Properties

Label 804.2.e.a.535.29
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.29
Character \(\chi\) = 804.535
Dual form 804.2.e.a.535.30

$q$-expansion

\(f(q)\) \(=\) \(q+(1.34335 - 0.442044i) q^{2} -1.00000 q^{3} +(1.60919 - 1.18764i) q^{4} +2.27075i q^{5} +(-1.34335 + 0.442044i) q^{6} -4.97497 q^{7} +(1.63672 - 2.30676i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(1.34335 - 0.442044i) q^{2} -1.00000 q^{3} +(1.60919 - 1.18764i) q^{4} +2.27075i q^{5} +(-1.34335 + 0.442044i) q^{6} -4.97497 q^{7} +(1.63672 - 2.30676i) q^{8} +1.00000 q^{9} +(1.00377 + 3.05042i) q^{10} -2.26020 q^{11} +(-1.60919 + 1.18764i) q^{12} +6.26095i q^{13} +(-6.68314 + 2.19916i) q^{14} -2.27075i q^{15} +(1.17901 - 3.82230i) q^{16} -0.801988 q^{17} +(1.34335 - 0.442044i) q^{18} +2.05056i q^{19} +(2.69684 + 3.65408i) q^{20} +4.97497 q^{21} +(-3.03625 + 0.999109i) q^{22} +7.41079i q^{23} +(-1.63672 + 2.30676i) q^{24} -0.156305 q^{25} +(2.76762 + 8.41067i) q^{26} -1.00000 q^{27} +(-8.00569 + 5.90849i) q^{28} -6.30284 q^{29} +(-1.00377 - 3.05042i) q^{30} +2.55441 q^{31} +(-0.105802 - 5.65586i) q^{32} +2.26020 q^{33} +(-1.07735 + 0.354514i) q^{34} -11.2969i q^{35} +(1.60919 - 1.18764i) q^{36} -10.5854 q^{37} +(0.906438 + 2.75462i) q^{38} -6.26095i q^{39} +(5.23807 + 3.71659i) q^{40} +0.0427625i q^{41} +(6.68314 - 2.19916i) q^{42} +0.122241 q^{43} +(-3.63710 + 2.68431i) q^{44} +2.27075i q^{45} +(3.27590 + 9.95531i) q^{46} -4.63996i q^{47} +(-1.17901 + 3.82230i) q^{48} +17.7503 q^{49} +(-0.209973 + 0.0690940i) q^{50} +0.801988 q^{51} +(7.43578 + 10.0751i) q^{52} +6.54272i q^{53} +(-1.34335 + 0.442044i) q^{54} -5.13235i q^{55} +(-8.14265 + 11.4761i) q^{56} -2.05056i q^{57} +(-8.46694 + 2.78614i) q^{58} -4.77379i q^{59} +(-2.69684 - 3.65408i) q^{60} -10.5577i q^{61} +(3.43147 - 1.12916i) q^{62} -4.97497 q^{63} +(-2.64227 - 7.55105i) q^{64} -14.2171 q^{65} +(3.03625 - 0.999109i) q^{66} +(-2.57302 + 7.77043i) q^{67} +(-1.29055 + 0.952476i) q^{68} -7.41079i q^{69} +(-4.99374 - 15.1757i) q^{70} +4.26791i q^{71} +(1.63672 - 2.30676i) q^{72} +12.0198 q^{73} +(-14.2199 + 4.67921i) q^{74} +0.156305 q^{75} +(2.43533 + 3.29975i) q^{76} +11.2444 q^{77} +(-2.76762 - 8.41067i) q^{78} +1.63399 q^{79} +(8.67948 + 2.67723i) q^{80} +1.00000 q^{81} +(0.0189029 + 0.0574452i) q^{82} +5.62827i q^{83} +(8.00569 - 5.90849i) q^{84} -1.82111i q^{85} +(0.164212 - 0.0540358i) q^{86} +6.30284 q^{87} +(-3.69932 + 5.21374i) q^{88} +11.1834 q^{89} +(1.00377 + 3.05042i) q^{90} -31.1481i q^{91} +(8.80138 + 