Properties

Label 804.2.e.b.535.19
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.19
Character \(\chi\) = 804.535
Dual form 804.2.e.b.535.20

$q$-expansion

\(f(q)\) \(=\) \(q+(0.271785 - 1.38785i) q^{2} +1.00000 q^{3} +(-1.85227 - 0.754394i) q^{4} +0.299779i q^{5} +(0.271785 - 1.38785i) q^{6} +1.88035 q^{7} +(-1.55041 + 2.36564i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(0.271785 - 1.38785i) q^{2} +1.00000 q^{3} +(-1.85227 - 0.754394i) q^{4} +0.299779i q^{5} +(0.271785 - 1.38785i) q^{6} +1.88035 q^{7} +(-1.55041 + 2.36564i) q^{8} +1.00000 q^{9} +(0.416048 + 0.0814753i) q^{10} +2.47030 q^{11} +(-1.85227 - 0.754394i) q^{12} -1.99858i q^{13} +(0.511050 - 2.60964i) q^{14} +0.299779i q^{15} +(2.86178 + 2.79468i) q^{16} +0.452397 q^{17} +(0.271785 - 1.38785i) q^{18} -5.21266i q^{19} +(0.226151 - 0.555270i) q^{20} +1.88035 q^{21} +(0.671389 - 3.42841i) q^{22} -0.807898i q^{23} +(-1.55041 + 2.36564i) q^{24} +4.91013 q^{25} +(-2.77374 - 0.543184i) q^{26} +1.00000 q^{27} +(-3.48290 - 1.41852i) q^{28} +9.00503 q^{29} +(0.416048 + 0.0814753i) q^{30} -8.22773 q^{31} +(4.65639 - 3.21217i) q^{32} +2.47030 q^{33} +(0.122955 - 0.627860i) q^{34} +0.563688i q^{35} +(-1.85227 - 0.754394i) q^{36} +1.31776 q^{37} +(-7.23440 - 1.41672i) q^{38} -1.99858i q^{39} +(-0.709168 - 0.464778i) q^{40} -6.67060i q^{41} +(0.511050 - 2.60964i) q^{42} -4.44399 q^{43} +(-4.57565 - 1.86358i) q^{44} +0.299779i q^{45} +(-1.12124 - 0.219575i) q^{46} +2.51300i q^{47} +(2.86178 + 2.79468i) q^{48} -3.46429 q^{49} +(1.33450 - 6.81454i) q^{50} +0.452397 q^{51} +(-1.50772 + 3.70191i) q^{52} -0.990958i q^{53} +(0.271785 - 1.38785i) q^{54} +0.740542i q^{55} +(-2.91530 + 4.44822i) q^{56} -5.21266i q^{57} +(2.44743 - 12.4976i) q^{58} +7.56006i q^{59} +(0.226151 - 0.555270i) q^{60} +9.06097i q^{61} +(-2.23617 + 11.4189i) q^{62} +1.88035 q^{63} +(-3.19249 - 7.33540i) q^{64} +0.599132 q^{65} +(0.671389 - 3.42841i) q^{66} +(-2.90832 - 7.65125i) q^{67} +(-0.837960 - 0.341286i) q^{68} -0.807898i q^{69} +(0.782315 + 0.153202i) q^{70} +0.0862739i q^{71} +(-1.55041 + 2.36564i) q^{72} +1.91010 q^{73} +(0.358147 - 1.82885i) q^{74} +4.91013 q^{75} +(-3.93240 + 9.65523i) q^{76} +4.64502 q^{77} +(-2.77374 - 0.543184i) q^{78} -8.30576 q^{79} +(-0.837784 + 0.857900i) q^{80} +1.00000 q^{81} +(-9.25781 - 1.81297i) q^{82} +0.827060i q^{83} +(-3.48290 - 1.41852i) q^{84} +0.135619i q^{85} +(-1.20781 + 6.16760i) q^{86} +9.00503 q^{87} +(-3.82996 + 5.84383i) q^{88} +14.5391 q^{89} +(0.416048 + 0.0814753i) q^{90} -3.75803i q^{91} +(-0.609474 + 1.49644i) q^{92} -8.22773 q^{93} +(3.48767 + 0.682996i) q^{94} +1.56264 q^{95} +(4.65639 - 3.21217i) q^{96} +6.11092i q^{97} +(-0.941543 + 4.80793i) q^{98} +2.47030 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{3} + 2q^{4} + 4q^{7} - 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q + 34q^{3} + 2q^{4} + 4q^{7} - 6q^{8} + 34q^{9} - 6q^{10} + 2q^{12} - 4q^{14} + 2q^{16} - 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} + 34q^{27} - 8q^{28} - 16q^{29} - 6q^{30} - 4q^{31} + 2q^{36} + 12q^{37} + 26q^{38} - 18q^{40} - 4q^{42} - 4q^{43} + 26q^{44} - 4q^{46} + 2q^{48} + 46q^{49} - 18q^{50} + 32q^{52} + 14q^{56} + 4q^{58} - 12q^{60} - 2q^{62} + 4q^{63} + 26q^{64} - 8q^{66} - 18q^{67} - 34q^{68} + 56q^{70} - 6q^{72} + 12q^{73} + 22q^{74} - 34q^{75} - 32q^{76} - 8q^{77} + 10q^{78} - 12q^{79} - 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} - 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} + 32q^{94} - 40q^{95} - 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.271785 1.38785i 0.192181 0.981360i
\(3\) 1.00000 0.577350
\(4\) −1.85227 0.754394i −0.926133 0.377197i
\(5\) 0.299779i 0.134065i 0.997751 + 0.0670325i \(0.0213531\pi\)
−0.997751 + 0.0670325i \(0.978647\pi\)
\(6\) 0.271785 1.38785i 0.110956 0.566588i
\(7\) 1.88035 0.710704 0.355352 0.934732i \(-0.384361\pi\)
0.355352 + 0.934732i \(0.384361\pi\)
\(8\) −1.55041 + 2.36564i −0.548151 + 0.836379i
\(9\) 1.00000 0.333333
\(10\) 0.416048 + 0.0814753i 0.131566 + 0.0257647i
\(11\) 2.47030 0.744822 0.372411 0.928068i \(-0.378531\pi\)
0.372411 + 0.928068i \(0.378531\pi\)
\(12\) −1.85227 0.754394i −0.534703 0.217775i
\(13\) 1.99858i 0.554307i −0.960826 0.277153i \(-0.910609\pi\)
0.960826 0.277153i \(-0.0893910\pi\)
\(14\) 0.511050 2.60964i 0.136584 0.697457i
\(15\) 0.299779i 0.0774025i
\(16\) 2.86178 + 2.79468i 0.715445 + 0.698669i
\(17\) 0.452397 0.109722 0.0548612 0.998494i \(-0.482528\pi\)
0.0548612 + 0.998494i \(0.482528\pi\)
\(18\) 0.271785 1.38785i 0.0640603 0.327120i
\(19\) 5.21266i 1.19587i −0.801546 0.597933i \(-0.795989\pi\)
0.801546 0.597933i \(-0.204011\pi\)
\(20\) 0.226151 0.555270i 0.0505689 0.124162i
\(21\) 1.88035 0.410325
\(22\) 0.671389 3.42841i 0.143141 0.730939i
\(23\) 0.807898i 0.168458i −0.996446 0.0842292i \(-0.973157\pi\)
0.996446 0.0842292i \(-0.0268428\pi\)
\(24\) −1.55041 + 2.36564i −0.316475 + 0.482884i
\(25\) 4.91013 0.982027
\(26\) −2.77374 0.543184i −0.543974 0.106527i
\(27\) 1.00000 0.192450
\(28\) −3.48290 1.41852i −0.658207 0.268076i
\(29\) 9.00503 1.67219 0.836096 0.548584i \(-0.184833\pi\)
0.836096 + 0.548584i \(0.184833\pi\)
\(30\) 0.416048 + 0.0814753i 0.0759597 + 0.0148753i
\(31\) −8.22773 −1.47774 −0.738872 0.673846i \(-0.764641\pi\)
−0.738872 + 0.673846i \(0.764641\pi\)
