Properties

Label 804.2.e.a.535.9
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.9
Character \(\chi\) = 804.535
Dual form 804.2.e.a.535.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.946315 - 1.05095i) q^{2} -1.00000 q^{3} +(-0.208975 + 1.98905i) q^{4} -4.42921i q^{5} +(0.946315 + 1.05095i) q^{6} -2.81753 q^{7} +(2.28814 - 1.66265i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(-0.946315 - 1.05095i) q^{2} -1.00000 q^{3} +(-0.208975 + 1.98905i) q^{4} -4.42921i q^{5} +(0.946315 + 1.05095i) q^{6} -2.81753 q^{7} +(2.28814 - 1.66265i) q^{8} +1.00000 q^{9} +(-4.65486 + 4.19143i) q^{10} -4.49085 q^{11} +(0.208975 - 1.98905i) q^{12} +6.44697i q^{13} +(2.66628 + 2.96108i) q^{14} +4.42921i q^{15} +(-3.91266 - 0.831325i) q^{16} +1.33300 q^{17} +(-0.946315 - 1.05095i) q^{18} -1.70948i q^{19} +(8.80993 + 0.925594i) q^{20} +2.81753 q^{21} +(4.24976 + 4.71965i) q^{22} -3.41301i q^{23} +(-2.28814 + 1.66265i) q^{24} -14.6179 q^{25} +(6.77542 - 6.10087i) q^{26} -1.00000 q^{27} +(0.588795 - 5.60422i) q^{28} -3.13779 q^{29} +(4.65486 - 4.19143i) q^{30} +8.45275 q^{31} +(2.82893 + 4.89869i) q^{32} +4.49085 q^{33} +(-1.26144 - 1.40092i) q^{34} +12.4794i q^{35} +(-0.208975 + 1.98905i) q^{36} +5.75928 q^{37} +(-1.79658 + 1.61771i) q^{38} -6.44697i q^{39} +(-7.36422 - 10.1347i) q^{40} +5.15047i q^{41} +(-2.66628 - 2.96108i) q^{42} +1.06496 q^{43} +(0.938477 - 8.93254i) q^{44} -4.42921i q^{45} +(-3.58689 + 3.22978i) q^{46} -4.52896i q^{47} +(3.91266 + 0.831325i) q^{48} +0.938501 q^{49} +(13.8331 + 15.3626i) q^{50} -1.33300 q^{51} +(-12.8234 - 1.34726i) q^{52} +4.63647i q^{53} +(0.946315 + 1.05095i) q^{54} +19.8909i q^{55} +(-6.44692 + 4.68457i) q^{56} +1.70948i q^{57} +(2.96934 + 3.29764i) q^{58} +10.2820i q^{59} +(-8.80993 - 0.925594i) q^{60} +9.66191i q^{61} +(-7.99897 - 8.88339i) q^{62} -2.81753 q^{63} +(2.47120 - 7.60876i) q^{64} +28.5550 q^{65} +(-4.24976 - 4.71965i) q^{66} +(6.48382 + 4.99600i) q^{67} +(-0.278565 + 2.65142i) q^{68} +3.41301i q^{69} +(13.1152 - 11.8095i) q^{70} +0.479394i q^{71} +(2.28814 - 1.66265i) q^{72} +3.68198 q^{73} +(-5.45009 - 6.05269i) q^{74} +14.6179 q^{75} +(3.40026 + 0.357240i) q^{76} +12.6531 q^{77} +(-6.77542 + 6.10087i) q^{78} -9.91224 q^{79} +(-3.68211 + 17.3300i) q^{80} +1.00000 q^{81} +(5.41286 - 4.87397i) q^{82} +8.53248i q^{83} +(-0.588795 + 5.60422i) q^{84} -5.90416i q^{85} +(-1.00779 - 1.11921i) q^{86} +3.13779 q^{87} +(-10.2757 + 7.46671i) q^{88} -11.6876 q^{89} +(-4.65486 + 4.19143i) q^{90} -18.1646i q^{91} +(6.78865 + 0.713234i) q^{92} -8.45275 q^{93} +(-4.75969 + 4.28582i) q^{94} -7.57166 q^{95} +(-2.82893 - 4.89869i) q^{96} -13.2311i q^{97} +(-0.888118 - 0.986314i) q^{98} -4.49085 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} - 6q^{10} - 2q^{12} - 4q^{14} + 2q^{16} + 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} - 34q^{27} + 8q^{28} - 16q^{29} + 6q^{30} + 4q^{31} + 2q^{36} + 12q^{37} - 26q^{38} - 18q^{40} + 4q^{42} + 4q^{43} - 26q^{44} + 4q^{46} - 2q^{48} + 46q^{49} + 18q^{50} - 32q^{52} + 14q^{56} - 4q^{58} - 12q^{60} - 2q^{62} - 4q^{63} + 26q^{64} + 8q^{66} + 18q^{67} - 34q^{68} - 56q^{70} + 6q^{72} + 12q^{73} - 22q^{74} + 34q^{75} - 32q^{76} - 8q^{77} - 10q^{78} + 12q^{79} + 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} + 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} - 32q^{94} + 40q^{95} + 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.946315 1.05095i −0.669146 0.743131i
\(3\) −1.00000 −0.577350
\(4\) −0.208975 + 1.98905i −0.104488 + 0.994526i
\(5\) 4.42921i 1.98080i −0.138224 0.990401i \(-0.544139\pi\)
0.138224 0.990401i \(-0.455861\pi\)
\(6\) 0.946315 + 1.05095i 0.386332 + 0.429047i
\(7\) −2.81753 −1.06493 −0.532464 0.846453i \(-0.678734\pi\)
−0.532464 + 0.846453i \(0.678734\pi\)
\(8\) 2.28814 1.66265i 0.808981 0.587835i
\(9\) 1.00000 0.333333
\(10\) −4.65486 + 4.19143i −1.47200 + 1.32545i
\(11\) −4.49085 −1.35404 −0.677022 0.735963i \(-0.736730\pi\)
−0.677022 + 0.735963i \(0.736730\pi\)
\(12\) 0.208975 1.98905i 0.0603259 0.574190i
\(13\) 6.44697i 1.78807i 0.447998 + 0.894035i \(0.352137\pi\)
−0.447998 + 0.894035i \(0.647863\pi\)
\(14\) 2.66628 + 2.96108i 0.712592 + 0.791381i
\(15\) 4.42921i 1.14362i
\(16\) −3.91266 0.831325i −0.978165 0.207831i
\(17\) 1.33300 0.323301 0.161651 0.986848i \(-0.448318\pi\)
0.161651 + 0.986848i \(0.448318\pi\)
\(18\) −0.946315 1.05095i −0.223049 0.247710i
\(19\) 1.70948i 0.392183i −0.980586 0.196091i \(-0.937175\pi\)
0.980586 0.196091i \(-0.0628249\pi\)
\(20\) 8.80993 + 0.925594i 1.96996 + 0.206969i
\(21\) 2.81753 0.614836
\(22\) 4.24976 + 4.71965i 0.906053 + 1.00623i
\(23\) 3.41301i 0.711661i −0.934551 0.355830i \(-0.884198\pi\)
0.934551 0.355830i \(-0.115802\pi\)
\(24\) −2.28814 + 1.66265i −0.467065 + 0.339387i
\(25\) −14.6179 −2.92358
\(26\) 6.77542 6.10087i 1.32877 1.19648i
\(27\) −1.00000 −0.192450
\(28\) 0.588795 5.60422i 0.111272 1.05910i
\(29\) −3.13779 −0.582672 −0.291336 0.956621i \(-0.594100\pi\)
−0.291336 + 0.956621i \(0.594100\pi\)
\(30\) 4.65486 4.19143i 0.849857 0.765246i
\(31\) 8.45275 1.51816 0.759080 0.650998i \(-0.225649\pi\)
0.759080 + 0.650998i \(0.225649\pi\)
\(32\) 2.82893 + 4.89869i 0.500089 + 0.865974i
\(33\) 4.49085 0.781757