11.9254i) q^{92} -2.55441 q^{93} +(-2.05107 - 6.23311i) q^{94} -4.65631 q^{95} +(0.105802 + 5.65586i) q^{96} -14.5826i q^{97} +(23.8450 - 7.84644i) q^{98} -2.26020 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} - 6q^{10} - 2q^{12} - 4q^{14} + 2q^{16} + 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} - 34q^{27} + 8q^{28} - 16q^{29} + 6q^{30} + 4q^{31} + 2q^{36} + 12q^{37} - 26q^{38} - 18q^{40} + 4q^{42} + 4q^{43} - 26q^{44} + 4q^{46} - 2q^{48} + 46q^{49} + 18q^{50} - 32q^{52} + 14q^{56} - 4q^{58} - 12q^{60} - 2q^{62} - 4q^{63} + 26q^{64} + 8q^{66} + 18q^{67} - 34q^{68} - 56q^{70} + 6q^{72} + 12q^{73} - 22q^{74} + 34q^{75} - 32q^{76} - 8q^{77} - 10q^{78} + 12q^{79} + 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} + 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} - 32q^{94} + 40q^{95} + 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34335 0.442044i 0.949894 0.312573i
\(3\) −1.00000 −0.577350
\(4\) 1.60919 1.18764i 0.804597 0.593822i
\(5\) 2.27075i 1.01551i 0.861501 + 0.507755i \(0.169525\pi\)
−0.861501 + 0.507755i \(0.830475\pi\)
\(6\) −1.34335 + 0.442044i −0.548421 + 0.180464i
\(7\) −4.97497 −1.88036 −0.940181 0.340674i \(-0.889345\pi\)
−0.940181 + 0.340674i \(0.889345\pi\)
\(8\) 1.63672 2.30676i 0.578669 0.815562i
\(9\) 1.00000 0.333333
\(10\) 1.00377 + 3.05042i 0.317421 + 0.964627i
\(11\) −2.26020 −0.681476 −0.340738 0.940158i \(-0.610677\pi\)
−0.340738 + 0.940158i \(0.610677\pi\)
\(12\) −1.60919 + 1.18764i −0.464534 + 0.342843i
\(13\) 6.26095i 1.73648i 0.496148 + 0.868238i \(0.334747\pi\)
−0.496148 + 0.868238i \(0.665253\pi\)
\(14\) −6.68314 + 2.19916i −1.78614 + 0.587750i
\(15\) 2.27075i 0.586305i
\(16\) 1.17901 3.82230i 0.294752 0.955574i
\(17\) −0.801988 −0.194511 −0.0972553 0.995259i \(-0.531006\pi\)
−0.0972553 + 0.995259i \(0.531006\pi\)
\(18\) 1.34335 0.442044i 0.316631 0.104191i
\(19\) 2.05056i 0.470431i 0.971943 + 0.235215i \(0.0755795\pi\)
−0.971943 + 0.235215i \(0.924420\pi\)
\(20\) 2.69684 + 3.65408i 0.603032 + 0.817076i
\(21\) 4.97497 1.08563
\(22\) −3.03625 + 0.999109i −0.647330 + 0.213011i
\(23\) 7.41079i 1.54526i 0.634858 + 0.772629i \(0.281059\pi\)
−0.634858 + 0.772629i \(0.718941\pi\)
\(24\) −1.63672 + 2.30676i −0.334095 + 0.470865i
\(25\) −0.156305 −0.0312611
\(26\) 2.76762 + 8.41067i 0.542775 + 1.64947i
\(27\) −1.00000 −0.192450
\(28\) −8.00569 + 5.90849i −1.51293 + 1.11660i
\(29\) −6.30284 −1.17041 −0.585204 0.810886i \(-0.698986\pi\)
−0.585204 + 0.810886i \(0.698986\pi\)
\(30\) −1.00377 3.05042i −0.183263 0.556928i