\(32\) 4.65639 3.21217i 0.823141 0.567837i
\(33\) 2.47030 0.430023
\(34\) 0.122955 0.627860i 0.0210866 0.107677i
\(35\) 0.563688i 0.0952806i
\(36\) −1.85227 0.754394i −0.308711 0.125732i
\(37\) 1.31776 0.216638 0.108319 0.994116i \(-0.465453\pi\)
0.108319 + 0.994116i \(0.465453\pi\)
\(38\) −7.23440 1.41672i −1.17357 0.229823i
\(39\) 1.99858i 0.320029i
\(40\) −0.709168 0.464778i −0.112129 0.0734879i
\(41\) 6.67060i 1.04177i −0.853626 0.520887i \(-0.825601\pi\)
0.853626 0.520887i \(-0.174399\pi\)
\(42\) 0.511050 2.60964i 0.0788567 0.402677i
\(43\) −4.44399 −0.677702 −0.338851 0.940840i \(-0.610038\pi\)
−0.338851 + 0.940840i \(0.610038\pi\)
\(44\) −4.57565 1.86358i −0.689805 0.280945i
\(45\) 0.299779i 0.0446883i
\(46\) −1.12124 0.219575i −0.165318 0.0323745i
\(47\) 2.51300i 0.366559i 0.983061 + 0.183279i \(0.0586713\pi\)
−0.983061 + 0.183279i \(0.941329\pi\)
\(48\) 2.86178 + 2.79468i 0.413062 + 0.403377i
\(49\) −3.46429 −0.494899
\(50\) 1.33450 6.81454i 0.188727 0.963721i
\(51\) 0.452397 0.0633483
\(52\) −1.50772 + 3.70191i −0.209083 + 0.513362i
\(53\) 0.990958i 0.136118i −0.997681 0.0680592i \(-0.978319\pi\)
0.997681 0.0680592i \(-0.0216807\pi\)
\(54\) 0.271785 1.38785i 0.0369852 0.188863i
\(55\) 0.740542i 0.0998547i
\(56\) −2.91530 + 4.44822i −0.389573 + 0.594419i
\(57\) 5.21266i 0.690434i
\(58\) 2.44743 12.4976i 0.321363 1.64102i
\(59\) 7.56006i 0.984236i 0.870529 + 0.492118i \(0.163777\pi\)
−0.870529 + 0.492118i \(0.836223\pi\)
\(60\) 0.226151 0.555270i 0.0291960 0.0716850i
\(61\) 9.06097i 1.16014i 0.814567 + 0.580069i \(0.196975\pi\)
−0.814567 + 0.580069i \(0.803025\pi\)
\(62\) −2.23617 + 11.4189i −0.283994 + 1.45020i
\(63\) 1.88035 0.236901
\(64\) −3.19249 7.33540i −0.399061 0.916924i
\(65\) 0.599132 0.0743132
\(66\) 0.671389 3.42841i 0.0826423 0.422008i
\(67\) −2.90832 7.65125i −0.355308 0.934749i
\(68\) −0.837960 0.341286i −0.101618 0.0413870i
\(69\) 0.807898i 0.0972595i
\(70\) 0.782315 + 0.153202i 0.0935045 + 0.0183111i
\(71\) 0.0862739i 0.0102388i 0.999987 + 0.00511941i \(0.00162957\pi\)
−0.999987 + 0.00511941i \(0.998370\pi\)
\(72\) −1.55041 + 2.36564i −0.182717 + 0.278793i
\(73\) 1.91010 0.223560 0.111780 0.993733i \(-0.464345\pi\)
0.111780 + 0.993733i \(0.464345\pi\)
\(74\) 0.358147 1.82885i 0.0416337 0.212600i
\(75\) 4.91013 0.566973
\(76\) −3.93240 + 9.65523i −0.451077 + 1.10753i
\(77\) 4.64502 0.529349
\(78\) −2.77374 0.543184i −0.314064 0.0615035i
\(79\) −8.30576 −0.934471 −0.467236 0.884133i \(-0.654750\pi\)
−0.467236 + 0.884133i \(0.654750\pi\)
\(80\) −0.837784 + 0.857900i −0.0936671 + 0.0959161i
\(81\) 1.00000 0.111111
\(82\) −9.25781 1.81297i −1.02235 0.200209i
\(83\) 0.827060i 0.0907816i 0.998969 + 0.0453908i \(0.0144533\pi\)
−0.998969 + 0.0453908i \(0.985547\pi\)
\(84\) −3.48290 1.41852i −0.380016 0.154774i
\(85\) 0.135619i 0.0147099i
\(86\) −1.20781 + 6.16760i −0.130241 + 0.665070i
\(87\) 9.00503 0.965440
\(88\) −3.82996 + 5.84383i −0.408275 + 0.622954i
\(89\) 14.5391 1.54114 0.770571 0.637354i \(-0.219971\pi\)
0.770571 + 0.637354i \(0.219971\pi\)
\(90\) 0.416048 + 0.0814753i 0.0438553 + 0.00858825i
\(91\) 3.75803i 0.393948i
\(92\) −0.609474 + 1.49644i −0.0635420 + 0.156015i
\(93\) −8.22773 −0.853176
\(94\) 3.48767 + 0.682996i 0.359726 + 0.0704456i
\(95\) 1.56264 0.160324
\(96\) 4.65639 3.21217i 0.475240 0.327841i
\(97\) 6.11092i 0.620470i 0.950660 + 0.310235i \(0.100408\pi\)
−0.950660 + 0.310235i \(0.899592\pi\)
\(98\) −0.941543 + 4.80793i −0.0951102 + 0.485674i
\(99\) 2.47030 0.248274
\(100\) −9.09487 3.70418i −0.909487 0.370418i
\(101\) 16.5489i 1.64668i 0.567548 + 0.823341i \(0.307892\pi\)
−0.567548 + 0.823341i \(0.692108\pi\)
\(102\) 0.122955 0.627860i 0.0121743 0.0621674i
\(103\) 1.25864i 0.124017i −0.998076 0.0620085i \(-0.980249\pi\)
0.998076 0.0620085i \(-0.0197506\pi\)
\(104\) 4.72792 + 3.09861i 0.463611 + 0.303844i
\(105\) 0.563688i 0.0550103i
\(106\) −1.37530 0.269327i −0.133581 0.0261594i
\(107\) 11.4199i 1.10400i 0.833844 + 0.552001i \(0.186135\pi\)
−0.833844 + 0.552001i \(0.813865\pi\)
\(108\) −1.85227 0.754394i −0.178234 0.0725916i
\(109\) 6.20771i 0.594591i 0.954786 + 0.297295i \(0.0960846\pi\)
−0.954786 + 0.297295i \(0.903915\pi\)
\(110\) 1.02776 + 0.201268i 0.0979933 + 0.0191902i
\(111\) 1.31776 0.125076
\(112\) 5.38114 + 5.25496i 0.508470 + 0.496547i
\(113\) 12.9323i 1.21656i −0.793721 0.608282i \(-0.791859\pi\)
0.793721 0.608282i \(-0.208141\pi\)
\(114\) −7.23440 1.41672i −0.677564 0.132688i
\(115\) 0.242191 0.0225844
\(116\) −16.6797 6.79334i −1.54867 0.630746i
\(117\) 1.99858i 0.184769i
\(118\) 10.4922 + 2.05471i 0.965889 + 0.189151i
\(119\) 0.850664 0.0779802
\(120\) −0.709168 0.464778i −0.0647378 0.0424283i
\(121\) −4.89763 −0.445239
\(122\) 12.5753 + 2.46264i 1.13851 + 0.222957i
\(123\) 6.67060i 0.601468i
\(124\) 15.2399 + 6.20695i 1.36859 + 0.557401i
\(125\) 2.97085i 0.265720i
\(126\) 0.511050 2.60964i 0.0455279 0.232486i
\(127\) 1.17875i 0.104597i 0.998631 + 0.0522986i \(0.0166548\pi\)
−0.998631 + 0.0522986i \(0.983345\pi\)
\(128\) −11.0481 + 2.43705i −0.976524 + 0.215407i
\(129\) −4.44399 −0.391272
\(130\) 0.162835 0.831507i 0.0142816 0.0729279i
\(131\) 8.74378i 0.763948i 0.924173 + 0.381974i \(0.124756\pi\)
−0.924173 + 0.381974i \(0.875244\pi\)
\(132\) −4.57565 1.86358i −0.398259 0.162204i
\(133\) 9.80161i 0.849908i
\(134\) −11.4092 + 1.95682i −0.985609 + 0.169044i