\(34\) −1.26144 1.40092i −0.216336 0.240255i
\(35\) 12.4794i 2.10941i
\(36\) −0.208975 + 1.98905i −0.0348292 + 0.331509i
\(37\) 5.75928 0.946820 0.473410 0.880842i \(-0.343023\pi\)
0.473410 + 0.880842i \(0.343023\pi\)
\(38\) −1.79658 + 1.61771i −0.291443 + 0.262427i
\(39\) 6.44697i 1.03234i
\(40\) −7.36422 10.1347i −1.16438 1.60243i
\(41\) 5.15047i 0.804368i 0.915559 + 0.402184i \(0.131749\pi\)
−0.915559 + 0.402184i \(0.868251\pi\)
\(42\) −2.66628 2.96108i −0.411415 0.456904i
\(43\) 1.06496 0.162404 0.0812022 0.996698i \(-0.474124\pi\)
0.0812022 + 0.996698i \(0.474124\pi\)
\(44\) 0.938477 8.93254i 0.141481 1.34663i
\(45\) 4.42921i 0.660267i
\(46\) −3.58689 + 3.22978i −0.528857 + 0.476205i
\(47\) 4.52896i 0.660617i −0.943873 0.330308i \(-0.892847\pi\)
0.943873 0.330308i \(-0.107153\pi\)
\(48\) 3.91266 + 0.831325i 0.564744 + 0.119991i
\(49\) 0.938501 0.134072
\(50\) 13.8331 + 15.3626i 1.95630 + 2.17260i
\(51\) −1.33300 −0.186658
\(52\) −12.8234 1.34726i −1.77828 0.186831i
\(53\) 4.63647i 0.636869i 0.947945 + 0.318434i \(0.103157\pi\)
−0.947945 + 0.318434i \(0.896843\pi\)
\(54\) 0.946315 + 1.05095i 0.128777 + 0.143016i
\(55\) 19.8909i 2.68209i
\(56\) −6.44692 + 4.68457i −0.861506 + 0.626002i
\(57\) 1.70948i 0.226427i
\(58\) 2.96934 + 3.29764i 0.389893 + 0.433002i
\(59\) 10.2820i 1.33860i 0.742991 + 0.669301i \(0.233406\pi\)
−0.742991 + 0.669301i \(0.766594\pi\)
\(60\) −8.80993 0.925594i −1.13736 0.119494i
\(61\) 9.66191i 1.23708i 0.785753 + 0.618540i \(0.212276\pi\)
−0.785753 + 0.618540i \(0.787724\pi\)
\(62\) −7.99897 8.88339i −1.01587 1.12819i
\(63\) −2.81753 −0.354976
\(64\) 2.47120 7.60876i 0.308900 0.951095i
\(65\) 28.5550 3.54181
\(66\) −4.24976 4.71965i −0.523110 0.580948i
\(67\) 6.48382 + 4.99600i 0.792125 + 0.610359i
\(68\) −0.278565 + 2.65142i −0.0337810 + 0.321531i
\(69\) 3.41301i 0.410878i
\(70\) 13.1152 11.8095i 1.56757 1.41150i
\(71\) 0.479394i 0.0568935i 0.999595 + 0.0284468i \(0.00905611\pi\)
−0.999595 + 0.0284468i \(0.990944\pi\)
\(72\) 2.28814 1.66265i 0.269660 0.195945i
\(73\) 3.68198 0.430943 0.215471 0.976510i \(-0.430871\pi\)
0.215471 + 0.976510i \(0.430871\pi\)
\(74\) −5.45009 6.05269i −0.633560 0.703611i
\(75\) 14.6179 1.68793
\(76\) 3.40026 + 0.357240i 0.390036 + 0.0409782i
\(77\) 12.6531 1.44196
\(78\) −6.77542 + 6.10087i −0.767166 + 0.690787i
\(79\) −9.91224 −1.11521 −0.557607 0.830105i \(-0.688280\pi\)
−0.557607 + 0.830105i \(0.688280\pi\)
\(80\) −3.68211 + 17.3300i −0.411673 + 1.93755i
\(81\) 1.00000 0.111111
\(82\) 5.41286 4.87397i 0.597751 0.538240i
\(83\) 8.53248i 0.936561i 0.883580 + 0.468281i \(0.155126\pi\)
−0.883580 + 0.468281i \(0.844874\pi\)
\(84\) −0.588795 + 5.60422i −0.0642428 + 0.611471i
\(85\) 5.90416i 0.640396i
\(86\) −1.00779 1.11921i −0.108672 0.120688i
\(87\) 3.13779 0.336406
\(88\) −10.2757 + 7.46671i −1.09540 + 0.795954i
\(89\) −11.6876 −1.23888 −0.619441 0.785043i \(-0.712641\pi\)
−0.619441 + 0.785043i \(0.712641\pi\)
\(90\) −4.65486 + 4.19143i −0.490665 + 0.441815i
\(91\) 18.1646i 1.90416i
\(92\) 6.78865 + 0.713234i 0.707765 + 0.0743597i
\(93\) −8.45275 −0.876510
\(94\) −4.75969 + 4.28582i −0.490925 + 0.442049i
\(95\) −7.57166 −0.776836
\(96\) −2.82893 4.89869i −0.288727 0.499970i
\(97\) 13.2311i 1.34342i −0.740814 0.671710i \(-0.765560\pi\)
0.740814 0.671710i \(-0.234440\pi\)
\(98\) −0.888118 0.986314i −0.0897135 0.0996328i
\(99\) −4.49085 −0.451348
\(100\) 3.05477 29.0757i 0.305477 2.90757i
\(101\) 4.40366i 0.438180i 0.975705 + 0.219090i \(0.0703089\pi\)
−0.975705 + 0.219090i \(0.929691\pi\)
\(102\) 1.26144 + 1.40092i 0.124901 + 0.138711i
\(103\) 8.63164i 0.850501i −0.905076 0.425250i \(-0.860186\pi\)
0.905076 0.425250i \(-0.139814\pi\)
\(104\) 10.7191 + 14.7516i 1.05109 + 1.44651i
\(105\) 12.4794i 1.21787i
\(106\) 4.87268 4.38757i 0.473277 0.426158i
\(107\) 4.97798i 0.481239i 0.970620 + 0.240620i \(0.0773506\pi\)
−0.970620 + 0.240620i \(0.922649\pi\)
\(108\) 0.208975 1.98905i 0.0201086 0.191397i
\(109\) 6.06886i 0.581291i 0.956831 + 0.290646i \(0.0938701\pi\)
−0.956831 + 0.290646i \(0.906130\pi\)
\(110\) 20.9043 18.8231i 1.99315 1.79471i
\(111\) −5.75928 −0.546647
\(112\) 11.0241 + 2.34229i 1.04167 + 0.221325i
\(113\) 11.7654i 1.10679i −0.832917 0.553397i \(-0.813331\pi\)
0.832917 0.553397i \(-0.186669\pi\)
\(114\) 1.79658 1.61771i 0.168265 0.151513i
\(115\) −15.1169 −1.40966
\(116\) 0.655720 6.24122i 0.0608820 0.579483i
\(117\) 6.44697i 0.596023i
\(118\) 10.8058 9.73001i 0.994757 0.895720i
\(119\) −3.75579 −0.344292
\(120\) 7.36422 + 10.1347i 0.672258 + 0.925164i
\(121\) 9.16777 0.833434
\(122\) 10.1541 9.14321i 0.919313 0.827787i
\(123\) 5.15047i 0.464402i
\(124\) −1.76642 + 16.8130i −0.158629 + 1.50985i
\(125\) 42.5996i 3.81022i
\(126\) 2.66628 + 2.96108i 0.237531 + 0.263794i
\(127\) 6.70864i 0.595296i 0.954676 + 0.297648i \(0.0962021\pi\)
−0.954676 + 0.297648i \(0.903798\pi\)
\(128\) −10.3349 + 4.60319i −0.913487 + 0.406868i
\(129\) −1.06496 −0.0937643
\(130\) −27.0220 30.0098i −2.36999 2.63203i
\(131\) 2.95058i 0.257794i −0.991658 0.128897i \(-0.958856\pi\)
0.991658 0.128897i \(-0.0411436\pi\)
\(132\) −0.938477 + 8.93254i −0.0816839 + 0.777478i
\(133\) 4.81653i 0.417646i
\(134\) −0.885215 11.5419i −0.0764709 0.997072i
\(135\) 4.42921i 0.381206i
