Properties

Label 804.2.e.a.535.4
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.4
Character \(\chi\) = 804.535
Dual form 804.2.e.a.535.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.35079 + 0.418775i) q^{2} -1.00000 q^{3} +(1.64926 - 1.13135i) q^{4} +1.44885i q^{5} +(1.35079 - 0.418775i) q^{6} +2.69839 q^{7} +(-1.75401 + 2.21888i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(-1.35079 + 0.418775i) q^{2} -1.00000 q^{3} +(1.64926 - 1.13135i) q^{4} +1.44885i q^{5} +(1.35079 - 0.418775i) q^{6} +2.69839 q^{7} +(-1.75401 + 2.21888i) q^{8} +1.00000 q^{9} +(-0.606742 - 1.95709i) q^{10} -3.96281 q^{11} +(-1.64926 + 1.13135i) q^{12} +2.95030i q^{13} +(-3.64496 + 1.13002i) q^{14} -1.44885i q^{15} +(1.44009 - 3.73177i) q^{16} -2.16410 q^{17} +(-1.35079 + 0.418775i) q^{18} +6.52411i q^{19} +(1.63916 + 2.38953i) q^{20} -2.69839 q^{21} +(5.35291 - 1.65952i) q^{22} -5.27567i q^{23} +(1.75401 - 2.21888i) q^{24} +2.90083 q^{25} +(-1.23551 - 3.98524i) q^{26} -1.00000 q^{27} +(4.45034 - 3.05283i) q^{28} +1.48281 q^{29} +(0.606742 + 1.95709i) q^{30} +4.41014 q^{31} +(-0.382482 + 5.64391i) q^{32} +3.96281 q^{33} +(2.92324 - 0.906269i) q^{34} +3.90957i q^{35} +(1.64926 - 1.13135i) q^{36} -6.67597 q^{37} +(-2.73213 - 8.81269i) q^{38} -2.95030i q^{39} +(-3.21483 - 2.54130i) q^{40} +0.555830i q^{41} +(3.64496 - 1.13002i) q^{42} -10.5214 q^{43} +(-6.53568 + 4.48333i) q^{44} +1.44885i q^{45} +(2.20931 + 7.12631i) q^{46} +10.0095i q^{47} +(-1.44009 + 3.73177i) q^{48} +0.281330 q^{49} +(-3.91841 + 1.21479i) q^{50} +2.16410 q^{51} +(3.33783 + 4.86581i) q^{52} -3.34580i q^{53} +(1.35079 - 0.418775i) q^{54} -5.74152i q^{55} +(-4.73302 + 5.98742i) q^{56} -6.52411i q^{57} +(-2.00296 + 0.620963i) q^{58} +7.97794i q^{59} +(-1.63916 - 2.38953i) q^{60} +0.843705i q^{61} +(-5.95716 + 1.84685i) q^{62} +2.69839 q^{63} +(-1.84687 - 7.78390i) q^{64} -4.27455 q^{65} +(-5.35291 + 1.65952i) q^{66} +(1.85078 + 7.97337i) q^{67} +(-3.56915 + 2.44835i) q^{68} +5.27567i q^{69} +(-1.63723 - 5.28100i) q^{70} +13.4338i q^{71} +(-1.75401 + 2.21888i) q^{72} -8.46368 q^{73} +(9.01782 - 2.79573i) q^{74} -2.90083 q^{75} +(7.38106 + 10.7599i) q^{76} -10.6932 q^{77} +(1.23551 + 3.98524i) q^{78} -12.5364 q^{79} +(5.40679 + 2.08647i) q^{80} +1.00000 q^{81} +(-0.232767 - 0.750808i) q^{82} +8.13775i q^{83} +(-4.45034 + 3.05283i) q^{84} -3.13545i q^{85} +(14.2122 - 4.40612i) q^{86} -1.48281 q^{87} +(6.95082 - 8.79300i) q^{88} +3.50640 q^{89} +(-0.606742 - 1.95709i) q^{90} +7.96108i q^{91} +(-5.96863 - 8.70092i) q^{92} -4.41014 q^{93} +(-4.19172 - 13.5207i) q^{94} -9.45246 q^{95} +(0.382482 - 5.64391i) q^{96} +8.55060i q^{97} +(-0.380018 + 0.117814i) q^{98} -3.96281 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} - 6q^{10} - 2q^{12} - 4q^{14} + 2q^{16} + 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} - 34q^{27} + 8q^{28} - 16q^{29} + 6q^{30} + 4q^{31} + 2q^{36} + 12q^{37} - 26q^{38} - 18q^{40} + 4q^{42} + 4q^{43} - 26q^{44} + 4q^{46} - 2q^{48} + 46q^{49} + 18q^{50} - 32q^{52} + 14q^{56} - 4q^{58} - 12q^{60} - 2q^{62} - 4q^{63} + 26q^{64} + 8q^{66} + 18q^{67} - 34q^{68} - 56q^{70} + 6q^{72} + 12q^{73} - 22q^{74} + 34q^{75} - 32q^{76} - 8q^{77} - 10q^{78} + 12q^{79} + 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} + 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} - 32q^{94} + 40q^{95} + 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.35079 + 0.418775i −0.955151 + 0.296118i
\(3\) −1.00000 −0.577350
\(4\) 1.64926 1.13135i 0.824628 0.565676i
\(5\) 1.44885i 0.647946i 0.946066 + 0.323973i \(0.105019\pi\)
−0.946066 + 0.323973i \(0.894981\pi\)
\(6\) 1.35079 0.418775i 0.551457 0.170964i
\(7\) 2.69839 1.01990 0.509949 0.860205i \(-0.329664\pi\)
0.509949 + 0.860205i \(0.329664\pi\)
\(8\) −1.75401 + 2.21888i −0.620137 + 0.784493i
\(9\) 1.00000 0.333333
\(10\) −0.606742 1.95709i −0.191869 0.618886i
\(11\) −3.96281 −1.19483 −0.597416 0.801932i \(-0.703806\pi\)
−0.597416 + 0.801932i \(0.703806\pi\)
\(12\) −1.64926 + 1.13135i −0.476099 + 0.326593i
\(13\) 2.95030i 0.818267i 0.912474 + 0.409134i \(0.134169\pi\)
−0.912474 + 0.409134i \(0.865831\pi\)
\(14\) −3.64496 + 1.13002i −0.974156 + 0.302010i
\(15\) 1.44885i 0.374092i
\(16\) 1.44009 3.73177i 0.360022 0.932944i
\(17\) −2.16410 −0.524871 −0.262435 0.964950i \(-0.584526\pi\)
−0.262435 + 0.964950i \(0.584526\pi\)
\(18\) −1.35079 + 0.418775i −0.318384 + 0.0987061i
\(19\) 6.52411i 1.49673i 0.663285 + 0.748366i \(0.269162\pi\)
−0.663285 + 0.748366i \(0.730838\pi\)
\(20\) 1.63916 + 2.38953i 0.366527 + 0.534314i
\(21\) −2.69839 −0.588838
\(22\) 5.35291 1.65952i 1.14124 0.353812i
\(23\) 5.27567i 1.10005i −0.835147 0.550026i \(-0.814618\pi\)
0.835147 0.550026i \(-0.185382\pi\)
\(24\) 1.75401 2.21888i 0.358036 0.452927i
\(25\) 2.90083 0.580166
\(26\) −1.23551 3.98524i −0.242304 0.781569i
\(27\) −1.00000 −0.192450
\(28\) 4.45034 3.05283i 0.841036 0.576931i
\(29\) 1.48281 0.275351 0.137675 0.990477i \(-0.456037\pi\)
0.137675 + 0.990477i \(0.456037\pi\)
\(30\) 0.606742 + 1.95709i 0.110775 + 0.357314i
\(31\) 4.41014 0.792084 0.396042 0.918232i \(-0.370383\pi\)
0.396042 + 0.918232i \(0.370383\pi\)
\(32\) −0.382482 + 5.64391i −0.0676139 + 0.997712i
\(33\) 3.96281 0.689836
\(34\) 2.92324 0.906269i 0.501331 0.155424i