\(135\) 0.299779i 0.0258008i
\(136\) −0.701399 + 1.07021i −0.0601445 + 0.0917696i
\(137\) 16.4759i 1.40763i 0.710384 + 0.703814i \(0.248521\pi\)
−0.710384 + 0.703814i \(0.751479\pi\)
\(138\) −1.12124 0.219575i −0.0954466 0.0186914i
\(139\) −13.7850 −1.16923 −0.584613 0.811312i \(-0.698754\pi\)
−0.584613 + 0.811312i \(0.698754\pi\)
\(140\) 0.425243 1.04410i 0.0359396 0.0882425i
\(141\) 2.51300i 0.211633i
\(142\) 0.119735 + 0.0234479i 0.0100480 + 0.00196771i
\(143\) 4.93709i 0.412860i
\(144\) 2.86178 + 2.79468i 0.238482 + 0.232890i
\(145\) 2.69951i 0.224182i
\(146\) 0.519135 2.65093i 0.0429639 0.219393i
\(147\) −3.46429 −0.285730
\(148\) −2.44084 0.994109i −0.200636 0.0817153i
\(149\) 4.35465 0.356747 0.178374 0.983963i \(-0.442916\pi\)
0.178374 + 0.983963i \(0.442916\pi\)
\(150\) 1.33450 6.81454i 0.108961 0.556405i
\(151\) 6.96999i 0.567210i −0.958941 0.283605i \(-0.908470\pi\)
0.958941 0.283605i \(-0.0915304\pi\)
\(152\) 12.3313 + 8.08174i 1.00020 + 0.655515i
\(153\) 0.452397 0.0365741
\(154\) 1.26244 6.44659i 0.101731 0.519481i
\(155\) 2.46650i 0.198114i
\(156\) −1.50772 + 3.70191i −0.120714 + 0.296390i
\(157\) −7.05972 −0.563427 −0.281713 0.959499i \(-0.590903\pi\)
−0.281713 + 0.959499i \(0.590903\pi\)
\(158\) −2.25738 + 11.5272i −0.179588 + 0.917052i
\(159\) 0.990958i 0.0785880i
\(160\) 0.962941 + 1.39588i 0.0761272 + 0.110354i
\(161\) 1.51913i 0.119724i
\(162\) 0.271785 1.38785i 0.0213534 0.109040i
\(163\) 19.2430i 1.50723i −0.657317 0.753614i \(-0.728309\pi\)
0.657317 0.753614i \(-0.271691\pi\)
\(164\) −5.03226 + 12.3557i −0.392954 + 0.964821i
\(165\) 0.740542i 0.0576511i
\(166\) 1.14784 + 0.224782i 0.0890894 + 0.0174465i
\(167\) 13.2882i 1.02828i 0.857708 + 0.514138i \(0.171888\pi\)
−0.857708 + 0.514138i \(0.828112\pi\)
\(168\) −2.91530 + 4.44822i −0.224920 + 0.343188i
\(169\) 9.00567 0.692744
\(170\) 0.188219 + 0.0368592i 0.0144357 + 0.00282697i
\(171\) 5.21266i 0.398622i
\(172\) 8.23145 + 3.35252i 0.627642 + 0.255627i
\(173\) −18.7393 −1.42472 −0.712360 0.701815i \(-0.752373\pi\)
−0.712360 + 0.701815i \(0.752373\pi\)
\(174\) 2.44743 12.4976i 0.185539 0.947444i
\(175\) 9.23276 0.697931
\(176\) 7.06944 + 6.90368i 0.532879 + 0.520385i
\(177\) 7.56006i 0.568249i
\(178\) 3.95151 20.1781i 0.296178 1.51241i
\(179\) −0.698346 −0.0521969 −0.0260984 0.999659i \(-0.508308\pi\)
−0.0260984 + 0.999659i \(0.508308\pi\)
\(180\) 0.226151 0.555270i 0.0168563 0.0413874i
\(181\) 1.39540 0.103719 0.0518597 0.998654i \(-0.483485\pi\)
0.0518597 + 0.998654i \(0.483485\pi\)
\(182\) −5.21559 1.02138i −0.386605 0.0757094i
\(183\) 9.06097i 0.669806i
\(184\) 1.91120 + 1.25257i 0.140895 + 0.0923407i
\(185\) 0.395036i 0.0290436i
\(186\) −2.23617 + 11.4189i −0.163964 + 0.837272i
\(187\) 1.11756 0.0817237
\(188\) 1.89579 4.65475i 0.138265 0.339482i
\(189\) 1.88035 0.136775
\(190\) 0.424703 2.16872i 0.0308112 0.157335i
\(191\) 7.48899 0.541884 0.270942 0.962596i \(-0.412665\pi\)
0.270942 + 0.962596i \(0.412665\pi\)
\(192\) −3.19249 7.33540i −0.230398 0.529387i
\(193\) 22.3190 1.60656 0.803279 0.595603i \(-0.203087\pi\)
0.803279 + 0.595603i \(0.203087\pi\)
\(194\) 8.48105 + 1.66085i 0.608904 + 0.119242i
\(195\) 0.599132 0.0429047
\(196\) 6.41679 + 2.61344i 0.458342 + 0.186675i
\(197\) 21.7278i 1.54804i 0.633160 + 0.774021i \(0.281758\pi\)
−0.633160 + 0.774021i \(0.718242\pi\)
\(198\) 0.671389 3.42841i 0.0477136 0.243646i
\(199\) 20.9659i 1.48624i −0.669161 0.743118i \(-0.733346\pi\)
0.669161 0.743118i \(-0.266654\pi\)
\(200\) −7.61270 + 11.6156i −0.538299 + 0.821347i
\(201\) −2.90832 7.65125i −0.205137 0.539678i
\(202\) 22.9675 + 4.49775i 1.61599 + 0.316461i
\(203\) 16.9326 1.18843
\(204\) −0.837960 0.341286i −0.0586689 0.0238948i
\(205\) 1.99970 0.139665
\(206\) −1.74680 0.342078i −0.121705 0.0238337i
\(207\) 0.807898i 0.0561528i
\(208\) 5.58539 5.71950i 0.387277 0.396576i
\(209\) 12.8768i 0.890708i
\(210\) 0.782315 + 0.153202i 0.0539849 + 0.0105719i
\(211\) 6.97627i 0.480266i 0.970740 + 0.240133i \(0.0771911\pi\)
−0.970740 + 0.240133i \(0.922809\pi\)
\(212\) −0.747573 + 1.83552i −0.0513435 + 0.126064i
\(213\) 0.0862739i 0.00591139i
\(214\) 15.8491 + 3.10375i 1.08342 + 0.212168i
\(215\) 1.33221i 0.0908562i
\(216\) −1.55041 + 2.36564i −0.105492 + 0.160961i
\(217\) −15.4710 −1.05024
\(218\) 8.61538 + 1.68716i 0.583507 + 0.114269i
\(219\) 1.91010 0.129072
\(220\) 0.558661 1.37168i 0.0376649 0.0924787i
\(221\) 0.904153i 0.0608199i
\(222\) 0.358147 1.82885i 0.0240372 0.122745i
\(223\) 27.0486i 1.81131i 0.424020 + 0.905653i \(0.360619\pi\)
−0.424020 + 0.905653i \(0.639381\pi\)
\(224\) 8.75562 6.04000i 0.585010 0.403565i
\(225\) 4.91013 0.327342
\(226\) −17.9481 3.51479i −1.19389 0.233800i
\(227\) 11.0542i 0.733693i −0.930282 0.366846i \(-0.880437\pi\)
0.930282 0.366846i \(-0.119563\pi\)
\(228\) −3.93240 + 9.65523i −0.260430 + 0.639433i
\(229\) 11.8822i 0.785199i 0.919710 + 0.392600i \(0.128424\pi\)
−0.919710 + 0.392600i \(0.871576\pi\)
\(230\) 0.0658237 0.336125i 0.00434029 0.0221634i
\(231\) 4.64502 0.305620
\(232\) −13.9614 + 21.3026i −0.916614 + 1.39859i
\(233\) 5.38131i 0.352542i −0.984342 0.176271i \(-0.943597\pi\)
0.984342 0.176271i \(-0.0564034\pi\)
\(234\) −2.77374 0.543184i −0.181325 0.0355091i
\(235\) −0.753344 −0.0491427
\(236\) 5.70327 14.0032i 0.371251 0.911533i
\(237\) −8.30576 −0.539517
