4646 −0.778747
\(448\) −2.01768 3.49289i −0.0953265 0.165023i
\(449\) 8.56014 0.403978 0.201989 0.979388i \(-0.435259\pi\)
0.201989 + 0.979388i \(0.435259\pi\)
\(450\) −4.56686 12.5459i −0.215284 0.591418i
\(451\) 1.98057i 0.0932613i
\(452\) 16.4611 + 19.6146i 0.774267 + 0.922592i
\(453\) 22.4874i 1.05655i
\(454\) −30.0831 + 10.9506i −1.41187 + 0.513939i
\(455\) 8.86097 0.415409
\(456\) −8.00535 + 13.8693i −0.374885 + 0.649490i
\(457\) 38.8655 1.81805 0.909025 0.416741i \(-0.136828\pi\)
0.909025 + 0.416741i \(0.136828\pi\)
\(458\) 31.4704 11.4556i 1.47051 0.535286i
\(459\) −5.54179 −0.258668
\(460\) −13.1998 + 11.0776i −0.615443 + 0.516498i
\(461\) 36.1291 1.68270 0.841350 0.540491i \(-0.181761\pi\)
0.841350 + 0.540491i \(0.181761\pi\)
\(462\) 0.0829473 + 0.227869i 0.00385906 + 0.0106014i
\(463\) 34.8790 1.62097 0.810483 0.585762i \(-0.199205\pi\)
0.810483 + 0.585762i \(0.199205\pi\)
\(464\) 1.85955 10.5555i 0.0863277 0.490025i
\(465\) 13.2574i 0.614797i
\(466\) −7.04163 + 2.56325i −0.326197 + 0.118740i
\(467\) 4.62628i 0.214079i 0.994255 + 0.107039i \(0.0341371\pi\)
−0.994255 + 0.107039i \(0.965863\pi\)
\(468\) 5.94570 + 7.08471i 0.274840 + 0.327491i
\(469\) 0.597855 + 4.08370i 0.0276064 + 0.188568i
\(470\) 7.48314 + 20.5573i 0.345172 + 0.948239i
\(471\) 4.28597 0.197487
\(472\) −6.62699 + 11.4813i −0.305032 + 0.528471i
\(473\) −3.44624 −0.158458
\(474\) 4.63634 + 12.7367i 0.212954 + 0.585017i
\(475\) 53.4511i 2.45250i
\(476\) −4.28082 + 3.59259i −0.196211 + 0.164666i
\(477\) 2.30104i 0.105357i
\(478\) −1.12228 3.08307i −0.0513317 0.141016i
\(479\) 4.21394i 0.192540i 0.995355 + 0.0962700i \(0.0306912\pi\)
−0.995355 + 0.0962700i \(0.969309\pi\)
\(480\) −3.73687 21.1693i −0.170564 0.966242i
\(481\) 14.9054i 0.679627i
\(482\) −1.78812 4.91224i −0.0814467 0.223747i
\(483\) 1.14324i 0.0520191i
\(484\) 16.6747 13.9939i 0.757942 0.636087i
\(485\) 1.70925 0.0776132
\(486\) 0.483740 + 1.32891i 0.0219429 + 0.0602805i
\(487\) −19.4897 −0.883161 −0.441580 0.897222i \(-0.645582\pi\)
−0.441580 + 0.897222i \(0.645582\pi\)
\(488\) 8.22578 14.2512i 0.372364 0.645123i
\(489\) 1.28405i 0.0580665i
\(490\) −34.0659 + 12.4005i −1.53894 + 0.560195i
\(491\) 10.2182i 0.461142i −0.973055 0.230571i \(-0.925941\pi\)
0.973055 0.230571i \(-0.0740594\pi\)
\(492\) 7.48786 + 8.92230i 0.337579 + 0.402248i
\(493\) −14.8492 −0.668775
\(494\) −12.6657 34.7946i −0.569856 1.56548i
\(495\) 1.29230i 0.0580847i
\(496\) 2.42113 13.7432i 0.108712 0.617086i
\(497\) 4.64416i 0.208319i
\(498\) −21.9684 + 7.99681i −0.984429 + 0.358345i
\(499\) −38.0177 −1.70191 −0.850954 0.525241i \(-0.823975\pi\)
−0.850954 + 0.525241i \(0.823975\pi\)