\(136\) 3.05011 2.21632i 0.261544 0.190048i
\(137\) 6.89136i 0.588769i −0.955687 0.294384i \(-0.904885\pi\)
0.955687 0.294384i \(-0.0951146\pi\)
\(138\) 3.58689 3.22978i 0.305336 0.274937i
\(139\) −3.31586 −0.281247 −0.140624 0.990063i \(-0.544911\pi\)
−0.140624 + 0.990063i \(0.544911\pi\)
\(140\) −24.8223 2.60789i −2.09786 0.220407i
\(141\) 4.52896i 0.381407i
\(142\) 0.503817 0.453657i 0.0422794 0.0380701i
\(143\) 28.9524i 2.42112i
\(144\) −3.91266 0.831325i −0.326055 0.0692771i
\(145\) 13.8979i 1.15416i
\(146\) −3.48431 3.86956i −0.288364 0.320247i
\(147\) −0.938501 −0.0774063
\(148\) −1.20355 + 11.4555i −0.0989309 + 0.941637i
\(149\) −19.2320 −1.57555 −0.787773 0.615966i \(-0.788766\pi\)
−0.787773 + 0.615966i \(0.788766\pi\)
\(150\) −13.8331 15.3626i −1.12947 1.25435i
\(151\) 11.1412i 0.906658i 0.891343 + 0.453329i \(0.149764\pi\)
−0.891343 + 0.453329i \(0.850236\pi\)
\(152\) −2.84227 3.91155i −0.230539 0.317268i
\(153\) 1.33300 0.107767
\(154\) −11.9739 13.2978i −0.964881 1.07156i
\(155\) 37.4390i 3.00717i
\(156\) 12.8234 + 1.34726i 1.02669 + 0.107867i
\(157\) −10.8432 −0.865384 −0.432692 0.901542i \(-0.642436\pi\)
−0.432692 + 0.901542i \(0.642436\pi\)
\(158\) 9.38010 + 10.4172i 0.746241 + 0.828750i
\(159\) 4.63647i 0.367696i
\(160\) 21.6973 12.5299i 1.71532 0.990577i
\(161\) 9.61626i 0.757868i
\(162\) −0.946315 1.05095i −0.0743495 0.0825701i
\(163\) 17.2780i 1.35331i 0.736299 + 0.676657i \(0.236572\pi\)
−0.736299 + 0.676657i \(0.763428\pi\)
\(164\) −10.2446 1.07632i −0.799965 0.0840465i
\(165\) 19.8909i 1.54851i
\(166\) 8.96718 8.07442i 0.695988 0.626696i
\(167\) 12.4165i 0.960814i 0.877046 + 0.480407i \(0.159511\pi\)
−0.877046 + 0.480407i \(0.840489\pi\)
\(168\) 6.44692 4.68457i 0.497391 0.361422i
\(169\) −28.5635 −2.19719
\(170\) −6.20495 + 5.58719i −0.475898 + 0.428518i
\(171\) 1.70948i 0.130728i
\(172\) −0.222550 + 2.11826i −0.0169692 + 0.161515i
\(173\) 18.7820 1.42797 0.713986 0.700160i \(-0.246888\pi\)
0.713986 + 0.700160i \(0.246888\pi\)
\(174\) −2.96934 3.29764i −0.225105 0.249994i
\(175\) 41.1864 3.11340
\(176\) 17.5712 + 3.73336i 1.32448 + 0.281413i
\(177\) 10.2820i 0.772843i
\(178\) 11.0601 + 12.2830i 0.828993 + 0.920652i
\(179\) −0.502646 −0.0375695 −0.0187848 0.999824i \(-0.505980\pi\)
−0.0187848 + 0.999824i \(0.505980\pi\)
\(180\) 8.80993 + 0.925594i 0.656653 + 0.0689897i
\(181\) −15.4255 −1.14657 −0.573285 0.819356i \(-0.694331\pi\)
−0.573285 + 0.819356i \(0.694331\pi\)
\(182\) −19.0900 + 17.1894i −1.41504 + 1.27416i
\(183\) 9.66191i 0.714229i
\(184\) −5.67463 7.80945i −0.418339 0.575720i
\(185\) 25.5090i 1.87546i
\(186\) 7.99897 + 8.88339i 0.586513 + 0.651362i
\(187\) −5.98633 −0.437764
\(188\) 9.00834 + 0.946440i 0.657001 + 0.0690262i
\(189\) 2.81753 0.204945
\(190\) 7.16518 + 7.95741i 0.519817 + 0.577291i
\(191\) −6.61535 −0.478670 −0.239335 0.970937i \(-0.576929\pi\)
−0.239335 + 0.970937i \(0.576929\pi\)
\(192\) −2.47120 + 7.60876i −0.178343 + 0.549115i
\(193\) −7.57636 −0.545358 −0.272679 0.962105i \(-0.587910\pi\)
−0.272679 + 0.962105i \(0.587910\pi\)
\(194\) −13.9052 + 12.5208i −0.998337 + 0.898944i
\(195\) −28.5550 −2.04487
\(196\) −0.196123 + 1.86673i −0.0140088 + 0.133338i
\(197\) 7.80716i 0.556237i 0.960547 + 0.278119i \(0.0897108\pi\)
−0.960547 + 0.278119i \(0.910289\pi\)
\(198\) 4.24976 + 4.71965i 0.302018 + 0.335411i
\(199\) 6.41107i 0.454469i 0.973840 + 0.227234i \(0.0729684\pi\)
−0.973840 + 0.227234i \(0.927032\pi\)
\(200\) −33.4478 + 24.3044i −2.36512 + 1.71858i
\(201\) −6.48382 4.99600i −0.457334 0.352391i
\(202\) 4.62801 4.16725i 0.325626 0.293207i
\(203\) 8.84082 0.620504
\(204\) 0.278565 2.65142i 0.0195034 0.185636i
\(205\) 22.8125 1.59329
\(206\) −9.07139 + 8.16825i −0.632033 + 0.569109i
\(207\) 3.41301i 0.237220i
\(208\) 5.35953 25.2248i 0.371617 1.74903i
\(209\) 7.67705i 0.531033i
\(210\) −13.1152 + 11.8095i −0.905036 + 0.814932i
\(211\) 9.57658i 0.659279i −0.944107 0.329639i \(-0.893073\pi\)
0.944107 0.329639i \(-0.106927\pi\)
\(212\) −9.22219 0.968908i −0.633383 0.0665449i
\(213\) 0.479394i 0.0328475i
\(214\) 5.23158 4.71073i 0.357624 0.322019i
\(215\) 4.71692i 0.321691i
\(216\) −2.28814 + 1.66265i −0.155688 + 0.113129i
\(217\) −23.8159 −1.61673
\(218\) 6.37804 5.74305i 0.431976 0.388969i
\(219\) −3.68198 −0.248805
\(220\) −39.5641 4.15671i −2.66741 0.280245i
\(221\) 8.59385i 0.578085i
\(222\) 5.45009 + 6.05269i 0.365786 + 0.406230i
\(223\) 20.5887i 1.37872i 0.724418 + 0.689361i \(0.242108\pi\)
−0.724418 + 0.689361i \(0.757892\pi\)
\(224\) −7.97061 13.8022i −0.532559 0.922200i
\(225\) −14.6179 −0.974525
\(226\) −12.3648 + 11.1338i −0.822493 + 0.740607i
\(227\) 8.99211i 0.596827i −0.954437 0.298414i \(-0.903542\pi\)
0.954437 0.298414i \(-0.0964575\pi\)
\(228\) −3.40026 0.357240i −0.225187 0.0236588i
\(229\) 2.72243i 0.179903i −0.995946 0.0899515i \(-0.971329\pi\)
0.995946 0.0899515i \(-0.0286712\pi\)
\(230\) 14.3054 + 15.8871i 0.943268 + 1.04756i
\(231\) −12.6531 −0.832515
\(232\) −7.17971 + 5.21704i −0.471371 + 0.342515i
\(233\) 18.8884i 1.23742i −0.785620 0.618709i \(-0.787656\pi\)
0.785620 0.618709i \(-0.212344\pi\)
\(234\) 6.77542 6.10087i 0.442923 0.398826i
\(235\) −20.0597 −1.30855
\(236\) −20.4514 2.14868i −1.33128 0.139867i
\(237\) 9.91224 0.643869