\(238\) 0.231198 1.18060i 0.0149863 0.0765266i
\(239\) −14.4375 −0.933883 −0.466941 0.884288i \(-0.654644\pi\)
−0.466941 + 0.884288i \(0.654644\pi\)
\(240\) −0.837784 + 0.857900i −0.0540788 + 0.0553772i
\(241\) −7.02196 −0.452324 −0.226162 0.974090i \(-0.572618\pi\)
−0.226162 + 0.974090i \(0.572618\pi\)
\(242\) −1.33110 + 6.79719i −0.0855665 + 0.436940i
\(243\) 1.00000 0.0641500
\(244\) 6.83555 16.7833i 0.437601 1.07444i
\(245\) 1.03852i 0.0663487i
\(246\) −9.25781 1.81297i −0.590256 0.115591i
\(247\) −10.4179 −0.662877
\(248\) 12.7563 19.4638i 0.810027 1.23595i
\(249\) 0.827060i 0.0524128i
\(250\) 4.12309 + 0.807431i 0.260767 + 0.0510664i
\(251\) −15.9704 −1.00804 −0.504021 0.863691i \(-0.668147\pi\)
−0.504021 + 0.863691i \(0.668147\pi\)
\(252\) −3.48290 1.41852i −0.219402 0.0893586i
\(253\) 1.99575i 0.125472i
\(254\) 1.63593 + 0.320366i 0.102647 + 0.0201016i
\(255\) 0.135619i 0.00849279i
\(256\) 0.379553 + 15.9955i 0.0237221 + 0.999719i
\(257\) −5.54733 −0.346033 −0.173016 0.984919i \(-0.555351\pi\)
−0.173016 + 0.984919i \(0.555351\pi\)
\(258\) −1.20781 + 6.16760i −0.0751949 + 0.383978i
\(259\) 2.47784 0.153966
\(260\) −1.10975 0.451982i −0.0688239 0.0280307i
\(261\) 9.00503 0.557397
\(262\) 12.1351 + 2.37643i 0.749707 + 0.146816i
\(263\) 19.4297i 1.19808i 0.800718 + 0.599042i \(0.204452\pi\)
−0.800718 + 0.599042i \(0.795548\pi\)
\(264\) −3.82996 + 5.84383i −0.235718 + 0.359663i
\(265\) 0.297068 0.0182487
\(266\) −13.6032 2.66393i −0.834065 0.163336i
\(267\) 14.5391 0.889779
\(268\) −0.385078 + 16.3662i −0.0235224 + 0.999723i
\(269\) 5.13142 0.312868 0.156434 0.987688i \(-0.450000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(270\) 0.416048 + 0.0814753i 0.0253199 + 0.00495843i
\(271\) −4.15615 −0.252468 −0.126234 0.992000i \(-0.540289\pi\)
−0.126234 + 0.992000i \(0.540289\pi\)
\(272\) 1.29466 + 1.26430i 0.0785003 + 0.0766597i
\(273\) 3.75803i 0.227446i
\(274\) 22.8661 + 4.47789i 1.38139 + 0.270519i
\(275\) 12.1295 0.731435
\(276\) −0.609474 + 1.49644i −0.0366860 + 0.0900753i
\(277\) 0.861448 0.0517594 0.0258797 0.999665i \(-0.491761\pi\)
0.0258797 + 0.999665i \(0.491761\pi\)
\(278\) −3.74655 + 19.1315i −0.224703 + 1.14743i
\(279\) −8.22773 −0.492581
\(280\) −1.33348 0.873945i −0.0796907 0.0522282i
\(281\) 12.5745i 0.750134i −0.926998 0.375067i \(-0.877620\pi\)
0.926998 0.375067i \(-0.122380\pi\)
\(282\) 3.48767 + 0.682996i 0.207688 + 0.0406718i
\(283\) 11.4059i 0.678013i 0.940784 + 0.339006i \(0.110091\pi\)
−0.940784 + 0.339006i \(0.889909\pi\)
\(284\) 0.0650845 0.159802i 0.00386206 0.00948252i
\(285\) 1.56264 0.0925630
\(286\) −6.85195 1.34183i −0.405164 0.0793439i
\(287\) 12.5431i 0.740393i
\(288\) 4.65639 3.21217i 0.274380 0.189279i
\(289\) −16.7953 −0.987961
\(290\) 3.74653 + 0.733687i 0.220004 + 0.0430836i
\(291\) 6.11092i 0.358228i
\(292\) −3.53801 1.44097i −0.207046 0.0843261i
\(293\) −10.9531 −0.639890 −0.319945 0.947436i \(-0.603664\pi\)
−0.319945 + 0.947436i \(0.603664\pi\)
\(294\) −0.941543 + 4.80793i −0.0549119 + 0.280404i
\(295\) −2.26634 −0.131952
\(296\) −2.04306 + 3.11734i −0.118750 + 0.181192i
\(297\) 2.47030 0.143341
\(298\) 1.18353 6.04361i 0.0685600 0.350097i
\(299\) −1.61465 −0.0933777
\(300\) −9.09487 3.70418i −0.525093 0.213861i
\(301\) −8.35625 −0.481646
\(302\) −9.67332 1.89434i −0.556637 0.109007i
\(303\) 16.5489i 0.950712i
\(304\) 14.5677 14.9175i 0.835515 0.855576i
\(305\) −2.71629 −0.155534
\(306\) 0.122955 0.627860i 0.00702885 0.0358924i
\(307\) 5.44353i 0.310679i 0.987861 + 0.155339i \(0.0496471\pi\)
−0.987861 + 0.155339i \(0.950353\pi\)
\(308\) −8.60380 3.50417i −0.490247 0.199669i
\(309\) 1.25864i 0.0716013i
\(310\) −3.42313 0.670357i −0.194421 0.0380737i
\(311\) 25.9978 1.47420 0.737099 0.675785i \(-0.236195\pi\)
0.737099 + 0.675785i \(0.236195\pi\)
\(312\) 4.72792 + 3.09861i 0.267666 + 0.175424i
\(313\) 10.3628i 0.585740i 0.956152 + 0.292870i \(0.0946104\pi\)
−0.956152 + 0.292870i \(0.905390\pi\)
\(314\) −1.91872 + 9.79784i −0.108280 + 0.552924i
\(315\) 0.563688i 0.0317602i
\(316\) 15.3845 + 6.26582i 0.865445 + 0.352480i
\(317\) −16.5470 −0.929375 −0.464687 0.885475i \(-0.653833\pi\)
−0.464687 + 0.885475i \(0.653833\pi\)
\(318\) −1.37530 0.269327i −0.0771231 0.0151031i
\(319\) 22.2451 1.24549
\(320\) 2.19899 0.957039i 0.122928 0.0535001i
\(321\) 11.4199i 0.637396i
\(322\) −2.10833 0.412876i −0.117492 0.0230087i
\(323\) 2.35819i 0.131213i
\(324\) −1.85227 0.754394i −0.102904 0.0419108i
\(325\) 9.81330i 0.544344i
\(326\) −26.7064 5.22995i −1.47913 0.289660i
\(327\) 6.20771i 0.343287i
\(328\) 15.7802 + 10.3421i 0.871318 + 0.571049i
\(329\) 4.72531i 0.260515i
\(330\) 1.02776 + 0.201268i 0.0565765 + 0.0110794i
\(331\) −5.88317 −0.323368 −0.161684 0.986843i \(-0.551693\pi\)
−0.161684 + 0.986843i \(0.551693\pi\)
\(332\) 0.623929 1.53194i 0.0342426 0.0840759i
\(333\) 1.31776 0.0722127
\(334\) 18.4421 + 3.61154i 1.00911 + 0.197615i
\(335\) 2.29368 0.871852i 0.125317 0.0476344i
\(336\) 5.38114 + 5.25496i 0.293565 + 0.286682i
\(337\) 23.4236i 1.27596i −0.770052 0.637981i \(-0.779770\pi\)
0.770052 0.637981i \(-0.220230\pi\)
\(338\) 2.44760 12.4985i 0.133132 0.679831i
\(339\) 12.9323i 0.702384i
\(340\) 0.102310 0.251202i 0.00554855 0.0136234i
\(341\) −20.3249 −1.10066
\(342\) −7.23440 1.41672i −0.391192 0.0766076i
\(343\) −19.6765 −1.06243