\(500\) −21.6963 25.8527i −0.970289 1.15617i
\(501\) 2.23120i 0.0996825i
\(502\) −2.84066 7.80374i −0.126785 0.348298i
\(503\) 22.0210 0.981867 0.490933 0.871197i \(-0.336656\pi\)
0.490933 + 0.871197i \(0.336656\pi\)
\(504\) 1.23517 + 0.712935i 0.0550187 + 0.0317567i
\(505\) −20.2424 −0.900775
\(506\) 1.02466 0.372990i 0.0455517 0.0165814i
\(507\) −8.38610 −0.372440
\(508\) 16.7387 + 19.9453i 0.742660 + 0.884932i
\(509\) −13.9675 −0.619099 −0.309550 0.950883i \(-0.600178\pi\)
−0.309550 + 0.950883i \(0.600178\pi\)
\(510\) −27.9859 + 10.1872i −1.23924 + 0.451099i
\(511\) −5.32068 −0.235373
\(512\) −0.00774800 22.6274i −0.000342417 1.00000i
\(513\) 5.66175i 0.249973i
\(514\) 9.57638 + 26.3078i 0.422396 + 1.16039i
\(515\) −6.90162 −0.304122
\(516\) −15.5250 + 13.0290i −0.683450 + 0.573571i
\(517\) 1.38435i 0.0608838i
\(518\) −0.786159 2.15970i −0.0345419 0.0948918i
\(519\) 8.76686 0.384823
\(520\) 43.0492 + 24.8479i 1.88783 + 1.08965i
\(521\) 24.9200i 1.09177i −0.837862 0.545883i \(-0.816194\pi\)
0.837862 0.545883i \(-0.183806\pi\)
\(522\) 1.29618 + 3.56081i 0.0567323 + 0.155852i
\(523\) 40.3900i 1.76613i 0.469248 + 0.883066i \(0.344525\pi\)
−0.469248 + 0.883066i \(0.655475\pi\)
\(524\) 24.4063 + 29.0818i 1.06619 + 1.27044i
\(525\) 4.76022 0.207753
\(526\) 30.2630 11.0161i 1.31953 0.480326i
\(527\) −19.3336 −0.842187
\(528\) −0.236007 + 1.33965i −0.0102709 + 0.0583009i
\(529\) 17.8592 0.776487
\(530\) 4.22990 + 11.6202i 0.183735 + 0.504748i
\(531\) 4.68692i 0.203395i
\(532\) −3.67036 4.37349i −0.159130 0.189615i
\(533\) −26.9331 −1.16660
\(534\) −4.53445 12.4568i −0.196225 0.539060i
\(535\) 13.9311 0.602293
\(536\) −8.54693 + 21.5163i −0.369171 + 0.929361i
\(537\) −18.6985 −0.806899
\(538\) 12.2205 + 33.5716i 0.526863 + 1.44737i
\(539\) 2.29404 0.0988112
\(540\) 4.88575 + 5.82171i 0.210249 + 0.250527i
\(541\) 10.9995i 0.472906i 0.971643 + 0.236453i \(0.0759849\pi\)
−0.971643 + 0.236453i \(0.924015\pi\)
\(542\) −13.6256 37.4316i −0.585269 1.60782i
\(543\) 15.0472 0.645738
\(544\) −30.8718 + 5.44958i −1.32362 + 0.233649i
\(545\) 24.6058 1.05400
\(546\) −3.09871 + 1.12797i −0.132613 + 0.0482728i
\(547\) 27.1656 1.16152 0.580758 0.814077i \(-0.302756\pi\)
0.580758 + 0.814077i \(0.302756\pi\)
\(548\) −0.833871 0.993616i −0.0356212 0.0424452i
\(549\) 5.81766i 0.248292i
\(550\) 1.55306 + 4.26648i 0.0662225 + 0.181923i
\(551\) 15.1707i 0.646292i
\(552\) 3.20586 5.55418i 0.136451 0.236402i
\(553\) −4.83263 −0.205504
\(554\) −5.37520 14.7665i −0.228370 0.627368i
\(555\) 12.2482i 0.519907i
\(556\) −23.1918 + 19.4632i −0.983552 + 0.825425i
\(557\) −26.7154 −1.13197 −0.565984 0.824416i \(-0.691504\pi\)