\(31\) 2.55441 0.458785 0.229392 0.973334i \(-0.426326\pi\)
0.229392 + 0.973334i \(0.426326\pi\)
\(32\) −0.105802 5.65586i −0.0187033 0.999825i
\(33\) 2.26020 0.393450
\(34\) −1.07735 + 0.354514i −0.184764 + 0.0607987i
\(35\) 11.2969i 1.90953i
\(36\) 1.60919 1.18764i 0.268199 0.197941i
\(37\) −10.5854 −1.74023 −0.870114 0.492850i \(-0.835955\pi\)
−0.870114 + 0.492850i \(0.835955\pi\)
\(38\) 0.906438 + 2.75462i 0.147044 + 0.446859i
\(39\) 6.26095i 1.00256i
\(40\) 5.23807 + 3.71659i 0.828212 + 0.587644i
\(41\) 0.0427625i 0.00667839i 0.999994 + 0.00333919i \(0.00106290\pi\)
−0.999994 + 0.00333919i \(0.998937\pi\)
\(42\) 6.68314 2.19916i 1.03123 0.339338i
\(43\) 0.122241 0.0186415 0.00932077 0.999957i \(-0.497033\pi\)
0.00932077 + 0.999957i \(0.497033\pi\)
\(44\) −3.63710 + 2.68431i −0.548313 + 0.404675i
\(45\) 2.27075i 0.338503i
\(46\) 3.27590 + 9.95531i 0.483005 + 1.46783i
\(47\) 4.63996i 0.676808i −0.941001 0.338404i \(-0.890113\pi\)
0.941001 0.338404i \(-0.109887\pi\)
\(48\) −1.17901 + 3.82230i −0.170175 + 0.551701i
\(49\) 17.7503 2.53576
\(50\) −0.209973 + 0.0690940i −0.0296947 + 0.00977136i
\(51\) 0.801988 0.112301
\(52\) 7.43578 + 10.0751i 1.03116 + 1.39716i
\(53\) 6.54272i 0.898711i 0.893353 + 0.449356i \(0.148346\pi\)
−0.893353 + 0.449356i \(0.851654\pi\)
\(54\) −1.34335 + 0.442044i −0.182807 + 0.0601546i
\(55\) 5.13235i 0.692046i
\(56\) −8.14265 + 11.4761i −1.08811 + 1.53355i
\(57\) 2.05056i 0.271603i
\(58\) −8.46694 + 2.78614i −1.11176 + 0.365838i
\(59\) 4.77379i 0.621495i −0.950492 0.310748i \(-0.899421\pi\)
0.950492 0.310748i \(-0.100579\pi\)
\(60\) −2.69684 3.65408i −0.348161 0.471739i
\(61\) 10.5577i 1.35177i −0.737007 0.675885i \(-0.763762\pi\)
0.737007 0.675885i \(-0.236238\pi\)
\(62\) 3.43147 1.12916i 0.435797 0.143404i
\(63\) −4.97497 −0.626788
\(64\) −2.64227 7.55105i −0.330284 0.943882i
\(65\) −14.2171 −1.76341
\(66\) 3.03625 0.999109i 0.373736 0.122982i
\(67\) −2.57302 + 7.77043i −0.314345 + 0.949309i
\(68\) −1.29055 + 0.952476i −0.156503 + 0.115505i
\(69\) 7.41079i 0.892155i
\(70\) −4.99374 15.1757i −0.596866 1.81385i
\(71\) 4.26791i 0.506508i 0.967400 + 0.253254i \(0.0815008\pi\)
−0.967400 + 0.253254i \(0.918499\pi\)
\(72\) 1.63672 2.30676i 0.192890 0.271854i
\(73\) 12.0198 1.40681 0.703405 0.710789i \(-0.251662\pi\)
0.703405 + 0.710789i \(0.251662\pi\)
\(74\) −14.2199 + 4.67921i −1.65303 + 0.543948i
\(75\) 0.156305 0.0180486
\(76\) 2.43533 + 3.29975i 0.279352 + 0.378507i
\(77\) 11.2444 1.28142
\(78\) −2.76762 8.41067i −0.313371 0.952321i