\(344\) 6.88999 10.5129i 0.371483 0.566816i
\(345\) 0.242191 0.0130391
\(346\) −5.09305 + 26.0073i −0.273804 + 1.39816i
\(347\) 14.2125 0.762965 0.381483 0.924376i \(-0.375414\pi\)
0.381483 + 0.924376i \(0.375414\pi\)
\(348\) −16.6797 6.79334i −0.894126 0.364161i
\(349\) −25.9097 −1.38691 −0.693457 0.720498i \(-0.743913\pi\)
−0.693457 + 0.720498i \(0.743913\pi\)
\(350\) 2.50932 12.8137i 0.134129 0.684921i
\(351\) 1.99858i 0.106676i
\(352\) 11.5027 7.93502i 0.613094 0.422938i
\(353\) 32.5138i 1.73054i −0.501309 0.865269i \(-0.667148\pi\)
0.501309 0.865269i \(-0.332852\pi\)
\(354\) 10.4922 + 2.05471i 0.557656 + 0.109207i
\(355\) −0.0258631 −0.00137267
\(356\) −26.9303 10.9682i −1.42730 0.581315i
\(357\) 0.850664 0.0450219
\(358\) −0.189800 + 0.969201i −0.0100312 + 0.0512239i
\(359\) 20.9244i 1.10435i −0.833729 0.552175i \(-0.813798\pi\)
0.833729 0.552175i \(-0.186202\pi\)
\(360\) −0.709168 0.464778i −0.0373764 0.0244960i
\(361\) −8.17183 −0.430096
\(362\) 0.379249 1.93661i 0.0199329 0.101786i
\(363\) −4.89763 −0.257059
\(364\) −2.83504 + 6.96087i −0.148596 + 0.364849i
\(365\) 0.572606i 0.0299716i
\(366\) 12.5753 + 2.46264i 0.657321 + 0.128724i
\(367\) −31.9614 −1.66837 −0.834186 0.551484i \(-0.814062\pi\)
−0.834186 + 0.551484i \(0.814062\pi\)
\(368\) 2.25782 2.31203i 0.117697 0.120523i
\(369\) 6.67060i 0.347258i
\(370\) 0.548251 + 0.107365i 0.0285022 + 0.00558162i
\(371\) 1.86334i 0.0967400i
\(372\) 15.2399 + 6.20695i 0.790154 + 0.321816i
\(373\) 4.12613i 0.213643i −0.994278 0.106822i \(-0.965933\pi\)
0.994278 0.106822i \(-0.0340674\pi\)
\(374\) 0.303735 1.55100i 0.0157057 0.0802004i
\(375\) 2.97085i 0.153414i
\(376\) −5.94485 3.89617i −0.306582 0.200930i
\(377\) 17.9973i 0.926907i
\(378\) 0.511050 2.60964i 0.0262856 0.134226i
\(379\) 8.75420 0.449673 0.224836 0.974397i \(-0.427815\pi\)
0.224836 + 0.974397i \(0.427815\pi\)
\(380\) −2.89443 1.17885i −0.148481 0.0604737i
\(381\) 1.17875i 0.0603892i
\(382\) 2.03539 10.3936i 0.104140 0.531783i
\(383\) −7.08452 −0.362002 −0.181001 0.983483i \(-0.557934\pi\)
−0.181001 + 0.983483i \(0.557934\pi\)
\(384\) −11.0481 + 2.43705i −0.563797 + 0.124365i
\(385\) 1.39248i 0.0709672i
\(386\) 6.06597 30.9755i 0.308750 1.57661i
\(387\) −4.44399 −0.225901
\(388\) 4.61004 11.3190i 0.234039 0.574637i
\(389\) −18.4108 −0.933466 −0.466733 0.884398i \(-0.654569\pi\)
−0.466733 + 0.884398i \(0.654569\pi\)
\(390\) 0.162835 0.831507i 0.00824547 0.0421050i
\(391\) 0.365491i 0.0184837i
\(392\) 5.37106 8.19527i 0.271279 0.413923i
\(393\) 8.74378i 0.441065i
\(394\) 30.1550 + 5.90529i 1.51919 + 0.297504i
\(395\) 2.48989i 0.125280i
\(396\) −4.57565 1.86358i −0.229935 0.0936483i
\(397\) 1.97019 0.0988812 0.0494406 0.998777i \(-0.484256\pi\)
0.0494406 + 0.998777i \(0.484256\pi\)
\(398\) −29.0976 5.69822i −1.45853 0.285626i
\(399\) 9.80161i 0.490694i
\(400\) 14.0517 + 13.7222i 0.702586 + 0.686112i
\(401\) 15.8711i 0.792565i −0.918129 0.396282i \(-0.870300\pi\)
0.918129 0.396282i \(-0.129700\pi\)
\(402\) −11.4092 + 1.95682i −0.569041 + 0.0975975i
\(403\) 16.4438i 0.819124i
\(404\) 12.4844 30.6530i 0.621123 1.52505i
\(405\) 0.299779i 0.0148961i
\(406\) 4.60202 23.4999i 0.228394 1.16628i
\(407\) 3.25525 0.161357
\(408\) −0.701399 + 1.07021i −0.0347244 + 0.0529832i
\(409\) 21.7609i 1.07601i −0.842942 0.538004i \(-0.819178\pi\)
0.842942 0.538004i \(-0.180822\pi\)
\(410\) 0.543489 2.77529i 0.0268410 0.137062i
\(411\) 16.4759i 0.812695i
\(412\) −0.949508 + 2.33133i −0.0467789 + 0.114856i
\(413\) 14.2155i 0.699501i
\(414\) −1.12124 0.219575i −0.0551061 0.0107915i
\(415\) −0.247935 −0.0121706
\(416\) −6.41979 9.30617i −0.314756 0.456273i
\(417\) −13.7850 −0.675053
\(418\) −17.8711 3.49972i −0.874105 0.171177i
\(419\) 8.01500i 0.391558i −0.980648 0.195779i \(-0.937276\pi\)
0.980648 0.195779i \(-0.0627236\pi\)
\(420\) 0.425243 1.04410i 0.0207497 0.0509468i
\(421\) 13.0724 0.637108 0.318554 0.947905i \(-0.396803\pi\)
0.318554 + 0.947905i \(0.396803\pi\)
\(422\) 9.68203 + 1.89604i 0.471314 + 0.0922980i
\(423\) 2.51300i 0.122186i
\(424\) 2.34425 + 1.53639i 0.113847 + 0.0746135i
\(425\) 2.22133 0.107750
\(426\) 0.119735 + 0.0234479i 0.00580120 + 0.00113606i
\(427\) 17.0378i 0.824516i
\(428\) 8.61509 21.1527i 0.416426 1.02245i
\(429\) 4.93709i 0.238365i
\(430\) −1.84891 0.362075i −0.0891626 0.0174608i
\(431\) 11.2297i 0.540915i −0.962732 0.270457i \(-0.912825\pi\)
0.962732 0.270457i \(-0.0871749\pi\)
\(432\) 2.86178 + 2.79468i 0.137687 + 0.134459i
\(433\) 37.9064i 1.82167i −0.412775 0.910833i \(-0.635440\pi\)
0.412775 0.910833i \(-0.364560\pi\)
\(434\) −4.20478 + 21.4714i −0.201836 + 1.03066i
\(435\) 2.69951i 0.129432i
\(436\) 4.68306 11.4983i 0.224278 0.550670i
\(437\) −4.21130 −0.201454
\(438\) 0.519135 2.65093i 0.0248052 0.126666i
\(439\) 16.5889i 0.791747i 0.918305 + 0.395873i \(0.129558\pi\)
−0.918305 + 0.395873i \(0.870442\pi\)
\(440\) −1.75185 1.14814i −0.0835164 0.0547354i
\(441\) −3.46429 −0.164966
\(442\) −1.25483 0.245735i −0.0596862 0.0116884i
\(443\) −20.1784 −0.958707 −0.479353 0.877622i \(-0.659129\pi\)
−0.479353 + 0.877622i \(0.659129\pi\)
\(444\) −2.44084 0.994109i −0.115837 0.0471783i
\(445\) 4.35851i 0.206613i
\(446\) 37.5394 + 7.35139i 1.77754 + 0.348098i
\(447\) 4.35465 0.205968
\(448\) −6.00298 13.7931i −0.283614 0.651662i
\(449\) 17.0132 0.802902 0.401451 0.915881i \(-0.368506\pi\)