\(35\) 3.90957i 0.660838i
\(36\) 1.64926 1.13135i 0.274876 0.188559i
\(37\) −6.67597 −1.09752 −0.548762 0.835979i \(-0.684901\pi\)
−0.548762 + 0.835979i \(0.684901\pi\)
\(38\) −2.73213 8.81269i −0.443210 1.42961i
\(39\) 2.95030i 0.472427i
\(40\) −3.21483 2.54130i −0.508309 0.401815i
\(41\) 0.555830i 0.0868060i 0.999058 + 0.0434030i \(0.0138199\pi\)
−0.999058 + 0.0434030i \(0.986180\pi\)
\(42\) 3.64496 1.13002i 0.562429 0.174366i
\(43\) −10.5214 −1.60451 −0.802253 0.596984i \(-0.796365\pi\)
−0.802253 + 0.596984i \(0.796365\pi\)
\(44\) −6.53568 + 4.48333i −0.985291 + 0.675887i
\(45\) 1.44885i 0.215982i
\(46\) 2.20931 + 7.12631i 0.325746 + 1.05072i
\(47\) 10.0095i 1.46003i 0.683429 + 0.730017i \(0.260488\pi\)
−0.683429 + 0.730017i \(0.739512\pi\)
\(48\) −1.44009 + 3.73177i −0.207859 + 0.538635i
\(49\) 0.281330 0.0401900
\(50\) −3.91841 + 1.21479i −0.554146 + 0.171798i
\(51\) 2.16410 0.303034
\(52\) 3.33783 + 4.86581i 0.462874 + 0.674766i
\(53\) 3.34580i 0.459581i −0.973240 0.229790i \(-0.926196\pi\)
0.973240 0.229790i \(-0.0738041\pi\)
\(54\) 1.35079 0.418775i 0.183819 0.0569880i
\(55\) 5.74152i 0.774186i
\(56\) −4.73302 + 5.98742i −0.632476 + 0.800102i
\(57\) 6.52411i 0.864139i
\(58\) −2.00296 + 0.620963i −0.263002 + 0.0815364i
\(59\) 7.97794i 1.03864i 0.854580 + 0.519320i \(0.173815\pi\)
−0.854580 + 0.519320i \(0.826185\pi\)
\(60\) −1.63916 2.38953i −0.211615 0.308486i
\(61\) 0.843705i 0.108025i 0.998540 + 0.0540127i \(0.0172011\pi\)
−0.998540 + 0.0540127i \(0.982799\pi\)
\(62\) −5.95716 + 1.84685i −0.756560 + 0.234551i
\(63\) 2.69839 0.339966
\(64\) −1.84687 7.78390i −0.230859 0.972987i
\(65\) −4.27455 −0.530193
\(66\) −5.35291 + 1.65952i −0.658898 + 0.204273i
\(67\) 1.85078 + 7.97337i 0.226108 + 0.974102i
\(68\) −3.56915 + 2.44835i −0.432823 + 0.296907i
\(69\) 5.27567i 0.635116i
\(70\) −1.63723 5.28100i −0.195686 0.631200i
\(71\) 13.4338i 1.59429i 0.603786 + 0.797147i \(0.293658\pi\)
−0.603786 + 0.797147i \(0.706342\pi\)
\(72\) −1.75401 + 2.21888i −0.206712 + 0.261498i
\(73\) −8.46368 −0.990599 −0.495299 0.868722i \(-0.664942\pi\)
−0.495299 + 0.868722i \(0.664942\pi\)
\(74\) 9.01782 2.79573i 1.04830 0.324997i
\(75\) −2.90083 −0.334959
\(76\) 7.38106 + 10.7599i 0.846665 + 1.23425i
\(77\) −10.6932 −1.21861
\(78\) 1.23551 + 3.98524i 0.139894 + 0.451239i
\(79\) −12.5364 −1.41045 −0.705225 0.708984i \(-0.749154\pi\)
−0.705225 + 0.708984i \(0.749154\pi\)
\(80\) 5.40679 + 2.08647i 0.604497 + 0.233275i
\(81\) 1.00000 0.111111
\(82\) −0.232767 0.750808i −0.0257049 0.0829129i
\(83\) 8.13775i 0.893234i 0.894725 + 0.446617i \(0.147371\pi\)
−0.894725 + 0.446617i \(0.852629\pi\)
\(84\) −4.45034 + 3.05283i −0.485572 + 0.333091i
\(85\) 3.13545i 0.340088i
\(86\) 14.2122 4.40612i 1.53255 0.475124i
\(87\) −1.48281 −0.158974
\(88\) 6.95082 8.79300i 0.740960 0.937337i
\(89\) 3.50640 0.371677 0.185839 0.982580i \(-0.440500\pi\)
0.185839 + 0.982580i \(0.440500\pi\)
\(90\) −0.606742 1.95709i −0.0639562 0.206295i
\(91\) 7.96108i 0.834548i
\(92\) −5.96863 8.70092i −0.622273 0.907134i
\(93\) −4.41014 −0.457310
\(94\) −4.19172 13.5207i −0.432343 1.39455i
\(95\) −9.45246 −0.969802
\(96\) 0.382482 5.64391i 0.0390369 0.576029i
\(97\) 8.55060i 0.868182i 0.900869 + 0.434091i \(0.142930\pi\)
−0.900869 + 0.434091i \(0.857070\pi\)
\(98\) −0.380018 + 0.117814i −0.0383876 + 0.0119010i
\(99\) −3.96281 −0.398277
\(100\) 4.78421 3.28186i 0.478421 0.328186i
\(101\) 14.9096i 1.48356i −0.670644 0.741779i \(-0.733982\pi\)
0.670644 0.741779i \(-0.266018\pi\)
\(102\) −2.92324 + 0.906269i −0.289444 + 0.0897340i
\(103\) 9.31724i 0.918055i −0.888422 0.459027i \(-0.848198\pi\)
0.888422 0.459027i \(-0.151802\pi\)
\(104\) −6.54638 5.17487i −0.641925 0.507438i
\(105\) 3.90957i 0.381535i
\(106\) 1.40114 + 4.51947i 0.136090 + 0.438969i
\(107\) 8.13306i 0.786253i −0.919484 0.393127i \(-0.871393\pi\)
0.919484 0.393127i \(-0.128607\pi\)
\(108\) −1.64926 + 1.13135i −0.158700 + 0.108864i
\(109\) 3.88557i 0.372170i 0.982534 + 0.186085i \(0.0595800\pi\)
−0.982534 + 0.186085i \(0.940420\pi\)
\(110\) 2.40440 + 7.75557i 0.229251 + 0.739465i
\(111\) 6.67597 0.633655
\(112\) 3.88593 10.0698i 0.367186 0.951507i
\(113\) 10.5265i 0.990252i 0.868821 + 0.495126i \(0.164878\pi\)
−0.868821 + 0.495126i \(0.835122\pi\)
\(114\) 2.73213 + 8.81269i 0.255887 + 0.825384i
\(115\) 7.64365 0.712774
\(116\) 2.44553 1.67758i 0.227062 0.155759i
\(117\) 2.95030i 0.272756i
\(118\) −3.34096 10.7765i −0.307560 0.992057i
\(119\) −5.83959 −0.535314
\(120\) 3.21483 + 2.54130i 0.293472 + 0.231988i
\(121\) 4.70385 0.427622
\(122\) −0.353322 1.13967i −0.0319883 0.103181i
\(123\) 0.555830i 0.0501175i
\(124\) 7.27345 4.98942i 0.653175 0.448063i
\(125\) 11.4471i 1.02386i
\(126\) −3.64496 + 1.13002i −0.324719 + 0.100670i
\(127\) 1.37164i 0.121713i 0.998147 + 0.0608567i \(0.0193833\pi\)
−0.998147 + 0.0608567i \(0.980617\pi\)
\(128\) 5.75443 + 9.74097i 0.508625 + 0.860988i
\(129\) 10.5214 0.926362
\(130\) 5.77401 1.79007i 0.506414 0.157000i
\(131\) 12.0496i 1.05278i 0.850245 + 0.526388i \(0.176454\pi\)
−0.850245 + 0.526388i \(0.823546\pi\)
\(132\) 6.53568 4.48333i 0.568858 0.390224i
\(133\) 17.6046i 1.52651i
\(134\) −5.83905 9.99527i −0.504417 0.863460i
\(135\) 1.44885i 0.124697i
\(136\) 3.79586 4.80188i 0.325492 0.411757i