\(79\) 1.63399 0.183838 0.0919192 0.995766i \(-0.470700\pi\)
0.0919192 + 0.995766i \(0.470700\pi\)
\(80\) 8.67948 + 2.67723i 0.970395 + 0.299323i
\(81\) 1.00000 0.111111
\(82\) 0.0189029 + 0.0574452i 0.00208748 + 0.00634376i
\(83\) 5.62827i 0.617783i 0.951097 + 0.308892i \(0.0999580\pi\)
−0.951097 + 0.308892i \(0.900042\pi\)
\(84\) 8.00569 5.90849i 0.873493 0.644669i
\(85\) 1.82111i 0.197528i
\(86\) 0.164212 0.0540358i 0.0177075 0.00582684i
\(87\) 6.30284 0.675736
\(88\) −3.69932 + 5.21374i −0.394349 + 0.555786i
\(89\) 11.1834 1.18544 0.592719 0.805409i \(-0.298055\pi\)
0.592719 + 0.805409i \(0.298055\pi\)
\(90\) 1.00377 + 3.05042i 0.105807 + 0.321542i
\(91\) 31.1481i 3.26520i
\(92\) 8.80138 + 11.9254i 0.917607 + 1.24331i
\(93\) −2.55441 −0.264880
\(94\) −2.05107 6.23311i −0.211552 0.642896i
\(95\) −4.65631 −0.477727
\(96\) 0.105802 + 5.65586i 0.0107983 + 0.577249i
\(97\) 14.5826i 1.48063i −0.672258 0.740317i \(-0.734675\pi\)
0.672258 0.740317i \(-0.265325\pi\)
\(98\) 23.8450 7.84644i 2.40871 0.792610i
\(99\) −2.26020 −0.227159
\(100\) −0.251526 + 0.185635i −0.0251526 + 0.0185635i
\(101\) 12.0397i 1.19799i 0.800752 + 0.598996i \(0.204434\pi\)
−0.800752 + 0.598996i \(0.795566\pi\)
\(102\) 1.07735 0.354514i 0.106674 0.0351021i
\(103\) 0.784321i 0.0772814i −0.999253 0.0386407i \(-0.987697\pi\)
0.999253 0.0386407i \(-0.0123028\pi\)
\(104\) 14.4425 + 10.2475i 1.41620 + 1.00485i
\(105\) 11.2969i 1.10247i
\(106\) 2.89217 + 8.78917i 0.280912 + 0.853680i
\(107\) 8.08673i 0.781774i −0.920439 0.390887i \(-0.872168\pi\)
0.920439 0.390887i \(-0.127832\pi\)
\(108\) −1.60919 + 1.18764i −0.154845 + 0.114281i
\(109\) 0.577666i 0.0553303i 0.999617 + 0.0276652i \(0.00880722\pi\)
−0.999617 + 0.0276652i \(0.991193\pi\)
\(110\) −2.26873 6.89456i −0.216315 0.657370i
\(111\) 10.5854 1.00472
\(112\) −5.86553 + 19.0158i −0.554240 + 1.79683i
\(113\) 3.80706i 0.358138i 0.983837 + 0.179069i \(0.0573086\pi\)
−0.983837 + 0.179069i \(0.942691\pi\)
\(114\) −0.906438 2.75462i −0.0848957 0.257994i
\(115\) −16.8281 −1.56922
\(116\) −10.1425 + 7.48553i −0.941707 + 0.695014i
\(117\) 6.26095i 0.578825i
\(118\) −2.11023 6.41289i −0.194262 0.590354i
\(119\) 3.98987 0.365751
\(120\) −5.23807 3.71659i −0.478168 0.339277i
\(121\) −5.89150 −0.535590
\(122\) −4.66695 14.1827i −0.422526 1.28404i
\(123\) 0.0427625i 0.00385577i
\(124\) 4.11053 3.03372i 0.369137 0.272436i
\(125\) 10.9988i 0.983764i
\(126\) −6.68314 + 2.19916i −0.595382 + 0.195917i
\(127\) 2.71383i 0.240814i 0.992725 + 0.120407i \(0.0384199\pi\)