0.401451 + 0.915881i \(0.368506\pi\)
\(450\) 1.33450 6.81454i 0.0629089 0.321240i
\(451\) 16.4784i 0.775936i
\(452\) −9.75602 + 23.9540i −0.458885 + 1.12670i
\(453\) 6.96999i 0.327479i
\(454\) −15.3416 3.00436i −0.720016 0.141002i
\(455\) 1.12658 0.0528147
\(456\) 12.3313 + 8.08174i 0.577464 + 0.378462i
\(457\) −10.6168 −0.496631 −0.248316 0.968679i \(-0.579877\pi\)
−0.248316 + 0.968679i \(0.579877\pi\)
\(458\) 16.4908 + 3.22941i 0.770563 + 0.150900i
\(459\) 0.452397 0.0211161
\(460\) −0.448601 0.182707i −0.0209161 0.00851877i
\(461\) 26.5139 1.23488 0.617438 0.786619i \(-0.288171\pi\)
0.617438 + 0.786619i \(0.288171\pi\)
\(462\) 1.26244 6.44659i 0.0587343 0.299923i
\(463\) −6.87423 −0.319472 −0.159736 0.987160i \(-0.551064\pi\)
−0.159736 + 0.987160i \(0.551064\pi\)
\(464\) 25.7704 + 25.1661i 1.19636 + 1.16831i
\(465\) 2.46650i 0.114381i
\(466\) −7.46846 1.46256i −0.345970 0.0677517i
\(467\) 26.5463i 1.22842i 0.789144 + 0.614208i \(0.210524\pi\)
−0.789144 + 0.614208i \(0.789476\pi\)
\(468\) −1.50772 + 3.70191i −0.0696943 + 0.171121i
\(469\) −5.46865 14.3870i −0.252519 0.664331i
\(470\) −0.204747 + 1.04553i −0.00944429 + 0.0482267i
\(471\) −7.05972 −0.325295
\(472\) −17.8844 11.7212i −0.823195 0.539510i
\(473\) −10.9780 −0.504768
\(474\) −2.25738 + 11.5272i −0.103685 + 0.529460i
\(475\) 25.5949i 1.17437i
\(476\) −1.57566 0.641736i −0.0722201 0.0294139i
\(477\) 0.990958i 0.0453728i
\(478\) −3.92389 + 20.0371i −0.179474 + 0.916475i
\(479\) 21.1438i 0.966085i 0.875597 + 0.483043i \(0.160468\pi\)
−0.875597 + 0.483043i \(0.839532\pi\)
\(480\) 0.962941 + 1.39588i 0.0439520 + 0.0637131i
\(481\) 2.63365i 0.120084i
\(482\) −1.90846 + 9.74544i −0.0869281 + 0.443893i
\(483\) 1.51913i 0.0691228i
\(484\) 9.07172 + 3.69475i 0.412351 + 0.167943i
\(485\) −1.83192 −0.0831833
\(486\) 0.271785 1.38785i 0.0123284 0.0629542i
\(487\) 6.38117 0.289159 0.144579 0.989493i \(-0.453817\pi\)
0.144579 + 0.989493i \(0.453817\pi\)
\(488\) −21.4350 14.0482i −0.970316 0.635931i
\(489\) 19.2430i 0.870198i
\(490\) −1.44131 0.282254i −0.0651119 0.0127509i
\(491\) 29.2851i 1.32162i −0.750554 0.660810i \(-0.770213\pi\)
0.750554 0.660810i \(-0.229787\pi\)
\(492\) −5.03226 + 12.3557i −0.226872 + 0.557039i
\(493\) 4.07385 0.183477
\(494\) −2.83144 + 14.4585i −0.127392 + 0.650521i
\(495\) 0.740542i 0.0332849i
\(496\) −23.5459 22.9939i −1.05724 1.03245i
\(497\) 0.162225i 0.00727678i
\(498\) 1.14784 + 0.224782i 0.0514358 + 0.0100727i
\(499\) −40.2222 −1.80059 −0.900295 0.435280i \(-0.856650\pi\)
−0.900295 + 0.435280i \(0.856650\pi\)
\(500\) 2.24119 5.50280i 0.100229 0.246092i
\(501\) 13.2882i 0.593675i
\(502\) −4.34051 + 22.1645i −0.193727 + 0.989252i
\(503\) −32.3036 −1.44035 −0.720173 0.693794i \(-0.755938\pi\)
−0.720173 + 0.693794i \(0.755938\pi\)
\(504\) −2.91530 + 4.44822i −0.129858 + 0.198140i
\(505\) −4.96102 −0.220762
\(506\) −2.76980 0.542414i −0.123133 0.0241133i
\(507\) 9.00567 0.399956
\(508\) 0.889242 2.18336i 0.0394537 0.0968709i
\(509\) −5.29721 −0.234795 −0.117397 0.993085i \(-0.537455\pi\)
−0.117397 + 0.993085i \(0.537455\pi\)
\(510\) 0.188219 + 0.0368592i 0.00833448 + 0.00163215i
\(511\) 3.59164 0.158885
\(512\) 22.3025 + 3.82057i 0.985642 + 0.168847i
\(513\) 5.21266i 0.230145i
\(514\) −1.50768 + 7.69887i −0.0665009 + 0.339582i
\(515\) 0.377312 0.0166264
\(516\) 8.23145 + 3.35252i 0.362370 + 0.147587i
\(517\) 6.20786i 0.273021i
\(518\) 0.673440 3.43888i 0.0295893 0.151096i
\(519\) −18.7393 −0.822562
\(520\) −0.928897 + 1.41733i −0.0407348 + 0.0621540i
\(521\) 21.2420i 0.930628i 0.885146 + 0.465314i \(0.154059\pi\)
−0.885146 + 0.465314i \(0.845941\pi\)
\(522\) 2.44743 12.4976i 0.107121 0.547007i
\(523\) 32.5083i 1.42149i −0.703450 0.710745i \(-0.748358\pi\)
0.703450 0.710745i \(-0.251642\pi\)
\(524\) 6.59626 16.1958i 0.288159 0.707517i
\(525\) 9.23276 0.402950
\(526\) 26.9655 + 5.28069i 1.17575 + 0.230249i
\(527\) −3.72220 −0.162142
\(528\) 7.06944 + 6.90368i 0.307658 + 0.300444i
\(529\) 22.3473 0.971622
\(530\) 0.0807385 0.412286i 0.00350706 0.0179086i
\(531\) 7.56006i 0.328079i
\(532\) −7.39428 + 18.1552i −0.320583 + 0.787127i
\(533\) −13.3317 −0.577462
\(534\) 3.95151 20.1781i 0.170999 0.873193i
\(535\) −3.42343 −0.148008
\(536\) 22.6092 + 4.98251i 0.976567 + 0.215212i
\(537\) −0.698346 −0.0301359
\(538\) 1.39464 7.12165i 0.0601273 0.307036i
\(539\) −8.55783 −0.368612
\(540\) 0.226151 0.555270i 0.00973200 0.0238950i
\(541\) 32.7893i 1.40972i 0.709346 + 0.704860i \(0.248990\pi\)
−0.709346 + 0.704860i \(0.751010\pi\)
\(542\) −1.12958 + 5.76812i −0.0485195 + 0.247762i
\(543\) 1.39540 0.0598824
\(544\) 2.10654 1.45318i 0.0903170 0.0623045i
\(545\) −1.86094 −0.0797138
\(546\) −5.21559 1.02138i −0.223207 0.0437108i
\(547\) −4.08784 −0.174784 −0.0873918 0.996174i \(-0.527853\pi\)
−0.0873918 + 0.996174i \(0.527853\pi\)
\(548\) 12.4293 30.5177i 0.530954 1.30365i
\(549\) 9.06097i 0.386713i
\(550\) 3.29661 16.8339i 0.140568 0.717801i
\(551\) 46.9401i 1.99972i
\(552\) 1.91120 + 1.25257i 0.0813459 + 0.0533129i
\(553\) −15.6177 −0.664133
\(554\) 0.234129 1.19556i 0.00994717 0.0507946i
\(555\) 0.395036i 0.0167683i
\(556\) 25.5334 + 10.3993i 1.08286 + 0.441029i
\(557\) −1.60738 −0.0681067 −0.0340534 0.999420i \(-0.510842\pi\)
−0.0340534 + 0.999420i \(0.510842\pi\)
\(558\) −2.23617 + 11.4189i −0.0946647 + 0.483399i