\(137\) 9.32069i 0.796320i −0.917316 0.398160i \(-0.869649\pi\)
0.917316 0.398160i \(-0.130351\pi\)
\(138\) −2.20931 7.12631i −0.188069 0.606631i
\(139\) 6.89205 0.584576 0.292288 0.956330i \(-0.405583\pi\)
0.292288 + 0.956330i \(0.405583\pi\)
\(140\) 4.42310 + 6.44788i 0.373820 + 0.544945i
\(141\) 10.0095i 0.842951i
\(142\) −5.62571 18.1462i −0.472100 1.52279i
\(143\) 11.6915i 0.977692i
\(144\) 1.44009 3.73177i 0.120007 0.310981i
\(145\) 2.14837i 0.178412i
\(146\) 11.4326 3.54437i 0.946171 0.293334i
\(147\) −0.281330 −0.0232037
\(148\) −11.0104 + 7.55287i −0.905048 + 0.620842i
\(149\) −8.35907 −0.684802 −0.342401 0.939554i \(-0.611240\pi\)
−0.342401 + 0.939554i \(0.611240\pi\)
\(150\) 3.91841 1.21479i 0.319937 0.0991875i
\(151\) 19.1949i 1.56206i −0.624496 0.781028i \(-0.714696\pi\)
0.624496 0.781028i \(-0.285304\pi\)
\(152\) −14.4762 11.4434i −1.17418 0.928180i
\(153\) −2.16410 −0.174957
\(154\) 14.4443 4.47805i 1.16395 0.360851i
\(155\) 6.38963i 0.513228i
\(156\) −3.33783 4.86581i −0.267240 0.389576i
\(157\) −10.3625 −0.827014 −0.413507 0.910501i \(-0.635696\pi\)
−0.413507 + 0.910501i \(0.635696\pi\)
\(158\) 16.9340 5.24991i 1.34719 0.417660i
\(159\) 3.34580i 0.265339i
\(160\) −8.17718 0.554159i −0.646463 0.0438101i
\(161\) 14.2358i 1.12194i
\(162\) −1.35079 + 0.418775i −0.106128 + 0.0329020i
\(163\) 2.48121i 0.194343i 0.995268 + 0.0971716i \(0.0309796\pi\)
−0.995268 + 0.0971716i \(0.969020\pi\)
\(164\) 0.628839 + 0.916705i 0.0491040 + 0.0715827i
\(165\) 5.74152i 0.446977i
\(166\) −3.40788 10.9924i −0.264503 0.853174i
\(167\) 12.4615i 0.964300i 0.876089 + 0.482150i \(0.160144\pi\)
−0.876089 + 0.482150i \(0.839856\pi\)
\(168\) 4.73302 5.98742i 0.365160 0.461939i
\(169\) 4.29570 0.330439
\(170\) 1.31305 + 4.23533i 0.100706 + 0.324835i
\(171\) 6.52411i 0.498911i
\(172\) −17.3526 + 11.9035i −1.32312 + 0.907630i
\(173\) 11.2618 0.856221 0.428111 0.903726i \(-0.359179\pi\)
0.428111 + 0.903726i \(0.359179\pi\)
\(174\) 2.00296 0.620963i 0.151844 0.0470751i
\(175\) 7.82758 0.591710
\(176\) −5.70679 + 14.7883i −0.430166 + 1.11471i
\(177\) 7.97794i 0.599659i
\(178\) −4.73640 + 1.46839i −0.355008 + 0.110060i
\(179\) 24.6622 1.84334 0.921671 0.387972i \(-0.126824\pi\)
0.921671 + 0.387972i \(0.126824\pi\)
\(180\) 1.63916 + 2.38953i 0.122176 + 0.178105i
\(181\) 23.7830 1.76778 0.883888 0.467699i \(-0.154917\pi\)
0.883888 + 0.467699i \(0.154917\pi\)
\(182\) −3.33390 10.7537i −0.247125 0.797120i
\(183\) 0.843705i 0.0623685i
\(184\) 11.7061 + 9.25359i 0.862984 + 0.682184i
\(185\) 9.67249i 0.711136i
\(186\) 5.95716 1.84685i 0.436800 0.135418i
\(187\) 8.57590 0.627132
\(188\) 11.3243 + 16.5082i 0.825906 + 1.20399i
\(189\) −2.69839 −0.196279
\(190\) 12.7683 3.95845i 0.926307 0.287176i
\(191\) 11.8983 0.860932 0.430466 0.902607i \(-0.358349\pi\)
0.430466 + 0.902607i \(0.358349\pi\)
\(192\) 1.84687 + 7.78390i 0.133287 + 0.561754i
\(193\) −19.2001 −1.38205 −0.691026 0.722830i \(-0.742841\pi\)
−0.691026 + 0.722830i \(0.742841\pi\)
\(194\) −3.58077 11.5500i −0.257084 0.829245i
\(195\) 4.27455 0.306107
\(196\) 0.463986 0.318283i 0.0331418 0.0227345i
\(197\) 8.66502i 0.617357i 0.951166 + 0.308679i \(0.0998868\pi\)
−0.951166 + 0.308679i \(0.900113\pi\)
\(198\) 5.35291 1.65952i 0.380415 0.117937i
\(199\) 3.96638i 0.281169i 0.990069 + 0.140585i \(0.0448982\pi\)
−0.990069 + 0.140585i \(0.955102\pi\)
\(200\) −5.08810 + 6.43660i −0.359783 + 0.455136i
\(201\) −1.85078 7.97337i −0.130544 0.562398i
\(202\) 6.24375 + 20.1397i 0.439309 + 1.41702i
\(203\) 4.00120 0.280829
\(204\) 3.56915 2.44835i 0.249890 0.171419i
\(205\) −0.805314 −0.0562456
\(206\) 3.90182 + 12.5856i 0.271853 + 0.876881i
\(207\) 5.27567i 0.366684i
\(208\) 11.0099 + 4.24870i 0.763397 + 0.294594i
\(209\) 25.8538i 1.78834i
\(210\) 1.63723 + 5.28100i 0.112980 + 0.364424i
\(211\) 16.2868i 1.12123i −0.828077 0.560615i \(-0.810565\pi\)
0.828077 0.560615i \(-0.189435\pi\)
\(212\) −3.78527 5.51808i −0.259974 0.378983i
\(213\) 13.4338i 0.920466i
\(214\) 3.40592 + 10.9860i 0.232824 + 0.750991i
\(215\) 15.2440i 1.03963i
\(216\) 1.75401 2.21888i 0.119345 0.150976i
\(217\) 11.9003 0.807845
\(218\) −1.62718 5.24858i −0.110206 0.355479i
\(219\) 8.46368 0.571922
\(220\) −6.49567 9.46923i −0.437938 0.638415i
\(221\) 6.38475i 0.429484i
\(222\) −9.01782 + 2.79573i −0.605237 + 0.187637i
\(223\) 10.7707i 0.721258i 0.932709 + 0.360629i \(0.117438\pi\)
−0.932709 + 0.360629i \(0.882562\pi\)
\(224\) −1.03209 + 15.2295i −0.0689592 + 1.01756i
\(225\) 2.90083 0.193389
\(226\) −4.40824 14.2191i −0.293232 0.945840i
\(227\) 23.5814i 1.56515i −0.622554 0.782577i \(-0.713905\pi\)
0.622554 0.782577i \(-0.286095\pi\)
\(228\) −7.38106 10.7599i −0.488822 0.712593i
\(229\) 0.0643122i 0.00424987i −0.999998 0.00212494i \(-0.999324\pi\)
0.999998 0.00212494i \(-0.000676388\pi\)
\(230\) −10.3250 + 3.20097i −0.680807 + 0.211066i
\(231\) 10.6932 0.703562
\(232\) −2.60087 + 3.29018i −0.170755 + 0.216011i
\(233\) 4.77483i 0.312809i 0.987693 + 0.156405i \(0.0499904\pi\)
−0.987693 + 0.156405i \(0.950010\pi\)
\(234\) −1.23551 3.98524i −0.0807680 0.260523i
\(235\) −14.5023 −0.946023
\(236\) 9.02585 + 13.1577i 0.587533 + 0.856491i
\(237\) 12.5364 0.814324
\(238\) 7.88804 2.44547i 0.511306 0.158516i