−0.992725 + 0.120407i \(0.961580\pi\)
\(128\) −6.88740 8.97573i −0.608766 0.793350i
\(129\) −0.122241 −0.0107627
\(130\) −19.0985 + 6.28457i −1.67505 + 0.551193i
\(131\) 15.8408i 1.38402i 0.721889 + 0.692009i \(0.243274\pi\)
−0.721889 + 0.692009i \(0.756726\pi\)
\(132\) 3.63710 2.68431i 0.316569 0.233639i
\(133\) 10.2015i 0.884580i
\(134\) −0.0216033 + 11.5758i −0.00186624 + 0.999998i
\(135\) 2.27075i 0.195435i
\(136\) −1.31263 + 1.84999i −0.112557 + 0.158636i
\(137\) 6.43436i 0.549724i −0.961484 0.274862i \(-0.911368\pi\)
0.961484 0.274862i \(-0.0886322\pi\)
\(138\) −3.27590 9.95531i −0.278863 0.847452i
\(139\) 9.48021 0.804101 0.402051 0.915617i \(-0.368298\pi\)
0.402051 + 0.915617i \(0.368298\pi\)
\(140\) −13.4167 18.1789i −1.13392 1.53640i
\(141\) 4.63996i 0.390756i
\(142\) 1.88661 + 5.73331i 0.158320 + 0.481129i
\(143\) 14.1510i 1.18337i
\(144\) 1.17901 3.82230i 0.0982506 0.318525i
\(145\) 14.3122i 1.18856i
\(146\) 16.1468 5.31328i 1.33632 0.439730i
\(147\) −17.7503 −1.46402
\(148\) −17.0339 + 12.5717i −1.40018 + 1.03339i
\(149\) −2.55864 −0.209612 −0.104806 0.994493i \(-0.533422\pi\)
−0.104806 + 0.994493i \(0.533422\pi\)
\(150\) 0.209973 0.0690940i 0.0171443 0.00564150i
\(151\) 9.72333i 0.791274i −0.918407 0.395637i \(-0.870524\pi\)
0.918407 0.395637i \(-0.129476\pi\)
\(152\) 4.73015 + 3.35620i 0.383666 + 0.272224i
\(153\) −0.801988 −0.0648369
\(154\) 15.1052 4.97054i 1.21721 0.400537i
\(155\) 5.80042i 0.465901i
\(156\) −7.43578 10.0751i −0.595339 0.806652i
\(157\) −1.07000 −0.0853952 −0.0426976 0.999088i \(-0.513595\pi\)
−0.0426976 + 0.999088i \(0.513595\pi\)
\(158\) 2.19503 0.722297i 0.174627 0.0574629i
\(159\) 6.54272i 0.518871i
\(160\) 12.8431 0.240249i 1.01533 0.0189934i
\(161\) 36.8685i 2.90564i
\(162\) 1.34335 0.442044i 0.105544 0.0347303i
\(163\) 12.5690i 0.984480i −0.870460 0.492240i \(-0.836178\pi\)
0.870460 0.492240i \(-0.163822\pi\)
\(164\) 0.0507866 + 0.0688132i 0.00396577 + 0.00537341i
\(165\) 5.13235i 0.399553i
\(166\) 2.48795 + 7.56076i 0.193102 + 0.586828i
\(167\) 18.3858i 1.42273i 0.702821 + 0.711367i \(0.251923\pi\)
−0.702821 + 0.711367i \(0.748077\pi\)
\(168\) 8.14265 11.4761i 0.628219 0.885397i
\(169\) −26.1995 −2.01535
\(170\) −0.805013 2.44640i −0.0617417 0.187630i
\(171\) 2.05056i 0.156810i
\(172\) 0.196709 0.145178i 0.0149989 0.0110698i
\(173\) 7.50460 0.570564 0.285282 0.958444i \(-0.407913\pi\)
0.285282 + 0.958444i \(0.407913\pi\)
\(174\) 8.46694 2.78614i 0.641877 0.211216i
\(175\) 0.777615 0.0587822