\(238\) 3.55416 + 3.94713i 0.230382 + 0.255854i
\(239\) −26.7279 −1.72888 −0.864441 0.502734i \(-0.832328\pi\)
−0.864441 + 0.502734i \(0.832328\pi\)
\(240\) 3.68211 17.3300i 0.237679 1.11865i
\(241\) 12.0626 0.777023 0.388511 0.921444i \(-0.372989\pi\)
0.388511 + 0.921444i \(0.372989\pi\)
\(242\) −8.67560 9.63483i −0.557689 0.619351i
\(243\) −1.00000 −0.0641500
\(244\) −19.2180 2.01910i −1.23031 0.129260i
\(245\) 4.15682i 0.265569i
\(246\) −5.41286 + 4.87397i −0.345112 + 0.310753i
\(247\) 11.0210 0.701250
\(248\) 19.3411 14.0540i 1.22816 0.892427i
\(249\) 8.53248i 0.540724i
\(250\) 44.7699 40.3126i 2.83150 2.54960i
\(251\) −25.4913 −1.60900 −0.804499 0.593955i \(-0.797566\pi\)
−0.804499 + 0.593955i \(0.797566\pi\)
\(252\) 0.588795 5.60422i 0.0370906 0.353033i
\(253\) 15.3273i 0.963620i
\(254\) 7.05042 6.34849i 0.442383 0.398340i
\(255\) 5.90416i 0.369733i
\(256\) 14.6178 + 6.50538i 0.913612 + 0.406586i
\(257\) 12.9570 0.808235 0.404118 0.914707i \(-0.367579\pi\)
0.404118 + 0.914707i \(0.367579\pi\)
\(258\) 1.00779 + 1.11921i 0.0627420 + 0.0696791i
\(259\) −16.2270 −1.00829
\(260\) −5.96728 + 56.7974i −0.370075 + 3.52242i
\(261\) −3.13779 −0.194224
\(262\) −3.10090 + 2.79218i −0.191574 + 0.172502i
\(263\) 1.56509i 0.0965074i 0.998835 + 0.0482537i \(0.0153656\pi\)
−0.998835 + 0.0482537i \(0.984634\pi\)
\(264\) 10.2757 7.46671i 0.632427 0.459544i
\(265\) 20.5359 1.26151
\(266\) 5.06192 4.55796i 0.310366 0.279466i
\(267\) 11.6876 0.715269
\(268\) −11.2923 + 11.8526i −0.689785 + 0.724014i
\(269\) 6.01649 0.366832 0.183416 0.983035i \(-0.441285\pi\)
0.183416 + 0.983035i \(0.441285\pi\)
\(270\) 4.65486 4.19143i 0.283286 0.255082i
\(271\) −25.6297 −1.55689 −0.778446 0.627712i \(-0.783992\pi\)
−0.778446 + 0.627712i \(0.783992\pi\)
\(272\) −5.21559 1.10816i −0.316242 0.0671921i
\(273\) 18.1646i 1.09937i
\(274\) −7.24245 + 6.52140i −0.437532 + 0.393972i
\(275\) 65.6468 3.95865
\(276\) −6.78865 0.713234i −0.408629 0.0429316i
\(277\) 5.21072 0.313082 0.156541 0.987671i \(-0.449966\pi\)
0.156541 + 0.987671i \(0.449966\pi\)
\(278\) 3.13784 + 3.48479i 0.188195 + 0.209004i
\(279\) 8.45275 0.506053
\(280\) 20.7489 + 28.5548i 1.23999 + 1.70647i
\(281\) 24.6197i 1.46869i −0.678778 0.734344i \(-0.737490\pi\)
0.678778 0.734344i \(-0.262510\pi\)
\(282\) 4.75969 4.28582i 0.283436 0.255217i
\(283\) 8.75201i 0.520253i 0.965575 + 0.260126i \(0.0837642\pi\)
−0.965575 + 0.260126i \(0.916236\pi\)
\(284\) −0.953539 0.100181i −0.0565821 0.00594467i
\(285\) 7.57166 0.448507
\(286\) −30.4274 + 27.3981i −1.79921 + 1.62008i
\(287\) 14.5116i 0.856594i
\(288\) 2.82893 + 4.89869i 0.166696 + 0.288658i
\(289\) −15.2231 −0.895476
\(290\) 14.6060 13.1518i 0.857691 0.772300i
\(291\) 13.2311i 0.775624i
\(292\) −0.769442 + 7.32364i −0.0450282 + 0.428584i
\(293\) −12.2547 −0.715929 −0.357965 0.933735i \(-0.616529\pi\)
−0.357965 + 0.933735i \(0.616529\pi\)
\(294\) 0.888118 + 0.986314i 0.0517961 + 0.0575230i
\(295\) 45.5411 2.65151
\(296\) 13.1781 9.57566i 0.765959 0.556574i
\(297\) 4.49085 0.260586
\(298\) 18.1995 + 20.2118i 1.05427 + 1.17084i
\(299\) 22.0036 1.27250
\(300\) −3.05477 + 29.0757i −0.176367 + 1.67869i
\(301\) −3.00055 −0.172949
\(302\) 11.7088 10.5431i 0.673766 0.606686i
\(303\) 4.40366i 0.252984i
\(304\) −1.42114 + 6.68863i −0.0815078 + 0.383619i
\(305\) 42.7946 2.45041
\(306\) −1.26144 1.40092i −0.0721119 0.0800850i
\(307\) 20.6834i 1.18046i −0.807234 0.590232i \(-0.799036\pi\)
0.807234 0.590232i \(-0.200964\pi\)
\(308\) −2.64419 + 25.1678i −0.150667 + 1.43407i
\(309\) 8.63164i 0.491037i
\(310\) −39.3464 + 35.4291i −2.23472 + 2.01224i
\(311\) −6.74222 −0.382316 −0.191158 0.981559i \(-0.561224\pi\)
−0.191158 + 0.981559i \(0.561224\pi\)
\(312\) −10.7191 14.7516i −0.606847 0.835145i
\(313\) 6.93434i 0.391952i −0.980609 0.195976i \(-0.937213\pi\)
0.980609 0.195976i \(-0.0627875\pi\)
\(314\) 10.2611 + 11.3957i 0.579068 + 0.643094i
\(315\) 12.4794i 0.703137i
\(316\) 2.07141 19.7160i 0.116526 1.10911i
\(317\) −17.2122 −0.966732 −0.483366 0.875418i \(-0.660586\pi\)
−0.483366 + 0.875418i \(0.660586\pi\)
\(318\) −4.87268 + 4.38757i −0.273247 + 0.246042i
\(319\) 14.0913 0.788964
\(320\) −33.7008 10.9454i −1.88393 0.611869i
\(321\) 4.97798i 0.277843i
\(322\) 10.1062 9.10002i 0.563195 0.507124i
\(323\) 2.27875i 0.126793i
\(324\) −0.208975 + 1.98905i −0.0116097 + 0.110503i
\(325\) 94.2411i 5.22756i
\(326\) 18.1582 16.3504i 1.00569 0.905564i
\(327\) 6.06886i 0.335609i
\(328\) 8.56342 + 11.7850i 0.472836 + 0.650718i
\(329\) 12.7605i 0.703509i
\(330\) −20.9043 + 18.8231i −1.15074 + 1.03618i
\(331\) 11.8004 0.648611 0.324306 0.945952i \(-0.394869\pi\)
0.324306 + 0.945952i \(0.394869\pi\)
\(332\) −16.9716 1.78308i −0.931435 0.0978590i
\(333\) 5.75928 0.315607
\(334\) 13.0490 11.7499i 0.714011 0.642925i
\(335\) 22.1283 28.7182i 1.20900 1.56904i
\(336\) −11.0241 2.34229i −0.601411 0.127782i
\(337\) 26.7813i 1.45887i 0.684051 + 0.729434i \(0.260216\pi\)
−0.684051 + 0.729434i \(0.739784\pi\)
\(338\) 27.0301 + 30.0187i 1.47024 + 1.63280i
\(339\) 11.7654i 0.639008i
\(340\) 11.7437 + 1.23382i 0.636890 + 0.0669134i
\(341\) −37.9601 −2.05565
\(342\) −1.79658 + 1.61771i −0.0971477 + 0.0874758i
\(343\) 17.0785 0.922151
\(344\) 2.43677 1.77065i 0.131382 0.0954670i