\(239\) 13.2223 0.855278 0.427639 0.903950i \(-0.359345\pi\)
0.427639 + 0.903950i \(0.359345\pi\)
\(240\) −5.40679 2.08647i −0.349007 0.134681i
\(241\) 26.9947 1.73888 0.869439 0.494040i \(-0.164480\pi\)
0.869439 + 0.494040i \(0.164480\pi\)
\(242\) −6.35390 + 1.96985i −0.408444 + 0.126627i
\(243\) −1.00000 −0.0641500
\(244\) 0.954527 + 1.39149i 0.0611073 + 0.0890807i
\(245\) 0.407606i 0.0260410i
\(246\) 0.232767 + 0.750808i 0.0148407 + 0.0478698i
\(247\) −19.2481 −1.22473
\(248\) −7.73544 + 9.78558i −0.491201 + 0.621385i
\(249\) 8.13775i 0.515709i
\(250\) −4.79377 15.4626i −0.303184 0.977943i
\(251\) −11.9629 −0.755091 −0.377546 0.925991i \(-0.623232\pi\)
−0.377546 + 0.925991i \(0.623232\pi\)
\(252\) 4.45034 3.05283i 0.280345 0.192310i
\(253\) 20.9065i 1.31438i
\(254\) −0.574408 1.85280i −0.0360416 0.116255i
\(255\) 3.13545i 0.196350i
\(256\) −11.8523 10.7482i −0.740768 0.671761i
\(257\) 1.46492 0.0913791 0.0456896 0.998956i \(-0.485451\pi\)
0.0456896 + 0.998956i \(0.485451\pi\)
\(258\) −14.2122 + 4.40612i −0.884816 + 0.274313i
\(259\) −18.0144 −1.11936
\(260\) −7.04983 + 4.83602i −0.437212 + 0.299917i
\(261\) 1.48281 0.0917836
\(262\) −5.04605 16.2764i −0.311746 1.00556i
\(263\) 0.0327787i 0.00202122i −0.999999 0.00101061i \(-0.999678\pi\)
0.999999 0.00101061i \(-0.000321688\pi\)
\(264\) −6.95082 + 8.79300i −0.427793 + 0.541172i
\(265\) 4.84756 0.297784
\(266\) −7.37236 23.7801i −0.452029 1.45805i
\(267\) −3.50640 −0.214588
\(268\) 12.0731 + 11.0562i 0.737481 + 0.675368i
\(269\) 13.8847 0.846562 0.423281 0.905998i \(-0.360878\pi\)
0.423281 + 0.905998i \(0.360878\pi\)
\(270\) 0.606742 + 1.95709i 0.0369251 + 0.119105i
\(271\) 1.69169 0.102763 0.0513816 0.998679i \(-0.483638\pi\)
0.0513816 + 0.998679i \(0.483638\pi\)
\(272\) −3.11649 + 8.07592i −0.188965 + 0.489675i
\(273\) 7.96108i 0.481827i
\(274\) 3.90327 + 12.5903i 0.235805 + 0.760606i
\(275\) −11.4954 −0.693201
\(276\) 5.96863 + 8.70092i 0.359269 + 0.523734i
\(277\) −0.841553 −0.0505640 −0.0252820 0.999680i \(-0.508048\pi\)
−0.0252820 + 0.999680i \(0.508048\pi\)
\(278\) −9.30970 + 2.88621i −0.558358 + 0.173104i
\(279\) 4.41014 0.264028
\(280\) −8.67488 6.85744i −0.518423 0.409810i
\(281\) 25.4809i 1.52006i −0.649886 0.760032i \(-0.725183\pi\)
0.649886 0.760032i \(-0.274817\pi\)
\(282\) 4.19172 + 13.5207i 0.249613 + 0.805146i
\(283\) 1.94265i 0.115478i −0.998332 0.0577392i \(-0.981611\pi\)
0.998332 0.0577392i \(-0.0183892\pi\)
\(284\) 15.1983 + 22.1557i 0.901853 + 1.31470i
\(285\) 9.45246 0.559915
\(286\) 4.89610 + 15.7927i 0.289512 + 0.933843i
\(287\) 1.49985i 0.0885332i
\(288\) −0.382482 + 5.64391i −0.0225380 + 0.332571i
\(289\) −12.3167 −0.724511
\(290\) −0.899682 2.90199i −0.0528312 0.170411i
\(291\) 8.55060i 0.501245i
\(292\) −13.9588 + 9.57539i −0.816875 + 0.560357i
\(293\) −23.0061 −1.34403 −0.672016 0.740536i \(-0.734571\pi\)
−0.672016 + 0.740536i \(0.734571\pi\)
\(294\) 0.380018 0.117814i 0.0221631 0.00687105i
\(295\) −11.5588 −0.672982
\(296\) 11.7097 14.8132i 0.680615 0.861000i
\(297\) 3.96281 0.229945
\(298\) 11.2913 3.50057i 0.654089 0.202782i
\(299\) 15.5648 0.900137
\(300\) −4.78421 + 3.28186i −0.276217 + 0.189478i
\(301\) −28.3910 −1.63643
\(302\) 8.03832 + 25.9282i 0.462553 + 1.49200i
\(303\) 14.9096i 0.856533i
\(304\) 24.3465 + 9.39529i 1.39637 + 0.538857i
\(305\) −1.22240 −0.0699946
\(306\) 2.92324 0.906269i 0.167110 0.0518079i
\(307\) 28.0965i 1.60355i −0.597626 0.801775i \(-0.703889\pi\)
0.597626 0.801775i \(-0.296111\pi\)
\(308\) −17.6358 + 12.0978i −1.00490 + 0.689335i
\(309\) 9.31724i 0.530039i
\(310\) −2.67582 8.63104i −0.151976 0.490210i
\(311\) 21.5109 1.21977 0.609885 0.792490i \(-0.291216\pi\)
0.609885 + 0.792490i \(0.291216\pi\)
\(312\) 6.54638 + 5.17487i 0.370616 + 0.292970i
\(313\) 35.2883i 1.99461i 0.0733438 + 0.997307i \(0.476633\pi\)
−0.0733438 + 0.997307i \(0.523367\pi\)
\(314\) 13.9975 4.33953i 0.789924 0.244894i
\(315\) 3.90957i 0.220279i
\(316\) −20.6756 + 14.1830i −1.16310 + 0.797857i
\(317\) 17.5449 0.985418 0.492709 0.870194i \(-0.336007\pi\)
0.492709 + 0.870194i \(0.336007\pi\)
\(318\) −1.40114 4.51947i −0.0785718 0.253439i
\(319\) −5.87609 −0.328998
\(320\) 11.2777 2.67584i 0.630443 0.149584i
\(321\) 8.13306i 0.453943i
\(322\) 5.96160 + 19.2296i 0.332227 + 1.07162i
\(323\) 14.1188i 0.785591i
\(324\) 1.64926 1.13135i 0.0916253 0.0628528i
\(325\) 8.55834i 0.474731i
\(326\) −1.03907 3.35159i −0.0575486 0.185627i
\(327\) 3.88557i 0.214873i
\(328\) −1.23332 0.974933i −0.0680987 0.0538317i
\(329\) 27.0096i 1.48908i
\(330\) −2.40440 7.75557i −0.132358 0.426930i
\(331\) 12.3828 0.680623 0.340311 0.940313i \(-0.389468\pi\)
0.340311 + 0.940313i \(0.389468\pi\)
\(332\) 9.20665 + 13.4212i 0.505281 + 0.736586i
\(333\) −6.67597 −0.365841
\(334\) −5.21856 16.8329i −0.285547 0.921053i
\(335\) −11.5522 + 2.68150i −0.631165 + 0.146506i
\(336\) −3.88593 + 10.0698i −0.211995 + 0.549353i
\(337\) 5.69001i 0.309955i −0.987918 0.154977i \(-0.950470\pi\)
0.987918 0.154977i \(-0.0495305\pi\)
\(338\) −5.80258 + 1.79893i −0.315619 + 0.0978490i
\(339\) 10.5265i 0.571722i
\(340\) −3.54730 5.17117i −0.192379 0.280446i
\(341\) −17.4765 −0.946407
\(342\) −2.73213 8.81269i −0.147737 0.476535i
\(343\) −18.1296 −0.978907
\(344\) 18.4548 23.3459i 0.995014 1.25872i
\(345\) −7.64365 −0.411521