−0.565984 + 0.824416i \(0.691504\pi\)
\(558\) 1.68762 + 4.63616i 0.0714428 + 0.196264i
\(559\) 46.8642i 1.98214i
\(560\) 7.54812 + 1.32975i 0.318966 + 0.0561923i
\(561\) 1.88460 0.0795679
\(562\) −23.5728 + 8.58081i −0.994358 + 0.361959i
\(563\) 4.60311 0.193998 0.0969989 0.995284i \(-0.469076\pi\)
0.0969989 + 0.995284i \(0.469076\pi\)
\(564\) −5.23377 6.23640i −0.220381 0.262600i
\(565\) −48.6539 −2.04688
\(566\) 1.48263 0.539698i 0.0623197 0.0226852i
\(567\) −0.504221 −0.0211753
\(568\) 13.0231 22.5627i 0.546438 0.946708i
\(569\) −26.9989 −1.13185 −0.565927 0.824456i \(-0.691481\pi\)
−0.565927 + 0.824456i \(0.691481\pi\)
\(570\) −10.4078 28.5917i −0.435933 1.19758i
\(571\) 42.5338i 1.77998i −0.455978 0.889991i \(-0.650710\pi\)
0.455978 0.889991i \(-0.349290\pi\)
\(572\) −2.02196 2.40930i −0.0845423 0.100738i
\(573\) 15.4232 0.644315
\(574\) −3.90244 + 1.42054i −0.162885 + 0.0592922i
\(575\) 21.4053i 0.892663i
\(576\) 4.00158 + 6.92729i 0.166733 + 0.288637i
\(577\) 20.8087i 0.866278i 0.901327 + 0.433139i \(0.142594\pi\)
−0.901327 + 0.433139i \(0.857406\pi\)
\(578\) 6.63276 + 18.2212i 0.275886 + 0.757902i
\(579\) 20.7634 0.862897
\(580\) 13.0914 + 15.5993i 0.543590 + 0.647725i
\(581\) 8.33538i 0.345810i
\(582\) −0.597733 + 0.217583i −0.0247768 + 0.00901909i
\(583\) 0.782516i 0.0324085i
\(584\) −25.8494 14.9202i −1.06966 0.617403i
\(585\) −17.5736 −0.726578
\(586\) 6.82408 + 18.7468i 0.281900 + 0.774422i
\(587\) −22.3079 −0.920746 −0.460373 0.887726i \(-0.652284\pi\)
−0.460373 + 0.887726i \(0.652284\pi\)
\(588\) 10.3344 8.67297i 0.426185 0.357667i
\(589\) 19.7522i 0.813874i
\(590\) −8.61577 23.6688i −0.354706 0.974431i
\(591\) 19.2813i 0.793128i
\(592\) 2.23683 12.6970i 0.0919331 0.521843i
\(593\) 16.7245i 0.686791i −0.939191 0.343396i \(-0.888423\pi\)
0.939191 0.343396i \(-0.111577\pi\)
\(594\) −0.164506 0.451923i −0.00674976 0.0185426i
\(595\) 10.6186i 0.435318i
\(596\) 25.2235 21.1683i 1.03320 0.867089i
\(597\) 3.70408i 0.151598i
\(598\) 5.07217 + 13.9340i 0.207416 + 0.569804i
\(599\) 34.0386 1.39078 0.695391 0.718632i \(-0.255231\pi\)
0.695391 + 0.718632i \(0.255231\pi\)
\(600\) 23.1265 + 13.3486i 0.944135 + 0.544953i
\(601\) −20.8952 −0.852334 −0.426167 0.904645i \(-0.640136\pi\)
−0.426167 + 0.904645i \(0.640136\pi\)
\(602\) −2.47177 6.79034i −0.100742 0.276753i
\(603\) −1.18570 8.09902i −0.0482854 0.329818i
\(604\) −28.9118 34.4504i −1.17641 1.40177i
\(605\) 41.3616i 1.68159i
\(606\) 7.07884 2.57679i 0.287558 0.104675i
\(607\) 17.6228i 0.715286i 0.933858 + 0.357643i \(0.116420\pi\)
−0.933858 + 0.357643i \(0.883580\pi\)
\(608\) −5.56755 31.5401i −0.225794 1.27912i
\(609\) −1.35106 −0.0547477