\(345\) 15.1169 0.813867
\(346\) −17.7737 19.7389i −0.955522 1.06117i
\(347\) 11.4891 0.616766 0.308383 0.951262i \(-0.400212\pi\)
0.308383 + 0.951262i \(0.400212\pi\)
\(348\) −0.655720 + 6.24122i −0.0351503 + 0.334565i
\(349\) −16.4608 −0.881127 −0.440563 0.897722i \(-0.645221\pi\)
−0.440563 + 0.897722i \(0.645221\pi\)
\(350\) −38.9753 43.2847i −2.08332 2.31366i
\(351\) 6.44697i 0.344114i
\(352\) −12.7043 21.9993i −0.677142 1.17257i
\(353\) 3.89747i 0.207441i 0.994606 + 0.103721i \(0.0330748\pi\)
−0.994606 + 0.103721i \(0.966925\pi\)
\(354\) −10.8058 + 9.73001i −0.574323 + 0.517144i
\(355\) 2.12333 0.112695
\(356\) 2.44242 23.2472i 0.129448 1.23210i
\(357\) 3.75579 0.198777
\(358\) 0.475661 + 0.528253i 0.0251395 + 0.0279191i
\(359\) 29.8392i 1.57485i 0.616408 + 0.787427i \(0.288587\pi\)
−0.616408 + 0.787427i \(0.711413\pi\)
\(360\) −7.36422 10.1347i −0.388128 0.534144i
\(361\) 16.0777 0.846193
\(362\) 14.5974 + 16.2114i 0.767223 + 0.852052i
\(363\) −9.16777 −0.481183
\(364\) 36.1303 + 3.79594i 1.89374 + 0.198962i
\(365\) 16.3082i 0.853612i
\(366\) −10.1541 + 9.14321i −0.530766 + 0.477923i
\(367\) −37.1530 −1.93937 −0.969686 0.244355i \(-0.921424\pi\)
−0.969686 + 0.244355i \(0.921424\pi\)
\(368\) −2.83732 + 13.3539i −0.147905 + 0.696122i
\(369\) 5.15047i 0.268123i
\(370\) −26.8086 + 24.1396i −1.39371 + 1.25496i
\(371\) 13.0634i 0.678219i
\(372\) 1.76642 16.8130i 0.0915844 0.871712i
\(373\) 31.6985i 1.64129i 0.571441 + 0.820643i \(0.306384\pi\)
−0.571441 + 0.820643i \(0.693616\pi\)
\(374\) 5.66496 + 6.29131i 0.292928 + 0.325316i
\(375\) 42.5996i 2.19983i
\(376\) −7.53007 10.3629i −0.388334 0.534426i
\(377\) 20.2292i 1.04186i
\(378\) −2.66628 2.96108i −0.137138 0.152301i
\(379\) 31.8816 1.63765 0.818823 0.574046i \(-0.194627\pi\)
0.818823 + 0.574046i \(0.194627\pi\)
\(380\) 1.58229 15.0604i 0.0811698 0.772584i
\(381\) 6.70864i 0.343694i
\(382\) 6.26021 + 6.95238i 0.320300 + 0.355715i
\(383\) 29.9214 1.52891 0.764457 0.644675i \(-0.223007\pi\)
0.764457 + 0.644675i \(0.223007\pi\)
\(384\) 10.3349 4.60319i 0.527402 0.234905i
\(385\) 56.0434i 2.85623i
\(386\) 7.16962 + 7.96234i 0.364924 + 0.405273i
\(387\) 1.06496 0.0541348
\(388\) 26.3174 + 2.76498i 1.33607 + 0.140371i
\(389\) 28.6071 1.45044 0.725220 0.688518i \(-0.241738\pi\)
0.725220 + 0.688518i \(0.241738\pi\)
\(390\) 27.0220 + 30.0098i 1.36831 + 1.51960i
\(391\) 4.54955i 0.230081i
\(392\) 2.14743 1.56040i 0.108461 0.0788120i
\(393\) 2.95058i 0.148837i
\(394\) 8.20490 7.38803i 0.413357 0.372204i
\(395\) 43.9034i 2.20902i
\(396\) 0.938477 8.93254i 0.0471602 0.448877i
\(397\) −26.0821 −1.30902 −0.654511 0.756053i \(-0.727125\pi\)
−0.654511 + 0.756053i \(0.727125\pi\)
\(398\) 6.73769 6.06690i 0.337730 0.304106i
\(399\) 4.81653i 0.241128i
\(400\) 57.1948 + 12.1522i 2.85974 + 0.607611i
\(401\) 1.63624i 0.0817100i −0.999165 0.0408550i \(-0.986992\pi\)
0.999165 0.0408550i \(-0.0130082\pi\)
\(402\) 0.885215 + 11.5419i 0.0441505 + 0.575660i
\(403\) 54.4947i 2.71457i
\(404\) −8.75911 0.920255i −0.435782 0.0457844i
\(405\) 4.42921i 0.220089i
\(406\) −8.36620 9.29123i −0.415208 0.461116i
\(407\) −25.8641 −1.28203
\(408\) −3.05011 + 2.21632i −0.151003 + 0.109724i
\(409\) 1.01269i 0.0500744i −0.999687 0.0250372i \(-0.992030\pi\)
0.999687 0.0250372i \(-0.00797042\pi\)
\(410\) −21.5878 23.9747i −1.06615 1.18403i
\(411\) 6.89136i 0.339926i
\(412\) 17.1688 + 1.80380i 0.845845 + 0.0888668i
\(413\) 28.9699i 1.42552i
\(414\) −3.58689 + 3.22978i −0.176286 + 0.158735i
\(415\) 37.7921 1.85514
\(416\) −31.5817 + 18.2380i −1.54842 + 0.894194i
\(417\) 3.31586 0.162378
\(418\) 8.06816 7.26491i 0.394627 0.355338i
\(419\) 9.62094i 0.470013i −0.971994 0.235007i \(-0.924489\pi\)
0.971994 0.235007i \(-0.0755112\pi\)
\(420\) 24.8223 + 2.60789i 1.21120 + 0.127252i
\(421\) 10.2672 0.500393 0.250196 0.968195i \(-0.419505\pi\)
0.250196 + 0.968195i \(0.419505\pi\)
\(422\) −10.0645 + 9.06246i −0.489930 + 0.441154i
\(423\) 4.52896i 0.220206i
\(424\) 7.70883 + 10.6089i 0.374374 + 0.515215i
\(425\) −19.4857 −0.945196
\(426\) −0.503817 + 0.453657i −0.0244100 + 0.0219798i
\(427\) 27.2228i 1.31740i
\(428\) −9.90145 1.04027i −0.478605 0.0502835i
\(429\) 28.9524i 1.39784i
\(430\) −4.95723 + 4.46369i −0.239059 + 0.215258i
\(431\) 6.49042i 0.312632i 0.987707 + 0.156316i \(0.0499619\pi\)
−0.987707 + 0.156316i \(0.950038\pi\)
\(432\) 3.91266 + 0.831325i 0.188248 + 0.0399971i
\(433\) 24.5663i 1.18058i 0.807192 + 0.590289i \(0.200986\pi\)
−0.807192 + 0.590289i \(0.799014\pi\)
\(434\) 22.5374 + 25.0293i 1.08183 + 1.20144i
\(435\) 13.8979i 0.666354i
\(436\) −12.0713 1.26824i −0.578109 0.0607377i
\(437\) −5.83448 −0.279101
\(438\) 3.48431 + 3.86956i 0.166487 + 0.184895i
\(439\) 10.4351i 0.498042i −0.968498 0.249021i \(-0.919891\pi\)
0.968498 0.249021i \(-0.0801089\pi\)
\(440\) 33.0716 + 45.5133i 1.57663 + 2.16976i
\(441\) 0.938501 0.0446905
\(442\) 9.03167 8.13249i 0.429593 0.386823i
\(443\) −2.65628 −0.126204 −0.0631018 0.998007i \(-0.520099\pi\)
−0.0631018 + 0.998007i \(0.520099\pi\)
\(444\) 1.20355 11.4555i 0.0571178 0.543654i
\(445\) 51.7668i 2.45398i
\(446\) 21.6376 19.4834i 1.02457 0.922566i
\(447\) 19.2320 0.909642
\(448\) −6.96269 + 21.4379i −0.328956 + 1.01285i