\(346\) −15.2123 + 4.71617i −0.817821 + 0.253543i
\(347\) −32.2136 −1.72932 −0.864660 0.502358i \(-0.832466\pi\)
−0.864660 + 0.502358i \(0.832466\pi\)
\(348\) −2.44553 + 1.67758i −0.131094 + 0.0899276i
\(349\) 0.815507 0.0436531 0.0218265 0.999762i \(-0.493052\pi\)
0.0218265 + 0.999762i \(0.493052\pi\)
\(350\) −10.5734 + 3.27799i −0.565172 + 0.175216i
\(351\) 2.95030i 0.157476i
\(352\) 1.51570 22.3657i 0.0807872 1.19210i
\(353\) 1.26977i 0.0675828i −0.999429 0.0337914i \(-0.989242\pi\)
0.999429 0.0337914i \(-0.0107582\pi\)
\(354\) 3.34096 + 10.7765i 0.177570 + 0.572765i
\(355\) −19.4635 −1.03302
\(356\) 5.78295 3.96697i 0.306495 0.210249i
\(357\) 5.83959 0.309064
\(358\) −33.3135 + 10.3279i −1.76067 + 0.545848i
\(359\) 13.7173i 0.723973i −0.932183 0.361987i \(-0.882099\pi\)
0.932183 0.361987i \(-0.117901\pi\)
\(360\) −3.21483 2.54130i −0.169436 0.133938i
\(361\) −23.5640 −1.24021
\(362\) −32.1258 + 9.95971i −1.68849 + 0.523471i
\(363\) −4.70385 −0.246888
\(364\) 9.00678 + 13.1299i 0.472084 + 0.688192i
\(365\) 12.2626i 0.641854i
\(366\) 0.353322 + 1.13967i 0.0184684 + 0.0595713i
\(367\) 32.2468 1.68327 0.841635 0.540047i \(-0.181594\pi\)
0.841635 + 0.540047i \(0.181594\pi\)
\(368\) −19.6876 7.59743i −1.02629 0.396043i
\(369\) 0.555830i 0.0289353i
\(370\) 4.05059 + 13.0655i 0.210580 + 0.679242i
\(371\) 9.02829i 0.468725i
\(372\) −7.27345 + 4.98942i −0.377111 + 0.258689i
\(373\) 27.4890i 1.42332i 0.702522 + 0.711662i \(0.252057\pi\)
−0.702522 + 0.711662i \(0.747943\pi\)
\(374\) −11.5842 + 3.59137i −0.599006 + 0.185705i
\(375\) 11.4471i 0.591127i
\(376\) −22.2099 17.5568i −1.14539 0.905422i
\(377\) 4.37474i 0.225310i
\(378\) 3.64496 1.13002i 0.187476 0.0581219i
\(379\) 25.1952 1.29419 0.647095 0.762409i \(-0.275984\pi\)
0.647095 + 0.762409i \(0.275984\pi\)
\(380\) −15.5895 + 10.6941i −0.799726 + 0.548593i
\(381\) 1.37164i 0.0702713i
\(382\) −16.0721 + 4.98272i −0.822321 + 0.254938i
\(383\) −19.8566 −1.01463 −0.507313 0.861762i \(-0.669361\pi\)
−0.507313 + 0.861762i \(0.669361\pi\)
\(384\) −5.75443 9.74097i −0.293655 0.497092i
\(385\) 15.4929i 0.789590i
\(386\) 25.9352 8.04051i 1.32007 0.409251i
\(387\) −10.5214 −0.534835
\(388\) 9.67373 + 14.1021i 0.491109 + 0.715927i
\(389\) 17.3543 0.879899 0.439950 0.898022i \(-0.354996\pi\)
0.439950 + 0.898022i \(0.354996\pi\)
\(390\) −5.77401 + 1.79007i −0.292378 + 0.0906439i
\(391\) 11.4171i 0.577385i
\(392\) −0.493457 + 0.624239i −0.0249233 + 0.0315288i
\(393\) 12.0496i 0.607820i
\(394\) −3.62869 11.7046i −0.182811 0.589670i
\(395\) 18.1633i 0.913895i
\(396\) −6.53568 + 4.48333i −0.328430 + 0.225296i
\(397\) −15.8998 −0.797989 −0.398994 0.916953i \(-0.630641\pi\)
−0.398994 + 0.916953i \(0.630641\pi\)
\(398\) −1.66102 5.35774i −0.0832593 0.268559i
\(399\) 17.6046i 0.881333i
\(400\) 4.17745 10.8252i 0.208873 0.541262i
\(401\) 4.71619i 0.235515i −0.993042 0.117758i \(-0.962429\pi\)
0.993042 0.117758i \(-0.0375706\pi\)
\(402\) 5.83905 + 9.99527i 0.291225 + 0.498519i
\(403\) 13.0113i 0.648137i
\(404\) −16.8680 24.5897i −0.839213 1.22338i
\(405\) 1.44885i 0.0719940i
\(406\) −5.40478 + 1.67560i −0.268235 + 0.0831587i
\(407\) 26.4556 1.31136
\(408\) −3.79586 + 4.80188i −0.187923 + 0.237728i
\(409\) 12.2642i 0.606424i 0.952923 + 0.303212i \(0.0980590\pi\)
−0.952923 + 0.303212i \(0.901941\pi\)
\(410\) 1.08781 0.337245i 0.0537231 0.0166554i
\(411\) 9.32069i 0.459756i
\(412\) −10.5411 15.3665i −0.519321 0.757053i
\(413\) 21.5276i 1.05930i
\(414\) 2.20931 + 7.12631i 0.108582 + 0.350239i
\(415\) −11.7904 −0.578767
\(416\) −16.6513 1.12844i −0.816395 0.0553262i
\(417\) −6.89205 −0.337505
\(418\) 10.8269 + 34.9230i 0.529561 + 1.70814i
\(419\) 22.1411i 1.08166i −0.841131 0.540832i \(-0.818110\pi\)
0.841131 0.540832i \(-0.181890\pi\)
\(420\) −4.42310 6.44788i −0.215825 0.314624i
\(421\) 10.7107 0.522009 0.261004 0.965338i \(-0.415946\pi\)
0.261004 + 0.965338i \(0.415946\pi\)
\(422\) 6.82049 + 22.0000i 0.332016 + 1.07094i
\(423\) 10.0095i 0.486678i
\(424\) 7.42393 + 5.86858i 0.360538 + 0.285003i
\(425\) −6.27768 −0.304512
\(426\) 5.62571 + 18.1462i 0.272567 + 0.879184i
\(427\) 2.27665i 0.110175i
\(428\) −9.20135 13.4135i −0.444764 0.648366i
\(429\) 11.6915i 0.564470i
\(430\) 6.38380 + 20.5914i 0.307854 + 0.993007i
\(431\) 32.2037i 1.55120i 0.631226 + 0.775599i \(0.282552\pi\)
−0.631226 + 0.775599i \(0.717448\pi\)
\(432\) −1.44009 + 3.73177i −0.0692863 + 0.179545i
\(433\) 24.6358i 1.18392i −0.805968 0.591960i \(-0.798354\pi\)
0.805968 0.591960i \(-0.201646\pi\)
\(434\) −16.0748 + 4.98354i −0.771614 + 0.239218i
\(435\) 2.14837i 0.103006i
\(436\) 4.39595 + 6.40830i 0.210528 + 0.306902i
\(437\) 34.4190 1.64648
\(438\) −11.4326 + 3.54437i −0.546272 + 0.169357i
\(439\) 23.9175i 1.14152i −0.821116 0.570761i \(-0.806648\pi\)
0.821116 0.570761i \(-0.193352\pi\)
\(440\) 12.7398 + 10.0707i 0.607344 + 0.480102i
\(441\) 0.281330 0.0133967
\(442\) 2.67377 + 8.62444i 0.127178 + 0.410223i
\(443\) 33.2386 1.57921 0.789606 0.613614i \(-0.210285\pi\)
0.789606 + 0.613614i \(0.210285\pi\)
\(444\) 11.0104 7.55287i 0.522530 0.358443i
\(445\) 5.08025i 0.240827i
\(446\) −4.51049 14.5489i −0.213578 0.688911i
\(447\) 8.35907 0.395370
\(448\) −4.98359 21.0040i −0.235453 0.992347i
\(449\) 7.52893 0.355312 0.177656 0.984093i \(-0.443149\pi\)