\(610\) 10.6944 + 29.3790i 0.433002 + 1.18952i
\(611\) 18.8254 0.761592
\(612\) 8.48997 7.12503i 0.343187 0.288012i
\(613\) −11.6404 −0.470150 −0.235075 0.971977i \(-0.575534\pi\)
−0.235075 + 0.971977i \(0.575534\pi\)
\(614\) −12.2563 + 4.46146i −0.494624 + 0.180050i
\(615\) −22.1317 −0.892437
\(616\) −0.420044 0.242449i −0.0169241 0.00976853i
\(617\) −24.5113 −0.986789 −0.493395 0.869806i \(-0.664244\pi\)
−0.493395 + 0.869806i \(0.664244\pi\)
\(618\) 2.41352 0.878554i 0.0970861 0.0353406i
\(619\) 12.3130i 0.494903i −0.968900 0.247452i \(-0.920407\pi\)
0.968900 0.247452i \(-0.0795931\pi\)
\(620\) 17.0449 + 20.3102i 0.684541 + 0.815678i
\(621\) 2.26733i 0.0909850i
\(622\) 6.00148 + 16.4870i 0.240637 + 0.661068i
\(623\) 4.72644 0.189361
\(624\) −18.2175 3.20938i −0.729284 0.128478i
\(625\) 16.9238 0.676950
\(626\) 32.8984 11.9755i 1.31489 0.478636i
\(627\) 1.92540i 0.0768930i
\(628\) −6.56607 + 5.51044i −0.262015 + 0.219890i
\(629\) −17.8619 −0.712200
\(630\) −2.54631 + 0.926889i −0.101447 + 0.0369281i
\(631\) −44.6443 −1.77726 −0.888632 0.458622i \(-0.848343\pi\)
−0.888632 + 0.458622i \(0.848343\pi\)
\(632\) −23.4783 13.5516i −0.933918 0.539055i
\(633\) 8.23671i 0.327380i
\(634\) −4.63474 12.7323i −0.184069 0.505666i
\(635\) −49.4743 −1.96333
\(636\) −2.95842 3.52517i −0.117309 0.139782i
\(637\) 31.1958i 1.23602i
\(638\) −0.440794 1.21093i −0.0174512 0.0479411i
\(639\) 9.21056i 0.364364i
\(640\) 32.9420 + 27.6267i 1.30215 + 1.09204i
\(641\) 21.8812i 0.864257i −0.901812 0.432129i \(-0.857763\pi\)
0.901812 0.432129i \(-0.142237\pi\)
\(642\) −4.87175 + 1.77338i −0.192273 + 0.0699898i
\(643\) 0.844350i 0.0332979i −0.999861 0.0166490i \(-0.994700\pi\)
0.999861 0.0166490i \(-0.00529977\pi\)
\(644\) 1.46985 + 1.75143i 0.0579203 + 0.0690160i
\(645\) 38.5097i 1.51632i
\(646\) −41.6961 + 15.1779i −1.64051 + 0.597168i
\(647\) 38.2100 1.50219 0.751095 0.660194i \(-0.229526\pi\)
0.751095 + 0.660194i \(0.229526\pi\)
\(648\) −2.44965 1.41393i −0.0962314 0.0555446i
\(649\) 1.59388i 0.0625654i
\(650\) −58.0185 + 21.1195i −2.27567 + 0.828375i
\(651\) −1.75908 −0.0689437
\(652\) 1.65089 + 1.96715i 0.0646537 + 0.0770394i
\(653\) 7.95949i 0.311479i 0.987798 + 0.155740i \(0.0497761\pi\)
−0.987798 + 0.155740i \(0.950224\pi\)
\(654\) −8.60473 + 3.13224i −0.336471 + 0.122480i
\(655\) −72.1372 −2.81863
\(656\) −22.9427 4.04181i −0.895760 0.157806i
\(657\) 10.5523 0.411684
\(658\) 2.72768 0.992911i 0.106336 0.0387077i
\(659\) 1.09591i 0.0426905i 0.999772 + 0.0213453i \(0.00679493\pi\)
−0.999772 + 0.0213453i \(0.993205\pi\)
\(660\) −1.66150 1.97980i −0.0646739 0.0770634i
\(661\) 8.08616i 0.314515i −0.987558 0.157258i \(-0.949735\pi\)