\(449\) −10.1088 −0.477063 −0.238531 0.971135i \(-0.576666\pi\)
−0.238531 + 0.971135i \(0.576666\pi\)
\(450\) 13.8331 + 15.3626i 0.652100 + 0.724200i
\(451\) 23.1300i 1.08915i
\(452\) 23.4020 + 2.45867i 1.10074 + 0.115646i
\(453\) 11.1412i 0.523459i
\(454\) −9.45022 + 8.50937i −0.443521 + 0.399365i
\(455\) −80.4547 −3.77177
\(456\) 2.84227 + 3.91155i 0.133102 + 0.183175i
\(457\) 9.51702 0.445187 0.222594 0.974911i \(-0.428548\pi\)
0.222594 + 0.974911i \(0.428548\pi\)
\(458\) −2.86112 + 2.57627i −0.133691 + 0.120381i
\(459\) −1.33300 −0.0622193
\(460\) 3.15906 30.0683i 0.147292 1.40194i
\(461\) −38.4051 −1.78870 −0.894351 0.447366i \(-0.852362\pi\)
−0.894351 + 0.447366i \(0.852362\pi\)
\(462\) 11.9739 + 13.2978i 0.557074 + 0.618668i
\(463\) 15.1386 0.703549 0.351774 0.936085i \(-0.385578\pi\)
0.351774 + 0.936085i \(0.385578\pi\)
\(464\) 12.2771 + 2.60852i 0.569950 + 0.121098i
\(465\) 37.4390i 1.73619i
\(466\) −19.8506 + 17.8743i −0.919563 + 0.828013i
\(467\) 30.8798i 1.42895i −0.699662 0.714474i \(-0.746666\pi\)
0.699662 0.714474i \(-0.253334\pi\)
\(468\) −12.8234 1.34726i −0.592760 0.0622770i
\(469\) −18.2684 14.0764i −0.843556 0.649988i
\(470\) 18.9828 + 21.0817i 0.875611 + 0.972425i
\(471\) 10.8432 0.499630
\(472\) 17.0954 + 23.5267i 0.786878 + 1.08290i
\(473\) −4.78257 −0.219903
\(474\) −9.38010 10.4172i −0.430842 0.478479i
\(475\) 24.9890i 1.14658i
\(476\) 0.784866 7.47046i 0.0359743 0.342408i
\(477\) 4.63647i 0.212290i
\(478\) 25.2930 + 28.0896i 1.15687 + 1.28479i
\(479\) 25.5835i 1.16894i 0.811416 + 0.584469i \(0.198697\pi\)
−0.811416 + 0.584469i \(0.801303\pi\)
\(480\) −21.6973 + 12.5299i −0.990342 + 0.571910i
\(481\) 37.1299i 1.69298i
\(482\) −11.4151 12.6772i −0.519942 0.577430i
\(483\) 9.61626i 0.437555i
\(484\) −1.91584 + 18.2352i −0.0870835 + 0.828872i
\(485\) −58.6035 −2.66105
\(486\) 0.946315 + 1.05095i 0.0429257 + 0.0476719i
\(487\) 21.7976 0.987745 0.493872 0.869534i \(-0.335581\pi\)
0.493872 + 0.869534i \(0.335581\pi\)
\(488\) 16.0644 + 22.1078i 0.727199 + 1.00077i
\(489\) 17.2780i 0.781336i
\(490\) −4.36859 + 3.93366i −0.197353 + 0.177705i
\(491\) 29.7112i 1.34085i 0.741978 + 0.670424i \(0.233888\pi\)
−0.741978 + 0.670424i \(0.766112\pi\)
\(492\) 10.2446 + 1.07632i 0.461860 + 0.0485243i
\(493\) −4.18268 −0.188379
\(494\) −10.4293 11.5825i −0.469238 0.521121i
\(495\) 19.8909i 0.894031i
\(496\) −33.0727 7.02699i −1.48501 0.315521i
\(497\) 1.35071i 0.0605875i
\(498\) −8.96718 + 8.07442i −0.401829 + 0.361823i
\(499\) −13.0259 −0.583120 −0.291560 0.956552i \(-0.594174\pi\)
−0.291560 + 0.956552i \(0.594174\pi\)
\(500\) −84.7328 8.90226i −3.78937 0.398121i
\(501\) 12.4165i 0.554726i
\(502\) 24.1228 + 26.7900i 1.07665 + 1.19570i
\(503\) 14.1739 0.631985 0.315992 0.948762i \(-0.397663\pi\)
0.315992 + 0.948762i \(0.397663\pi\)
\(504\) −6.44692 + 4.68457i −0.287169 + 0.208667i
\(505\) 19.5047 0.867949
\(506\) 16.1082 14.5045i 0.716096 0.644802i
\(507\) 28.5635 1.26855
\(508\) −13.3438 1.40194i −0.592037 0.0622010i
\(509\) 0.469183 0.0207962 0.0103981 0.999946i \(-0.496690\pi\)
0.0103981 + 0.999946i \(0.496690\pi\)
\(510\) 6.20495 5.58719i 0.274760 0.247405i
\(511\) −10.3741 −0.458923
\(512\) −6.99624 21.5187i −0.309193 0.950999i
\(513\) 1.70948i 0.0754756i
\(514\) −12.2614 13.6171i −0.540827 0.600625i
\(515\) −38.2313 −1.68467
\(516\) 0.222550 2.11826i 0.00979720 0.0932510i
\(517\) 20.3389i 0.894504i
\(518\) 15.3558 + 17.0537i 0.674696 + 0.749295i
\(519\) −18.7820 −0.824440
\(520\) 65.3379 47.4769i 2.86526 2.08200i
\(521\) 26.8304i 1.17546i 0.809056 + 0.587731i \(0.199979\pi\)
−0.809056 + 0.587731i \(0.800021\pi\)
\(522\) 2.96934 + 3.29764i 0.129964 + 0.144334i
\(523\) 6.00603i 0.262625i −0.991341 0.131313i \(-0.958081\pi\)
0.991341 0.131313i \(-0.0419192\pi\)
\(524\) 5.86886 + 0.616599i 0.256383 + 0.0269362i
\(525\) −41.1864 −1.79752
\(526\) 1.64482 1.48107i 0.0717177 0.0645775i
\(527\) 11.2676 0.490823
\(528\) −17.5712 3.73336i −0.764687 0.162474i
\(529\) 11.3514 0.493539
\(530\) −19.4334 21.5821i −0.844135 0.937468i
\(531\) 10.2820i 0.446201i
\(532\) −9.58034 1.00654i −0.415360 0.0436389i
\(533\) −33.2049 −1.43827
\(534\) −11.0601 12.2830i −0.478619 0.531539i
\(535\) 22.0485 0.953239
\(536\) 23.1425 + 0.651240i 0.999604 + 0.0281293i
\(537\) 0.502646 0.0216908
\(538\) −5.69349 6.32300i −0.245464 0.272604i
\(539\) −4.21467 −0.181539
\(540\) −8.80993 0.925594i −0.379119 0.0398312i
\(541\) 19.1448i 0.823101i 0.911387 + 0.411550i \(0.135013\pi\)
−0.911387 + 0.411550i \(0.864987\pi\)
\(542\) 24.2537 + 26.9354i 1.04179 + 1.15697i
\(543\) 15.4255 0.661973
\(544\) 3.77098 + 6.52998i 0.161679 + 0.279970i
\(545\) 26.8802 1.15142
\(546\) 19.0900 17.1894i 0.816976 0.735639i
\(547\) −35.4826 −1.51713 −0.758563 0.651599i \(-0.774098\pi\)
−0.758563 + 0.651599i \(0.774098\pi\)
\(548\) 13.7073 + 1.44012i 0.585546 + 0.0615190i
\(549\) 9.66191i 0.412360i
\(550\) −62.1225 68.9912i −2.64891 2.94180i
\(551\) 5.36400i 0.228514i
\(552\) 5.67463 + 7.80945i 0.241528 + 0.332392i
\(553\) 27.9281 1.18762
\(554\) −4.93098 5.47618i −0.209497 0.232661i
\(555\) 25.5090i 1.08280i
\(556\) 0.692931 6.59541i 0.0293868 0.279708i
\(557\) 18.7124 0.792870 0.396435 0.918063i \(-0.370247\pi\)
0.396435 + 0.918063i \(0.370247\pi\)
\(558\) −7.99897 8.88339i −0.338623 0.376064i