0.177656 + 0.984093i \(0.443149\pi\)
\(450\) −3.91841 + 1.21479i −0.184715 + 0.0572660i
\(451\) 2.20265i 0.103719i
\(452\) 11.9092 + 17.3609i 0.560161 + 0.816589i
\(453\) 19.1949i 0.901853i
\(454\) 9.87530 + 31.8535i 0.463471 + 1.49496i
\(455\) −11.5344 −0.540742
\(456\) 14.4762 + 11.4434i 0.677911 + 0.535885i
\(457\) 11.0810 0.518345 0.259173 0.965831i \(-0.416550\pi\)
0.259173 + 0.965831i \(0.416550\pi\)
\(458\) 0.0269323 + 0.0868721i 0.00125846 + 0.00405927i
\(459\) 2.16410 0.101011
\(460\) 12.6063 8.64766i 0.587774 0.403199i
\(461\) −8.38194 −0.390386 −0.195193 0.980765i \(-0.562533\pi\)
−0.195193 + 0.980765i \(0.562533\pi\)
\(462\) −14.4443 + 4.47805i −0.672008 + 0.208338i
\(463\) 2.55096 0.118553 0.0592766 0.998242i \(-0.481121\pi\)
0.0592766 + 0.998242i \(0.481121\pi\)
\(464\) 2.13538 5.53351i 0.0991323 0.256887i
\(465\) 6.38963i 0.296312i
\(466\) −1.99958 6.44978i −0.0926286 0.298780i
\(467\) 12.9673i 0.600053i −0.953931 0.300026i \(-0.903004\pi\)
0.953931 0.300026i \(-0.0969955\pi\)
\(468\) 3.33783 + 4.86581i 0.154291 + 0.224922i
\(469\) 4.99412 + 21.5153i 0.230607 + 0.993484i
\(470\) 19.5895 6.07318i 0.903595 0.280135i
\(471\) 10.3625 0.477477
\(472\) −17.7021 13.9934i −0.814805 0.644099i
\(473\) 41.6945 1.91711
\(474\) −16.9340 + 5.24991i −0.777802 + 0.241136i
\(475\) 18.9253i 0.868354i
\(476\) −9.63097 + 6.60662i −0.441435 + 0.302814i
\(477\) 3.34580i 0.153194i
\(478\) −17.8605 + 5.53716i −0.816920 + 0.253264i
\(479\) 4.68023i 0.213845i −0.994267 0.106922i \(-0.965900\pi\)
0.994267 0.106922i \(-0.0340997\pi\)
\(480\) 8.17718 + 0.554159i 0.373236 + 0.0252938i
\(481\) 19.6962i 0.898067i
\(482\) −36.4640 + 11.3047i −1.66089 + 0.514914i
\(483\) 14.2358i 0.647753i
\(484\) 7.75785 5.32170i 0.352629 0.241896i
\(485\) −12.3885 −0.562535
\(486\) 1.35079 0.418775i 0.0612730 0.0189960i
\(487\) 8.34042 0.377940 0.188970 0.981983i \(-0.439485\pi\)
0.188970 + 0.981983i \(0.439485\pi\)
\(488\) −1.87208 1.47987i −0.0847451 0.0669906i
\(489\) 2.48121i 0.112204i
\(490\) −0.170695 0.550589i −0.00771121 0.0248731i
\(491\) 13.4563i 0.607276i −0.952787 0.303638i \(-0.901799\pi\)
0.952787 0.303638i \(-0.0982014\pi\)
\(492\) −0.628839 0.916705i −0.0283502 0.0413283i
\(493\) −3.20894 −0.144523
\(494\) 26.0001 8.06062i 1.16980 0.362664i
\(495\) 5.74152i 0.258062i
\(496\) 6.35099 16.4576i 0.285168 0.738970i
\(497\) 36.2496i 1.62602i
\(498\) 3.40788 + 10.9924i 0.152711 + 0.492580i
\(499\) −26.3904 −1.18140 −0.590698 0.806893i \(-0.701147\pi\)
−0.590698 + 0.806893i \(0.701147\pi\)
\(500\) 12.9507 + 18.8792i 0.579174 + 0.844305i
\(501\) 12.4615i 0.556739i
\(502\) 16.1593 5.00976i 0.721227 0.223596i
\(503\) −3.05618 −0.136268 −0.0681342 0.997676i \(-0.521705\pi\)
−0.0681342 + 0.997676i \(0.521705\pi\)
\(504\) −4.73302 + 5.98742i −0.210825 + 0.266701i
\(505\) 21.6018 0.961266
\(506\) −8.75509 28.2402i −0.389211 1.25543i
\(507\) −4.29570 −0.190779
\(508\) 1.55181 + 2.26219i 0.0688503 + 0.100368i
\(509\) −37.5647 −1.66502 −0.832512 0.554007i \(-0.813098\pi\)
−0.832512 + 0.554007i \(0.813098\pi\)
\(510\) −1.31305 4.23533i −0.0581428 0.187544i
\(511\) −22.8383 −1.01031
\(512\) 20.5110 + 9.55507i 0.906466 + 0.422278i
\(513\) 6.52411i 0.288046i
\(514\) −1.97879 + 0.613471i −0.0872809 + 0.0270590i
\(515\) 13.4993 0.594850
\(516\) 17.3526 11.9035i 0.763904 0.524020i
\(517\) 39.6657i 1.74450i
\(518\) 24.3336 7.54398i 1.06916 0.331463i
\(519\) −11.2618 −0.494340
\(520\) 7.49762 9.48473i 0.328792 0.415933i
\(521\) 8.26338i 0.362025i 0.983481 + 0.181013i \(0.0579375\pi\)
−0.983481 + 0.181013i \(0.942062\pi\)
\(522\) −2.00296 + 0.620963i −0.0876672 + 0.0271788i
\(523\) 10.0503i 0.439468i −0.975560 0.219734i \(-0.929481\pi\)
0.975560 0.219734i \(-0.0705190\pi\)
\(524\) 13.6323 + 19.8728i 0.595530 + 0.868148i
\(525\) −7.82758 −0.341624
\(526\) 0.0137269 + 0.0442771i 0.000598521 + 0.00193057i
\(527\) −9.54397 −0.415742
\(528\) 5.70679 14.7883i 0.248356 0.643578i
\(529\) −4.83265 −0.210115
\(530\) −6.54803 + 2.03004i −0.284428 + 0.0881792i
\(531\) 7.97794i 0.346213i
\(532\) 19.9170 + 29.0345i 0.863511 + 1.25881i
\(533\) −1.63987 −0.0710305
\(534\) 4.73640 1.46839i 0.204964 0.0635434i
\(535\) 11.7836 0.509449
\(536\) −20.9383 9.87875i −0.904395 0.426697i
\(537\) −24.6622 −1.06425
\(538\) −18.7552 + 5.81454i −0.808595 + 0.250683i
\(539\) −1.11486 −0.0480203
\(540\) −1.63916 2.38953i −0.0705382 0.102829i
\(541\) 45.6660i 1.96333i 0.190603 + 0.981667i \(0.438956\pi\)
−0.190603 + 0.981667i \(0.561044\pi\)
\(542\) −2.28512 + 0.708439i −0.0981543 + 0.0304300i
\(543\) −23.7830 −1.02063
\(544\) 0.827728 12.2140i 0.0354885 0.523670i
\(545\) −5.62962 −0.241146
\(546\) 3.33390 + 10.7537i 0.142678 + 0.460217i
\(547\) 40.9128 1.74930 0.874652 0.484751i \(-0.161090\pi\)
0.874652 + 0.484751i \(0.161090\pi\)
\(548\) −10.5450 15.3722i −0.450459 0.656668i
\(549\) 0.843705i 0.0360084i
\(550\) 15.5279 4.81400i 0.662112 0.205269i
\(551\) 9.67400i 0.412126i
\(552\) −11.7061 9.25359i −0.498244 0.393859i
\(553\) −33.8280 −1.43851
\(554\) 1.13676 0.352421i 0.0482963 0.0149729i
\(555\) 9.67249i 0.410574i
\(556\) 11.3668 7.79733i 0.482058 0.330680i
\(557\) 36.4189 1.54312 0.771559 0.636158i \(-0.219478\pi\)
0.771559 + 0.636158i \(0.219478\pi\)