0.987558 0.157258i \(-0.0502653\pi\)
\(662\) −2.85652 7.84728i −0.111022 0.304993i
\(663\) 25.6281i 0.995311i
\(664\) 23.3740 40.4957i 0.907088 1.57154i
\(665\) 10.8484 0.420684
\(666\) 1.55916 + 4.28324i 0.0604161 + 0.165972i
\(667\) 6.07532i 0.235237i
\(668\) −2.86863 3.41817i −0.110991 0.132253i
\(669\) 28.5150i 1.10245i
\(670\) −20.8759 38.7202i −0.806505 1.49589i
\(671\) 1.97842i 0.0763759i
\(672\) −2.80888 + 0.495832i −0.108355 + 0.0191271i
\(673\) 21.3833i 0.824264i −0.911124 0.412132i \(-0.864784\pi\)
0.911124 0.412132i \(-0.135216\pi\)
\(674\) −40.2948 + 14.6678i −1.55210 + 0.564984i
\(675\) −9.44073 −0.363374
\(676\) 12.8474 10.7819i 0.494132 0.414690i
\(677\) 35.4808i 1.36364i 0.731520 + 0.681820i \(0.238811\pi\)
−0.731520 + 0.681820i \(0.761189\pi\)
\(678\) 17.0144 6.19348i 0.653436 0.237859i
\(679\) 0.226795i 0.00870359i
\(680\) 29.7765 51.5880i 1.14188 1.97831i
\(681\) 22.6375i 0.867470i
\(682\) −0.573912 1.57662i −0.0219762 0.0603720i
\(683\) 1.55508 0.0595035 0.0297518 0.999557i \(-0.490528\pi\)
0.0297518 + 0.999557i \(0.490528\pi\)
\(684\) 7.27927 + 8.67376i 0.278330 + 0.331649i
\(685\) 2.46466 0.0941698
\(686\) 3.35276 + 9.21053i 0.128009 + 0.351660i
\(687\) 23.6814i 0.903501i
\(688\) 7.03284 39.9207i 0.268125 1.52196i
\(689\) 10.6412 0.405396
\(690\) 4.16795 + 11.4500i 0.158671 + 0.435894i
\(691\) 11.1474i 0.424069i 0.977262 + 0.212034i \(0.0680089\pi\)
−0.977262 + 0.212034i \(0.931991\pi\)
\(692\) −13.4308 + 11.2715i −0.510561 + 0.428477i
\(693\) 0.171471 0.00651364
\(694\) −12.2971 33.7820i −0.466791 1.28235i
\(695\) 57.5272i 2.18213i
\(696\) −6.56384 3.78864i −0.248802 0.143608i
\(697\) 32.2753i 1.22251i
\(698\) 13.6598 + 37.5255i 0.517030 + 1.42036i
\(699\) 5.29881i 0.200419i
\(700\) −7.29261 + 6.12017i −0.275635 + 0.231321i
\(701\) 25.9270i 0.979248i 0.871934 + 0.489624i \(0.162866\pi\)
−0.871934 + 0.489624i \(0.837134\pi\)
\(702\) 6.14555 2.23706i 0.231949 0.0844324i
\(703\) 18.2486i 0.688257i
\(704\) −1.36082 2.35577i −0.0512879 0.0887864i
\(705\) 15.4693 0.582609
\(706\) 4.27698 1.55688i 0.160966 0.0585939i
\(707\) 2.68589i 0.101013i
\(708\) 6.02593 + 7.18032i 0.226468 + 0.269853i
\(709\) −28.4463 −1.06832 −0.534162 0.845382i \(-0.679373\pi\)
−0.534162 + 0.845382i \(0.679373\pi\)
\(710\) 16.9314 + 46.5131i 0.635424 + 1.74561i
\(711\) 9.58435 0.359441
\(712\) 22.9624 + 13.2538i 0.860552 + 0.496709i
\(713\) 7.91005i 0.296234i
\(714\) 1.35171 + 3.71335i 0.0505864 + 0.138969i
\(715\) 5.97626 0.223500
\(716\) 28.6459 24.0405i 1.07055 0.898435i
\(717\) −2.32000 −0.0866420
\(718\) −13.6323 + 4.96233i −0.508752 + 0.185193i
\(719\) 19.2378i 0.717449i 0.933444 + 0.358724i \(0.116788\pi\)