\(559\) 6.86575i 0.290390i
\(560\) 10.3745 48.8278i 0.438402 2.06335i
\(561\) 5.98633 0.252743
\(562\) −25.8740 + 23.2980i −1.09143 + 0.982766i
\(563\) −22.6150 −0.953108 −0.476554 0.879145i \(-0.658114\pi\)
−0.476554 + 0.879145i \(0.658114\pi\)
\(564\) −9.00834 0.946440i −0.379320 0.0398523i
\(565\) −52.1113 −2.19234
\(566\) 9.19789 8.28216i 0.386616 0.348125i
\(567\) −2.81753 −0.118325
\(568\) 0.797063 + 1.09692i 0.0334440 + 0.0460258i
\(569\) 18.0974 0.758681 0.379341 0.925257i \(-0.376151\pi\)
0.379341 + 0.925257i \(0.376151\pi\)
\(570\) −7.16518 7.95741i −0.300116 0.333299i
\(571\) 12.8629i 0.538294i −0.963099 0.269147i \(-0.913258\pi\)
0.963099 0.269147i \(-0.0867417\pi\)
\(572\) 57.5879 + 6.05034i 2.40787 + 0.252977i
\(573\) 6.61535 0.276360
\(574\) −15.2509 + 13.7326i −0.636562 + 0.573186i
\(575\) 49.8909i 2.08060i
\(576\) 2.47120 7.60876i 0.102967 0.317032i
\(577\) 22.5707i 0.939630i −0.882765 0.469815i \(-0.844321\pi\)
0.882765 0.469815i \(-0.155679\pi\)
\(578\) 14.4058 + 15.9987i 0.599204 + 0.665456i
\(579\) 7.57636 0.314863
\(580\) −27.6437 2.90432i −1.14784 0.120595i
\(581\) 24.0406i 0.997370i
\(582\) 13.9052 12.5208i 0.576390 0.519005i
\(583\) 20.8217i 0.862348i
\(584\) 8.42489 6.12183i 0.348624 0.253323i
\(585\) 28.5550 1.18060
\(586\) 11.5968 + 12.8791i 0.479061 + 0.532029i
\(587\) −44.5937 −1.84058 −0.920290 0.391238i \(-0.872047\pi\)
−0.920290 + 0.391238i \(0.872047\pi\)
\(588\) 0.196123 1.86673i 0.00808800 0.0769826i
\(589\) 14.4499i 0.595396i
\(590\) −43.0963 47.8613i −1.77424 1.97042i
\(591\) 7.80716i 0.321144i
\(592\) −22.5341 4.78783i −0.926145 0.196779i
\(593\) 9.87000i 0.405312i −0.979250 0.202656i \(-0.935043\pi\)
0.979250 0.202656i \(-0.0649573\pi\)
\(594\) −4.24976 4.71965i −0.174370 0.193649i
\(595\) 16.6352i 0.681975i
\(596\) 4.01901 38.2534i 0.164625 1.56692i
\(597\) 6.41107i 0.262388i
\(598\) −20.8223 23.1246i −0.851487 0.945634i
\(599\) 4.78024 0.195315 0.0976576 0.995220i \(-0.468865\pi\)
0.0976576 + 0.995220i \(0.468865\pi\)
\(600\) 33.4478 24.3044i 1.36550 0.992223i
\(601\) −7.77550 −0.317169 −0.158585 0.987345i \(-0.550693\pi\)
−0.158585 + 0.987345i \(0.550693\pi\)
\(602\) 2.83947 + 3.15342i 0.115728 + 0.128524i
\(603\) 6.48382 + 4.99600i 0.264042 + 0.203453i
\(604\) −22.1604 2.32823i −0.901695 0.0947345i
\(605\) 40.6060i 1.65087i
\(606\) −4.62801 + 4.16725i −0.188000 + 0.169283i
\(607\) 39.5661i 1.60594i −0.596020 0.802969i \(-0.703252\pi\)
0.596020 0.802969i \(-0.296748\pi\)
\(608\) 8.37423 4.83601i 0.339620 0.196126i
\(609\) −8.84082 −0.358248
\(610\) −40.4972 44.9748i −1.63968 1.82098i
\(611\) 29.1981 1.18123
\(612\) −0.278565 + 2.65142i −0.0112603 + 0.107177i
\(613\) −5.66134 −0.228659 −0.114330 0.993443i \(-0.536472\pi\)
−0.114330 + 0.993443i \(0.536472\pi\)
\(614\) −21.7371 + 19.5730i −0.877240 + 0.789903i
\(615\) −22.8125 −0.919889
\(616\) 28.9522 21.0377i 1.16652 0.847634i
\(617\) −6.40871 −0.258005 −0.129003 0.991644i \(-0.541178\pi\)
−0.129003 + 0.991644i \(0.541178\pi\)
\(618\) 9.07139 8.16825i 0.364905 0.328575i
\(619\) 35.6982i 1.43483i −0.696645 0.717416i \(-0.745325\pi\)
0.696645 0.717416i \(-0.254675\pi\)
\(620\) 74.4681 + 7.82382i 2.99071 + 0.314212i
\(621\) 3.41301i 0.136959i
\(622\) 6.38027 + 7.08571i 0.255825 + 0.284111i
\(623\) 32.9302 1.31932
\(624\) −5.35953 + 25.2248i −0.214553 + 1.00980i
\(625\) 115.593 4.62372
\(626\) −7.28762 + 6.56207i −0.291272 + 0.262273i
\(627\) 7.67705i 0.306592i
\(628\) 2.26597 21.5678i 0.0904219 0.860647i
\(629\) 7.67715 0.306108
\(630\) 13.1152 11.8095i 0.522523 0.470501i
\(631\) 3.22001 0.128187 0.0640934 0.997944i \(-0.479584\pi\)
0.0640934 + 0.997944i \(0.479584\pi\)
\(632\) −22.6806 + 16.4806i −0.902187 + 0.655562i
\(633\) 9.57658i 0.380635i
\(634\) 16.2881 + 18.0891i 0.646885 + 0.718409i
\(635\) 29.7140 1.17916
\(636\) 9.22219 + 0.968908i 0.365684 + 0.0384197i
\(637\) 6.05049i 0.239729i
\(638\) −13.3349 14.8092i −0.527932 0.586303i
\(639\) 0.479394i 0.0189645i
\(640\) 20.3885 + 45.7755i 0.805925 + 1.80944i
\(641\) 19.1452i 0.756189i −0.925767 0.378095i \(-0.876579\pi\)
0.925767 0.378095i \(-0.123421\pi\)
\(642\) −5.23158 + 4.71073i −0.206474 + 0.185918i
\(643\) 15.3290i 0.604516i −0.953226 0.302258i \(-0.902260\pi\)
0.953226 0.302258i \(-0.0977405\pi\)
\(644\) −19.1273 2.00956i −0.753719 0.0791878i
\(645\) 4.71692i 0.185728i
\(646\) −2.39485 + 2.15642i −0.0942239 + 0.0848431i
\(647\) 5.79937 0.227997 0.113998 0.993481i \(-0.463634\pi\)
0.113998 + 0.993481i \(0.463634\pi\)
\(648\) 2.28814 1.66265i 0.0898868 0.0653150i
\(649\) 46.1750i 1.81253i
\(650\) −99.0423 + 89.1818i −3.88476 + 3.49800i
\(651\) 23.8159 0.933420
\(652\) −34.3667 3.61066i −1.34591 0.141404i
\(653\) 26.4803i 1.03626i −0.855303 0.518128i \(-0.826629\pi\)
0.855303 0.518128i \(-0.173371\pi\)
\(654\) −6.37804 + 5.74305i −0.249401 + 0.224571i
\(655\) −13.0687 −0.510638
\(656\) 4.28171 20.1520i 0.167173 0.786804i
\(657\) 3.68198 0.143648
\(658\) 13.4106 12.0755i 0.522800 0.470750i
\(659\) 21.1839i 0.825206i 0.910911 + 0.412603i \(0.135380\pi\)
−0.910911 + 0.412603i \(0.864620\pi\)
\(660\) 39.5641 + 4.15671i 1.54003 + 0.161800i
\(661\) 22.0683i 0.858356i 0.903220 + 0.429178i \(0.141197\pi\)
−0.903220 + 0.429178i \(0.858803\pi\)