\(558\) −5.95716 + 1.84685i −0.252187 + 0.0781836i
\(559\) 31.0415i 1.31291i
\(560\) 14.5896 + 5.63013i 0.616525 + 0.237916i
\(561\) −8.57590 −0.362075
\(562\) 10.6708 + 34.4193i 0.450119 + 1.45189i
\(563\) −1.44035 −0.0607034 −0.0303517 0.999539i \(-0.509663\pi\)
−0.0303517 + 0.999539i \(0.509663\pi\)
\(564\) −11.3243 16.5082i −0.476837 0.695121i
\(565\) −15.2514 −0.641630
\(566\) 0.813532 + 2.62411i 0.0341953 + 0.110299i
\(567\) 2.69839 0.113322
\(568\) −29.8079 23.5630i −1.25071 0.988681i
\(569\) 18.7895 0.787696 0.393848 0.919176i \(-0.371144\pi\)
0.393848 + 0.919176i \(0.371144\pi\)
\(570\) −12.7683 + 3.95845i −0.534804 + 0.165801i
\(571\) 24.5716i 1.02829i 0.857704 + 0.514144i \(0.171890\pi\)
−0.857704 + 0.514144i \(0.828110\pi\)
\(572\) −13.2272 19.2823i −0.553056 0.806232i
\(573\) −11.8983 −0.497060
\(574\) −0.628098 2.02598i −0.0262163 0.0845626i
\(575\) 15.3038i 0.638213i
\(576\) −1.84687 7.78390i −0.0769531 0.324329i
\(577\) 45.3105i 1.88630i −0.332364 0.943151i \(-0.607846\pi\)
0.332364 0.943151i \(-0.392154\pi\)
\(578\) 16.6372 5.15791i 0.692017 0.214541i
\(579\) 19.2001 0.797928
\(580\) 2.43056 + 3.54321i 0.100924 + 0.147124i
\(581\) 21.9589i 0.911007i
\(582\) 3.58077 + 11.5500i 0.148428 + 0.478765i
\(583\) 13.2588i 0.549122i
\(584\) 14.8454 18.7799i 0.614307 0.777118i
\(585\) −4.27455 −0.176731
\(586\) 31.0764 9.63438i 1.28375 0.397993i
\(587\) −15.4815 −0.638989 −0.319494 0.947588i \(-0.603513\pi\)
−0.319494 + 0.947588i \(0.603513\pi\)
\(588\) −0.463986 + 0.318283i −0.0191344 + 0.0131258i
\(589\) 28.7722i 1.18554i
\(590\) 15.6135 4.84055i 0.642799 0.199282i
\(591\) 8.66502i 0.356431i
\(592\) −9.61399 + 24.9132i −0.395133 + 1.02393i
\(593\) 11.4597i 0.470595i 0.971923 + 0.235298i \(0.0756065\pi\)
−0.971923 + 0.235298i \(0.924394\pi\)
\(594\) −5.35291 + 1.65952i −0.219633 + 0.0680911i
\(595\) 8.46069i 0.346855i
\(596\) −13.7862 + 9.45704i −0.564706 + 0.387376i
\(597\) 3.96638i 0.162333i
\(598\) −21.0248 + 6.51815i −0.859767 + 0.266547i
\(599\) −13.2447 −0.541163 −0.270581 0.962697i \(-0.587216\pi\)
−0.270581 + 0.962697i \(0.587216\pi\)
\(600\) 5.08810 6.43660i 0.207721 0.262773i
\(601\) 15.7272 0.641526 0.320763 0.947159i \(-0.396061\pi\)
0.320763 + 0.947159i \(0.396061\pi\)
\(602\) 38.3502 11.8894i 1.56304 0.484577i
\(603\) 1.85078 + 7.97337i 0.0753694 + 0.324701i
\(604\) −21.7161 31.6572i −0.883617 1.28811i
\(605\) 6.81517i 0.277076i
\(606\) −6.24375 20.1397i −0.253635 0.818119i
\(607\) 11.7838i 0.478289i 0.970984 + 0.239144i \(0.0768669\pi\)
−0.970984 + 0.239144i \(0.923133\pi\)
\(608\) −36.8215 2.49535i −1.49331 0.101200i
\(609\) −4.00120 −0.162137
\(610\) 1.65121 0.511911i 0.0668554 0.0207267i
\(611\) −29.5311 −1.19470
\(612\) −3.56915 + 2.44835i −0.144274 + 0.0989688i
\(613\) 15.6126 0.630588 0.315294 0.948994i \(-0.397897\pi\)
0.315294 + 0.948994i \(0.397897\pi\)
\(614\) 11.7661 + 37.9524i 0.474841 + 1.53163i
\(615\) 0.805314 0.0324734
\(616\) 18.7560 23.7270i 0.755703 0.955988i
\(617\) 28.6395 1.15298 0.576491 0.817103i \(-0.304421\pi\)
0.576491 + 0.817103i \(0.304421\pi\)
\(618\) −3.90182 12.5856i −0.156954 0.506268i
\(619\) 7.35717i 0.295710i −0.989009 0.147855i \(-0.952763\pi\)
0.989009 0.147855i \(-0.0472368\pi\)
\(620\) 7.22892 + 10.5381i 0.290320 + 0.423222i
\(621\) 5.27567i 0.211705i
\(622\) −29.0566 + 9.00821i −1.16506 + 0.361196i
\(623\) 9.46164 0.379073
\(624\) −11.0099 4.24870i −0.440748 0.170084i
\(625\) −2.08102 −0.0832410
\(626\) −14.7778 47.6670i −0.590642 1.90516i
\(627\) 25.8538i 1.03250i
\(628\) −17.0903 + 11.7236i −0.681979 + 0.467822i
\(629\) 14.4475 0.576058
\(630\) −1.63723 5.28100i −0.0652288 0.210400i
\(631\) 3.20849 0.127728 0.0638640 0.997959i \(-0.479658\pi\)
0.0638640 + 0.997959i \(0.479658\pi\)
\(632\) 21.9889 27.8167i 0.874673 1.10649i
\(633\) 16.2868i 0.647342i
\(634\) −23.6994 + 7.34735i −0.941224 + 0.291800i
\(635\) −1.98730 −0.0788637
\(636\) 3.78527 + 5.51808i 0.150096 + 0.218806i
\(637\) 0.830010i 0.0328862i
\(638\) 7.93735 2.46076i 0.314243 0.0974222i
\(639\) 13.4338i 0.531431i
\(640\) −14.1132 + 8.33732i −0.557874 + 0.329561i
\(641\) 7.07704i 0.279526i −0.990185 0.139763i \(-0.955366\pi\)
0.990185 0.139763i \(-0.0446341\pi\)
\(642\) −3.40592 10.9860i −0.134421 0.433585i
\(643\) 25.8835i 1.02075i 0.859953 + 0.510373i \(0.170493\pi\)
−0.859953 + 0.510373i \(0.829507\pi\)
\(644\) −16.1057 23.4785i −0.634654 0.925183i
\(645\) 15.2440i 0.600232i
\(646\) 5.91260 + 19.0715i 0.232628 + 0.750358i
\(647\) 26.9464 1.05937 0.529686 0.848194i \(-0.322310\pi\)
0.529686 + 0.848194i \(0.322310\pi\)
\(648\) −1.75401 + 2.21888i −0.0689042 + 0.0871659i
\(649\) 31.6150i 1.24100i
\(650\) −3.58401 11.5605i −0.140577 0.453440i
\(651\) −11.9003 −0.466409
\(652\) 2.80712 + 4.09215i 0.109935 + 0.160261i
\(653\) 17.6046i 0.688923i 0.938800 + 0.344461i \(0.111938\pi\)
−0.938800 + 0.344461i \(0.888062\pi\)
\(654\) 1.62718 + 5.24858i 0.0636277 + 0.205236i
\(655\) −17.4580 −0.682142
\(656\) 2.07423 + 0.800444i 0.0809851 + 0.0312521i
\(657\) −8.46368 −0.330200
\(658\) −11.3109 36.4842i −0.440945 1.42230i
\(659\) 14.9244i 0.581373i −0.956818 0.290686i \(-0.906116\pi\)
0.956818 0.290686i \(-0.0938836\pi\)
\(660\) 6.49567 + 9.46923i 0.252844 + 0.368589i
\(661\) 43.8582i 1.70589i −0.522003 0.852944i \(-0.674815\pi\)