\(559\) 8.88168i 0.375655i
\(560\) −1.57533 + 1.61315i −0.0665697 + 0.0681680i
\(561\) 1.11756 0.0471832
\(562\) −17.4516 3.41757i −0.736151 0.144161i
\(563\) 4.68199 0.197322 0.0986612 0.995121i \(-0.468544\pi\)
0.0986612 + 0.995121i \(0.468544\pi\)
\(564\) 1.89579 4.65475i 0.0798273 0.196000i
\(565\) 3.87681 0.163099
\(566\) 15.8298 + 3.09996i 0.665374 + 0.130301i
\(567\) 1.88035 0.0789672
\(568\) −0.204093 0.133760i −0.00856354 0.00561243i
\(569\) 19.5493 0.819549 0.409775 0.912187i \(-0.365607\pi\)
0.409775 + 0.912187i \(0.365607\pi\)
\(570\) 0.424703 2.16872i 0.0177888 0.0908376i
\(571\) 6.62279i 0.277155i 0.990352 + 0.138578i \(0.0442531\pi\)
−0.990352 + 0.138578i \(0.955747\pi\)
\(572\) −3.72451 + 9.14480i −0.155730 + 0.382364i
\(573\) 7.48899 0.312857
\(574\) −17.4079 3.40901i −0.726592 0.142289i
\(575\) 3.96689i 0.165431i
\(576\) −3.19249 7.33540i −0.133020 0.305641i
\(577\) 26.8816i 1.11910i 0.828798 + 0.559548i \(0.189025\pi\)
−0.828798 + 0.559548i \(0.810975\pi\)
\(578\) −4.56472 + 23.3094i −0.189867 + 0.969545i
\(579\) 22.3190 0.927546
\(580\) 2.03650 5.00022i 0.0845610 0.207623i
\(581\) 1.55516i 0.0645189i
\(582\) 8.48105 + 1.66085i 0.351551 + 0.0688446i
\(583\) 2.44796i 0.101384i
\(584\) −2.96142 + 4.51860i −0.122545 + 0.186981i
\(585\) 0.599132 0.0247711
\(586\) −2.97690 + 15.2013i −0.122975 + 0.627962i
\(587\) 22.3682 0.923233 0.461616 0.887080i \(-0.347270\pi\)
0.461616 + 0.887080i \(0.347270\pi\)
\(588\) 6.41679 + 2.61344i 0.264624 + 0.107777i
\(589\) 42.8884i 1.76718i
\(590\) −0.615958 + 3.14535i −0.0253586 + 0.129492i
\(591\) 21.7278i 0.893763i
\(592\) 3.77113 + 3.68271i 0.154993 + 0.151358i
\(593\) 25.0785i 1.02985i −0.857235 0.514925i \(-0.827820\pi\)
0.857235 0.514925i \(-0.172180\pi\)
\(594\) 0.671389 3.42841i 0.0275474 0.140669i
\(595\) 0.255011i 0.0104544i
\(596\) −8.06598 3.28513i −0.330395 0.134564i
\(597\) 20.9659i 0.858078i
\(598\) −0.438838 + 2.24090i −0.0179454 + 0.0916371i
\(599\) 14.4555 0.590637 0.295319 0.955399i \(-0.404574\pi\)
0.295319 + 0.955399i \(0.404574\pi\)
\(600\) −7.61270 + 11.6156i −0.310787 + 0.474205i
\(601\) 18.7178 0.763516 0.381758 0.924262i \(-0.375319\pi\)
0.381758 + 0.924262i \(0.375319\pi\)
\(602\) −2.27110 + 11.5972i −0.0925632 + 0.472668i
\(603\) −2.90832 7.65125i −0.118436 0.311583i
\(604\) −5.25812 + 12.9103i −0.213950 + 0.525312i
\(605\) 1.46821i 0.0596910i
\(606\) 22.9675 + 4.49775i 0.932990 + 0.182709i
\(607\) 35.3581i 1.43514i 0.696486 + 0.717570i \(0.254746\pi\)
−0.696486 + 0.717570i \(0.745254\pi\)
\(608\) −16.7440 24.2722i −0.679058 0.984366i
\(609\) 16.9326 0.686143
\(610\) −0.738245 + 3.76980i −0.0298907 + 0.152635i
\(611\) 5.02244 0.203186
\(612\) −0.837960 0.341286i −0.0338725 0.0137957i
\(613\) 8.76727 0.354107 0.177053 0.984201i \(-0.443343\pi\)
0.177053 + 0.984201i \(0.443343\pi\)
\(614\) 7.55482 + 1.47947i 0.304888 + 0.0597065i
\(615\) 1.99970 0.0806358
\(616\) −7.20166 + 10.9884i −0.290163 + 0.442736i
\(617\) 7.12749 0.286942 0.143471 0.989655i \(-0.454174\pi\)
0.143471 + 0.989655i \(0.454174\pi\)
\(618\) −1.74680 0.342078i −0.0702666 0.0137604i
\(619\) 14.9731i 0.601820i −0.953653 0.300910i \(-0.902710\pi\)
0.953653 0.300910i \(-0.0972904\pi\)
\(620\) −1.86071 + 4.56861i −0.0747280 + 0.183480i
\(621\) 0.807898i 0.0324198i
\(622\) 7.06580 36.0810i 0.283313 1.44672i
\(623\) 27.3386 1.09530
\(624\) 5.58539 5.71950i 0.223595 0.228963i
\(625\) 23.6601 0.946403
\(626\) 14.3820 + 2.81645i 0.574822 + 0.112568i
\(627\) 12.8768i 0.514251i
\(628\) 13.0765 + 5.32581i 0.521808 + 0.212523i
\(629\) 0.596150 0.0237701
\(630\) 0.782315 + 0.153202i 0.0311682 + 0.00610371i
\(631\) 19.6966 0.784109 0.392055 0.919942i \(-0.371764\pi\)
0.392055 + 0.919942i \(0.371764\pi\)
\(632\) 12.8773 19.6484i 0.512232 0.781573i
\(633\) 6.97627i 0.277282i
\(634\) −4.49724 + 22.9649i −0.178608 + 0.912051i
\(635\) −0.353364 −0.0140228
\(636\) −0.747573 + 1.83552i −0.0296432 + 0.0727830i
\(637\) 6.92368i 0.274326i
\(638\) 6.04588 30.8729i 0.239359 1.22227i
\(639\) 0.0862739i 0.00341294i
\(640\) −0.730575 3.31199i −0.0288785 0.130918i
\(641\) 37.1892i 1.46889i 0.678670 + 0.734443i \(0.262557\pi\)
−0.678670 + 0.734443i \(0.737443\pi\)
\(642\) 15.8491 + 3.10375i 0.625514 + 0.122495i
\(643\) 19.1573i 0.755490i −0.925910 0.377745i \(-0.876700\pi\)
0.925910 0.377745i \(-0.123300\pi\)
\(644\) −1.14602 + 2.81383i −0.0451596 + 0.110881i
\(645\) 1.33221i 0.0524558i
\(646\) −3.27282 0.640921i −0.128767 0.0252167i
\(647\) 35.0807 1.37916 0.689582 0.724208i \(-0.257794\pi\)
0.689582 + 0.724208i \(0.257794\pi\)
\(648\) −1.55041 + 2.36564i −0.0609057 + 0.0929310i
\(649\) 18.6756i 0.733081i
\(650\) −13.6194 2.66711i −0.534197 0.104613i
\(651\) −15.4710 −0.606356
\(652\) −14.5168 + 35.6431i −0.568522 + 1.39589i
\(653\) 5.38448i 0.210711i −0.994435 0.105356i \(-0.966402\pi\)
0.994435 0.105356i \(-0.0335981\pi\)
\(654\) 8.61538 + 1.68716i 0.336888 + 0.0659732i
\(655\) −2.62120 −0.102419
\(656\) 18.6422 19.0898i 0.727855 0.745331i
\(657\) 1.91010 0.0745200
\(658\) 6.55804 + 1.28427i 0.255659 + 0.0500660i
\(659\) 31.2248i 1.21635i 0.793804 + 0.608174i \(0.208098\pi\)
−0.793804 + 0.608174i \(0.791902\pi\)
\(660\) 0.558661 1.37168i 0.0217458 0.0533926i
\(661\) 50.2687i 1.95523i 0.210412 + 0.977613i \(0.432519\pi\)
−0.210412 + 0.977613i \(0.567481\pi\)