−0.933444 + 0.358724i \(0.883212\pi\)
\(720\) −14.9699 2.63724i −0.557894 0.0982842i
\(721\) 0.915751i 0.0341044i
\(722\) −6.31544 17.3495i −0.235036 0.645681i
\(723\) −3.69645 −0.137473
\(724\) −23.0522 + 19.3461i −0.856728 + 0.718991i
\(725\) −25.2964 −0.939486
\(726\) −5.26520 14.4643i −0.195410 0.536820i
\(727\) 14.4119 0.534506 0.267253 0.963626i \(-0.413884\pi\)
0.267253 + 0.963626i \(0.413884\pi\)
\(728\) 3.29698 5.71204i 0.122194 0.211702i
\(729\) 1.00000 0.0370370
\(730\) 53.2888 19.3978i 1.97231 0.717945i
\(731\) −56.1598 −2.07714
\(732\) −7.47972 8.91260i −0.276458 0.329419i
\(733\) 34.5142i 1.27481i 0.770528 + 0.637406i \(0.219992\pi\)
−0.770528 + 0.637406i \(0.780008\pi\)
\(734\) −5.04666 13.8640i −0.186276 0.511728i
\(735\) 25.6345i 0.945544i
\(736\) 2.22961 + 12.6307i 0.0821846 + 0.465574i
\(737\) 0.403222 + 2.75424i 0.0148529 + 0.101454i
\(738\) 7.73954 2.81730i 0.284897 0.103706i
\(739\) −38.1448 −1.40318 −0.701589 0.712582i \(-0.747526\pi\)
−0.701589 + 0.712582i \(0.747526\pi\)
\(740\) 15.7474 + 18.7641i 0.578886 + 0.689783i
\(741\) −26.1828 −0.961851
\(742\) 1.54184 0.561250i 0.0566027 0.0206042i
\(743\) 3.37379i 0.123772i −0.998083 0.0618862i \(-0.980288\pi\)
0.998083 0.0618862i \(-0.0197116\pi\)
\(744\) −8.54610 4.93279i −0.313315 0.180845i
\(745\) 62.5669i 2.29227i
\(746\) 25.1163 9.14267i 0.919573 0.334737i
\(747\) 16.5312i 0.604845i
\(748\) −2.88719 + 2.42302i −0.105566 + 0.0885942i
\(749\) 1.84846i 0.0675414i
\(750\) −22.4256 + 8.16321i −0.818867 + 0.298078i
\(751\) 15.4907i 0.565265i 0.959228 + 0.282632i \(0.0912076\pi\)
−0.959228 + 0.282632i \(0.908792\pi\)
\(752\) 16.0362 + 2.82509i 0.584779 + 0.103021i
\(753\) −5.87230 −0.213998
\(754\) 16.4670 5.99420i 0.599693 0.218296i
\(755\) 85.4541 3.10999
\(756\) 0.772462 0.648273i 0.0280942 0.0235775i
\(757\) 1.49878i 0.0544739i −0.999629 0.0272370i \(-0.991329\pi\)
0.999629 0.0272370i \(-0.00867086\pi\)
\(758\) 18.0109 + 49.4787i 0.654185 + 1.79715i
\(759\) 0.771055i 0.0279875i
\(760\) 52.7048 + 30.4211i 1.91180 + 1.10349i
\(761\) −29.5458 −1.07103 −0.535517 0.844524i \(-0.679883\pi\)
−0.535517 + 0.844524i \(0.679883\pi\)
\(762\) 17.3014 6.29792i 0.626762 0.228150i
\(763\) 3.26485i 0.118196i
\(764\) −23.6282 + 19.8295i −0.854840 + 0.717407i
\(765\) 21.0593i 0.761401i
\(766\) 13.4811 + 37.0347i 0.487093 + 1.33812i
\(767\) −21.6747 −0.782628
\(768\) −15.0367 5.46775i −0.542592 0.197300i
\(769\) 22.9587i 0.827914i −0.910297 0.413957i \(-0.864146\pi\)
0.910297 0.413957i \(-0.135854\pi\)
\(770\) 0.865924 0.315208i 0.0312057 0.0113593i
\(771\) 19.7965 0.712955
\(772\) −31.8093 + 26.6953i −1.14484 + 0.960786i