0.522003 0.852944i \(-0.325185\pi\)
\(662\) −16.7266 + 5.18562i −0.650098 + 0.201545i
\(663\) 6.38475i 0.247963i
\(664\) −18.0567 14.2737i −0.700736 0.553928i
\(665\) −25.5065 −0.989098
\(666\) 9.01782 2.79573i 0.349434 0.108332i
\(667\) 7.82280i 0.302900i
\(668\) 14.0983 + 20.5522i 0.545481 + 0.795189i
\(669\) 10.7707i 0.416419i
\(670\) 14.4817 8.45991i 0.559475 0.326835i
\(671\) 3.34344i 0.129072i
\(672\) 1.03209 15.2295i 0.0398136 0.587490i
\(673\) 28.4231i 1.09563i −0.836600 0.547814i \(-0.815460\pi\)
0.836600 0.547814i \(-0.184540\pi\)
\(674\) 2.38283 + 7.68600i 0.0917833 + 0.296054i
\(675\) −2.90083 −0.111653
\(676\) 7.08471 4.85995i 0.272489 0.186921i
\(677\) 27.2748i 1.04826i −0.851639 0.524128i \(-0.824391\pi\)
0.851639 0.524128i \(-0.175609\pi\)
\(678\) 4.40824 + 14.2191i 0.169297 + 0.546081i
\(679\) 23.0729i 0.885456i
\(680\) 6.95720 + 5.49963i 0.266797 + 0.210901i
\(681\) 23.5814i 0.903642i
\(682\) 23.6071 7.31873i 0.903962 0.280249i
\(683\) −34.6542 −1.32601 −0.663004 0.748616i \(-0.730719\pi\)
−0.663004 + 0.748616i \(0.730719\pi\)
\(684\) 7.38106 + 10.7599i 0.282222 + 0.411416i
\(685\) 13.5043 0.515972
\(686\) 24.4893 7.59222i 0.935005 0.289872i
\(687\) 0.0643122i 0.00245366i
\(688\) −15.1518 + 39.2637i −0.577658 + 1.49691i
\(689\) 9.87113 0.376060
\(690\) 10.3250 3.20097i 0.393064 0.121859i
\(691\) 32.2346i 1.22626i 0.789982 + 0.613130i \(0.210090\pi\)
−0.789982 + 0.613130i \(0.789910\pi\)
\(692\) 18.5736 12.7411i 0.706064 0.484343i
\(693\) −10.6932 −0.406202
\(694\) 43.5138 13.4903i 1.65176 0.512083i
\(695\) 9.98555i 0.378774i
\(696\) 2.60087 3.29018i 0.0985856 0.124714i
\(697\) 1.20287i 0.0455619i
\(698\) −1.10158 + 0.341513i −0.0416953 + 0.0129265i
\(699\) 4.77483i 0.180601i
\(700\) 12.9097 8.85575i 0.487940 0.334716i
\(701\) 39.2528i 1.48256i 0.671197 + 0.741279i \(0.265781\pi\)
−0.671197 + 0.741279i \(0.734219\pi\)
\(702\) 1.23551 + 3.98524i 0.0466314 + 0.150413i
\(703\) 43.5548i 1.64270i
\(704\) 7.31881 + 30.8461i 0.275838 + 1.16256i
\(705\) 14.5023 0.546187
\(706\) 0.531746 + 1.71518i 0.0200125 + 0.0645518i
\(707\) 40.2319i 1.51308i
\(708\) −9.02585 13.1577i −0.339212 0.494495i
\(709\) −10.8919 −0.409054 −0.204527 0.978861i \(-0.565566\pi\)
−0.204527 + 0.978861i \(0.565566\pi\)
\(710\) 26.2911 8.15082i 0.986686 0.305895i
\(711\) −12.5364 −0.470150
\(712\) −6.15027 + 7.78028i −0.230491 + 0.291578i
\(713\) 23.2664i 0.871334i
\(714\) −7.88804 + 2.44547i −0.295203 + 0.0915194i
\(715\) 16.9392 0.633491
\(716\) 40.6743 27.9017i 1.52007 1.04273i
\(717\) −13.2223 −0.493795
\(718\) 5.74447 + 18.5292i 0.214382 + 0.691504i
\(719\) 5.20499i 0.194113i 0.995279 + 0.0970567i \(0.0309428\pi\)
−0.995279 + 0.0970567i \(0.969057\pi\)
\(720\) 5.40679 + 2.08647i 0.201499 + 0.0777583i
\(721\) 25.1416i 0.936321i
\(722\) 31.8299 9.86800i 1.18459 0.367249i
\(723\) −26.9947 −1.00394
\(724\) 39.2242 26.9069i 1.45776 0.999987i
\(725\) 4.30138 0.159749
\(726\) 6.35390 1.96985i 0.235815 0.0731080i
\(727\) 24.1729 0.896523 0.448262 0.893902i \(-0.352043\pi\)
0.448262 + 0.893902i \(0.352043\pi\)
\(728\) −17.6647 13.9638i −0.654698 0.517535i
\(729\) 1.00000 0.0370370
\(730\) 5.13527 + 16.5642i 0.190065 + 0.613068i
\(731\) 22.7694 0.842158
\(732\) −0.954527 1.39149i −0.0352803 0.0514308i
\(733\) 43.1100i 1.59230i 0.605098 + 0.796151i \(0.293134\pi\)
−0.605098 + 0.796151i \(0.706866\pi\)
\(734\) −43.5586 + 13.5041i −1.60778 + 0.498447i
\(735\) 0.407606i 0.0150348i
\(736\) 29.7754 + 2.01785i 1.09754 + 0.0743788i
\(737\) −7.33427 31.5969i −0.270161 1.16389i
\(738\) −0.232767 0.750808i −0.00856828 0.0276376i
\(739\) 33.6770 1.23883 0.619414 0.785065i \(-0.287370\pi\)
0.619414 + 0.785065i \(0.287370\pi\)
\(740\) −10.9430 15.9524i −0.402272 0.586422i
\(741\) 19.2481 0.707097
\(742\) 3.78082 + 12.1953i 0.138798 + 0.447703i
\(743\) 0.0899782i 0.00330098i −0.999999 0.00165049i \(-0.999475\pi\)
0.999999 0.00165049i \(-0.000525368\pi\)
\(744\) 7.73544 9.78558i 0.283595 0.358757i
\(745\) 12.1110i 0.443714i
\(746\) −11.5117 37.1317i −0.421472 1.35949i
\(747\) 8.13775i 0.297745i
\(748\) 14.1439 9.70236i 0.517151 0.354753i
\(749\) 21.9462i 0.801897i
\(750\) 4.79377 + 15.4626i 0.175044 + 0.564616i
\(751\) 46.3689i 1.69202i 0.533163 + 0.846012i \(0.321003\pi\)
−0.533163 + 0.846012i \(0.678997\pi\)
\(752\) 37.3532 + 14.4146i 1.36213 + 0.525645i
\(753\) 11.9629 0.435952
\(754\) −1.83203 5.90934i −0.0667186 0.215206i
\(755\) 27.8105 1.01213
\(756\) −4.45034 + 3.05283i −0.161857 + 0.111030i
\(757\) 2.66667i 0.0969218i −0.998825 0.0484609i \(-0.984568\pi\)
0.998825 0.0484609i \(-0.0154316\pi\)
\(758\) −34.0334 + 10.5511i −1.23615 + 0.383234i
\(759\) 20.9065i 0.758856i
\(760\) 16.5797 20.9739i 0.601410 0.760803i
\(761\) −17.3962 −0.630610 −0.315305 0.948990i \(-0.602107\pi\)
−0.315305 + 0.948990i \(0.602107\pi\)
\(762\) 0.574408 + 1.85280i 0.0208086 + 0.0671197i
\(763\) 10.4848i 0.379575i
\(764\) 19.6234 13.4612i 0.709949 0.487009i
\(765\) 3.13545i 0.113363i
\(766\) 26.8221 8.31545i 0.969122 0.300450i
\(767\) −23.5373 −0.849884
\(768\) 11.8523 + 10.7482i 0.427683 + 0.387841i
\(769\) 29.7726i 1.07363i 0.843701 + 0.536814i \(0.180372\pi\)
−0.843701 + 0.536814i \(0.819628\pi\)
\(770\) 6.48802 + 20.9276i 0.233812 + 0.754178i
\(771\) −1.46492 −0.0527578