\(662\) −1.59896 + 8.16496i −0.0621452 + 0.317340i
\(663\) 0.904153i 0.0351144i
\(664\) −1.95652 1.28228i −0.0759279 0.0497621i
\(665\) 2.93831 0.113943
\(666\) 0.358147 1.82885i 0.0138779 0.0708666i
\(667\) 7.27515i 0.281695i
\(668\) 10.0246 24.6134i 0.387863 0.952320i
\(669\) 27.0486i 1.04576i
\(670\) −0.586614 3.42025i −0.0226629 0.132136i
\(671\) 22.3833i 0.864097i
\(672\) 8.75562 6.04000i 0.337756 0.232998i
\(673\) 43.7398i 1.68604i −0.537879 0.843022i \(-0.680774\pi\)
0.537879 0.843022i \(-0.319226\pi\)
\(674\) −32.5084 6.36617i −1.25218 0.245216i
\(675\) 4.91013 0.188991
\(676\) −16.6809 6.79383i −0.641573 0.261301i
\(677\) 20.5319i 0.789106i −0.918873 0.394553i \(-0.870900\pi\)
0.918873 0.394553i \(-0.129100\pi\)
\(678\) −17.9481 3.51479i −0.689291 0.134985i
\(679\) 11.4906i 0.440970i
\(680\) −0.320825 0.210264i −0.0123031 0.00806327i
\(681\) 11.0542i 0.423598i
\(682\) −5.52401 + 28.2080i −0.211525 + 1.08014i
\(683\) −25.7395 −0.984894 −0.492447 0.870342i \(-0.663897\pi\)
−0.492447 + 0.870342i \(0.663897\pi\)
\(684\) −3.93240 + 9.65523i −0.150359 + 0.369177i
\(685\) −4.93911 −0.188714
\(686\) −5.34778 + 27.3081i −0.204179 + 1.04263i
\(687\) 11.8822i 0.453335i
\(688\) −12.7177 12.4195i −0.484858 0.473490i
\(689\) −1.98051 −0.0754514
\(690\) 0.0658237 0.336125i 0.00250587 0.0127960i
\(691\) 7.42817i 0.282581i 0.989968 + 0.141291i \(0.0451252\pi\)
−0.989968 + 0.141291i \(0.954875\pi\)
\(692\) 34.7101 + 14.1368i 1.31948 + 0.537400i
\(693\) 4.64502 0.176450
\(694\) 3.86273 19.7248i 0.146627 0.748743i
\(695\) 4.13244i 0.156752i
\(696\) −13.9614 + 21.3026i −0.529207 + 0.807474i
\(697\) 3.01776i 0.114306i
\(698\) −7.04187 + 35.9588i −0.266539 + 1.36106i
\(699\) 5.38131i 0.203540i
\(700\) −17.1015 6.96514i −0.646377 0.263257i
\(701\) 16.4094i 0.619776i 0.950773 + 0.309888i \(0.100291\pi\)
−0.950773 + 0.309888i \(0.899709\pi\)
\(702\) −2.77374 0.543184i −0.104688 0.0205012i
\(703\) 6.86902i 0.259070i
\(704\) −7.88639 18.1206i −0.297229 0.682946i
\(705\) −0.753344 −0.0283726
\(706\) −45.1244 8.83677i −1.69828 0.332576i
\(707\) 31.1178i 1.17030i
\(708\) 5.70327 14.0032i 0.214342 0.526274i
\(709\) 25.0894 0.942250 0.471125 0.882066i \(-0.343848\pi\)
0.471125 + 0.882066i \(0.343848\pi\)
\(710\) −0.00702919 + 0.0358941i −0.000263801 + 0.00134708i
\(711\) −8.30576 −0.311490
\(712\) −22.5415 + 34.3943i −0.844779 + 1.28898i
\(713\) 6.64717i 0.248939i
\(714\) 0.231198 1.18060i 0.00865235 0.0441827i
\(715\) 1.48003 0.0553501
\(716\) 1.29352 + 0.526828i 0.0483412 + 0.0196885i
\(717\) −14.4375 −0.539177
\(718\) −29.0400 5.68694i −1.08376 0.212235i
\(719\) 27.9871i 1.04374i −0.853024 0.521872i \(-0.825234\pi\)
0.853024 0.521872i \(-0.174766\pi\)
\(720\) −0.837784 + 0.857900i −0.0312224 + 0.0319720i
\(721\) 2.36667i 0.0881395i
\(722\) −2.22098 + 11.3413i −0.0826563 + 0.422079i
\(723\) −7.02196 −0.261150
\(724\) −2.58465 1.05268i −0.0960579 0.0391226i
\(725\) 44.2159 1.64214
\(726\) −1.33110 + 6.79719i −0.0494019 + 0.252267i
\(727\) 36.2677 1.34509 0.672547 0.740054i \(-0.265200\pi\)
0.672547 + 0.740054i \(0.265200\pi\)
\(728\) 8.89013 + 5.82647i 0.329490 + 0.215943i
\(729\) 1.00000 0.0370370
\(730\) 0.794692 + 0.155626i 0.0294129 + 0.00575996i
\(731\) −2.01045 −0.0743591
\(732\) 6.83555 16.7833i 0.252649 0.620330i
\(733\) 33.3050i 1.23015i 0.788469 + 0.615075i \(0.210874\pi\)
−0.788469 + 0.615075i \(0.789126\pi\)
\(734\) −8.68662 + 44.3577i −0.320629 + 1.63727i
\(735\) 1.03852i 0.0383064i
\(736\) −2.59511 3.76189i −0.0956570 0.138665i
\(737\) −7.18441 18.9009i −0.264641 0.696222i
\(738\) −9.25781 1.81297i −0.340785 0.0667363i
\(739\) 51.5367 1.89581 0.947905 0.318554i \(-0.103197\pi\)
0.947905 + 0.318554i \(0.103197\pi\)
\(740\) 0.298013 0.731711i 0.0109552 0.0268982i
\(741\) −10.4179 −0.382712
\(742\) −2.58605 0.506429i −0.0949367 0.0185916i
\(743\) 31.2773i 1.14745i −0.819047 0.573726i \(-0.805497\pi\)
0.819047 0.573726i \(-0.194503\pi\)
\(744\) 12.7563 19.4638i 0.467669 0.713579i
\(745\) 1.30543i 0.0478273i
\(746\) −5.72646 1.12142i −0.209661 0.0410581i
\(747\) 0.827060i 0.0302605i
\(748\) −2.07001 0.843077i −0.0756871 0.0308260i
\(749\) 21.4733i 0.784619i
\(750\) 4.12309 + 0.807431i 0.150554 + 0.0294832i
\(751\) 2.19849i 0.0802239i 0.999195 + 0.0401119i \(0.0127715\pi\)
−0.999195 + 0.0401119i \(0.987229\pi\)
\(752\) −7.02303 + 7.19165i −0.256103 + 0.262253i
\(753\) −15.9704 −0.581994
\(754\) −24.9776 4.89139i −0.909629 0.178134i
\(755\) 2.08945 0.0760430
\(756\) −3.48290 1.41852i −0.126672 0.0515912i
\(757\) 22.9756i 0.835062i −0.908663 0.417531i \(-0.862895\pi\)
0.908663 0.417531i \(-0.137105\pi\)
\(758\) 2.37926 12.1495i 0.0864186 0.441291i
\(759\) 1.99575i 0.0724411i
\(760\) −2.42273 + 3.69665i −0.0878817 + 0.134092i
\(761\) −23.3543 −0.846592 −0.423296 0.905992i \(-0.639127\pi\)
−0.423296 + 0.905992i \(0.639127\pi\)
\(762\) 1.63593 + 0.320366i 0.0592635 + 0.0116057i
\(763\) 11.6727i 0.422578i
\(764\) −13.8716 5.64965i −0.501857 0.204397i
\(765\) 0.135619i 0.00490331i
\(766\) −1.92547 + 9.83227i −0.0695699 + 0.355254i
\(767\) 15.1094 0.545569
\(768\) 0.379553 + 15.9955i 0.0136959 + 0.577188i
\(769\) 31.8435i 1.14830i −0.818749 0.574152i \(-0.805332\pi\)
0.818749 0.574152i \(-0.194668\pi\)
\(770\) 1.93255 + 0.378454i 0.0696443 + 0.0136385i
\(771\) −5.54733 −0.199782
\(772\) −41.3407 16.8373i −1.48789