\(662\) −11.1669 12.4016i −0.434016 0.482003i
\(663\) 8.59385i 0.333757i
\(664\) 14.1865 + 19.5235i 0.550544 + 0.757660i
\(665\) 21.3334 0.827275
\(666\) −5.45009 6.05269i −0.211187 0.234537i
\(667\) 10.7093i 0.414665i
\(668\) −24.6970 2.59473i −0.955555 0.100393i
\(669\) 20.5887i 0.796005i
\(670\) −51.1217 + 3.92080i −1.97500 + 0.151474i
\(671\) 43.3902i 1.67506i
\(672\) 7.97061 + 13.8022i 0.307473 + 0.532432i
\(673\) 32.4767i 1.25188i 0.779870 + 0.625942i \(0.215285\pi\)
−0.779870 + 0.625942i \(0.784715\pi\)
\(674\) 28.1457 25.3435i 1.08413 0.976195i
\(675\) 14.6179 0.562643
\(676\) 5.96906 56.8143i 0.229579 2.18516i
\(677\) 28.8665i 1.10943i 0.832040 + 0.554715i \(0.187173\pi\)
−0.832040 + 0.554715i \(0.812827\pi\)
\(678\) 12.3648 11.1338i 0.474867 0.427590i
\(679\) 37.2792i 1.43065i
\(680\) −9.81654 13.5096i −0.376447 0.518068i
\(681\) 8.99211i 0.344578i
\(682\) 35.9222 + 39.8940i 1.37553 + 1.52762i
\(683\) −17.2983 −0.661901 −0.330951 0.943648i \(-0.607369\pi\)
−0.330951 + 0.943648i \(0.607369\pi\)
\(684\) 3.40026 + 0.357240i 0.130012 + 0.0136594i
\(685\) −30.5233 −1.16623
\(686\) −16.1616 17.9486i −0.617054 0.685279i
\(687\) 2.72243i 0.103867i
\(688\) −4.16681 0.885326i −0.158858 0.0337527i
\(689\) −29.8912 −1.13877
\(690\) −14.3054 15.8871i −0.544596 0.604810i
\(691\) 28.2517i 1.07475i 0.843345 + 0.537373i \(0.180583\pi\)
−0.843345 + 0.537373i \(0.819417\pi\)
\(692\) −3.92498 + 37.3585i −0.149205 + 1.42016i
\(693\) 12.6531 0.480653
\(694\) −10.8723 12.0744i −0.412707 0.458338i
\(695\) 14.6866i 0.557095i
\(696\) 7.17971 5.21704i 0.272146 0.197751i
\(697\) 6.86560i 0.260053i
\(698\) 15.5771 + 17.2994i 0.589602 + 0.654793i
\(699\) 18.8884i 0.714423i
\(700\) −8.60693 + 81.9219i −0.325311 + 3.09636i
\(701\) 19.9558i 0.753719i −0.926270 0.376860i \(-0.877004\pi\)
0.926270 0.376860i \(-0.122996\pi\)
\(702\) −6.77542 + 6.10087i −0.255722 + 0.230262i
\(703\) 9.84540i 0.371326i
\(704\) −11.0978 + 34.1698i −0.418264 + 1.28782i
\(705\) 20.0597 0.755492
\(706\) 4.09603 3.68823i 0.154156 0.138808i
\(707\) 12.4075i 0.466631i
\(708\) 20.4514 + 2.14868i 0.768612 + 0.0807525i
\(709\) 2.92170 0.109727 0.0548633 0.998494i \(-0.482528\pi\)
0.0548633 + 0.998494i \(0.482528\pi\)
\(710\) −2.00934 2.23151i −0.0754093 0.0837470i
\(711\) −9.91224 −0.371738
\(712\) −26.7429 + 19.4324i −1.00223 + 0.728259i
\(713\) 28.8493i 1.08041i
\(714\) −3.55416 3.94713i −0.133011 0.147718i
\(715\) −128.236 −4.79577
\(716\) 0.105040 0.999789i 0.00392555 0.0373639i
\(717\) 26.7279 0.998171
\(718\) 31.3594 28.2373i 1.17032 1.05381i
\(719\) 16.4667i 0.614103i −0.951693 0.307051i \(-0.900658\pi\)
0.951693 0.307051i \(-0.0993424\pi\)
\(720\) −3.68211 + 17.3300i −0.137224 + 0.645850i
\(721\) 24.3199i 0.905722i
\(722\) −15.2145 16.8968i −0.566226 0.628832i
\(723\) −12.0626 −0.448614
\(724\) 3.22355 30.6822i 0.119802 1.14029i
\(725\) 45.8678 1.70349
\(726\) 8.67560 + 9.63483i 0.321982 + 0.357582i
\(727\) 0.181194 0.00672011 0.00336006 0.999994i \(-0.498930\pi\)
0.00336006 + 0.999994i \(0.498930\pi\)
\(728\) −30.2013 41.5631i −1.11933 1.54043i
\(729\) 1.00000 0.0370370
\(730\) −17.1391 + 15.4327i −0.634346 + 0.571191i
\(731\) 1.41959 0.0525056
\(732\) 19.2180 + 2.01910i 0.710319 + 0.0746280i
\(733\) 18.0519i 0.666764i 0.942792 + 0.333382i \(0.108190\pi\)
−0.942792 + 0.333382i \(0.891810\pi\)
\(734\) 35.1585 + 39.0458i 1.29772 + 1.44121i
\(735\) 4.15682i 0.153327i
\(736\) 16.7193 9.65516i 0.616280 0.355894i
\(737\) −29.1179 22.4363i −1.07257 0.826452i
\(738\) 5.41286 4.87397i 0.199250 0.179413i
\(739\) −9.27764 −0.341284 −0.170642 0.985333i \(-0.554584\pi\)
−0.170642 + 0.985333i \(0.554584\pi\)
\(740\) 50.7388 + 5.33076i 1.86520 + 0.195962i
\(741\) −11.0210 −0.404867
\(742\) −13.7290 + 12.3621i −0.504006 + 0.453828i
\(743\) 1.38908i 0.0509605i 0.999675 + 0.0254802i \(0.00811149\pi\)
−0.999675 + 0.0254802i \(0.991889\pi\)
\(744\) −19.3411 + 14.0540i −0.709079 + 0.515243i
\(745\) 85.1825i 3.12084i
\(746\) 33.3134 29.9968i 1.21969 1.09826i
\(747\) 8.53248i 0.312187i
\(748\) 1.25099 11.9071i 0.0457409 0.435368i
\(749\) 14.0256i 0.512485i
\(750\) −44.7699 + 40.3126i −1.63476 + 1.47201i
\(751\) 23.9459i 0.873799i −0.899510 0.436900i \(-0.856076\pi\)
0.899510 0.436900i \(-0.143924\pi\)
\(752\) −3.76504 + 17.7203i −0.137297 + 0.646192i
\(753\) 25.4913 0.928955
\(754\) −21.2598 + 19.1432i −0.774237 + 0.697155i
\(755\) 49.3467 1.79591
\(756\) −0.588795 + 5.60422i −0.0214143 + 0.203824i
\(757\) 11.8148i 0.429418i −0.976678 0.214709i \(-0.931120\pi\)
0.976678 0.214709i \(-0.0688803\pi\)
\(758\) −30.1700 33.5058i −1.09582 1.21699i
\(759\) 15.3273i 0.556346i
\(760\) −17.3251 + 12.5890i −0.628446 + 0.456652i
\(761\) 22.1353 0.802405 0.401202 0.915989i \(-0.368592\pi\)
0.401202 + 0.915989i \(0.368592\pi\)
\(762\) −7.05042 + 6.34849i −0.255410 + 0.229982i
\(763\) 17.0992i 0.619033i
\(764\) 1.38244 13.1583i 0.0500151 0.476050i
\(765\) 5.90416i 0.213465i
\(766\) −28.3151 31.4458i −1.02307 1.13618i
\(767\) −66.2878 −2.39351
\(768\) −14.6178 6.50538i −0.527474 0.234743i
\(769\) 27.5107i 0.992062i −0.868305 0.496031i \(-0.834790\pi\)
0.868305 0.496031i \(-0.165210\pi\)
\(770\) −58.8986 + 53.0347i −2.12256 + 1.91124i
\(771\) −12.9570 −0.466635
\(772\) 1.58327