\(176\) −2.66479 + 8.63915i −0.200866 + 0.651201i
\(177\) 4.77379i 0.358820i
\(178\) 15.0232 4.94356i 1.12604 0.370535i
\(179\) 16.1813 1.20945 0.604725 0.796434i \(-0.293283\pi\)
0.604725 + 0.796434i \(0.293283\pi\)
\(180\) 2.69684 + 3.65408i 0.201011 + 0.272359i
\(181\) −7.75811 −0.576655 −0.288328 0.957532i \(-0.593099\pi\)
−0.288328 + 0.957532i \(0.593099\pi\)
\(182\) −13.7688 41.8428i −1.02061 3.10160i
\(183\) 10.5577i 0.780445i
\(184\) 17.0949 + 12.1294i 1.26025 + 0.894193i
\(185\) 24.0368i 1.76722i
\(186\) −3.43147 + 1.12916i −0.251608 + 0.0827941i
\(187\) 1.81265 0.132554
\(188\) −5.51062 7.46660i −0.401903 0.544558i
\(189\) 4.97497 0.361876
\(190\) −6.25506 + 2.05830i −0.453790 + 0.149324i
\(191\) −22.1612 −1.60353 −0.801763 0.597643i \(-0.796104\pi\)
−0.801763 + 0.597643i \(0.796104\pi\)
\(192\) 2.64227 + 7.55105i 0.190690 + 0.544950i
\(193\) −2.08597 −0.150151 −0.0750756 0.997178i \(-0.523920\pi\)
−0.0750756 + 0.997178i \(0.523920\pi\)
\(194\) −6.44614 19.5895i −0.462806 1.40645i
\(195\) 14.2171 1.01810
\(196\) 28.5637 21.0811i 2.04027 1.50579i
\(197\) 10.2001i 0.726730i 0.931647 + 0.363365i \(0.118372\pi\)
−0.931647 + 0.363365i \(0.881628\pi\)
\(198\) −3.03625 + 0.999109i −0.215777 + 0.0710036i
\(199\) 9.92139i 0.703309i 0.936130 + 0.351655i \(0.114381\pi\)
−0.936130 + 0.351655i \(0.885619\pi\)
\(200\) −0.255829 + 0.360559i −0.0180898 + 0.0254954i
\(201\) 2.57302 7.77043i 0.181487 0.548084i
\(202\) 5.32207 + 16.1735i 0.374460 + 1.13797i
\(203\) 31.3565 2.20079
\(204\) 1.29055 0.952476i 0.0903568 0.0666866i
\(205\) −0.0971030 −0.00678197
\(206\) −0.346705 1.05362i −0.0241561 0.0734091i
\(207\) 7.41079i 0.515086i
\(208\) 23.9312 + 7.38171i 1.65933 + 0.511830i
\(209\) 4.63468i 0.320587i
\(210\) 4.99374 + 15.1757i 0.344601 + 1.04723i
\(211\) 4.80215i 0.330594i 0.986244 + 0.165297i \(0.0528582\pi\)
−0.986244 + 0.165297i \(0.947142\pi\)
\(212\) 7.77041 + 10.5285i 0.533674 + 0.723100i
\(213\) 4.26791i 0.292432i
\(214\) −3.57469 10.8633i −0.244361 0.742602i
\(215\) 0.277578i 0.0189307i
\(216\) −1.63672 + 2.30676i −0.111365 + 0.156955i
\(217\) −12.7081 −0.862682
\(218\) 0.255354 + 0.776009i 0.0172947 + 0.0525579i
\(219\) −12.0198 −0.812222
\(220\) −6.09540 8.25894i −0.410952 0.556818i
\(221\) 5.02121i 0.337763i
\(222\) 14.2199 4.67921i 0.954378 0.314048i
\(223\) 20.5061i 1.37319i −0.727042 0.686593i \(-0.759105\pi\)
0.727042 0.686593i \(-0.240895\pi\)
\(224\) 0.526360 + 28.1378i 0.0351689 + 1.88003i
\(225\) −0.156305 −0.0104204
\(226\) 1.68289 + 5.11423i 0.111944 + 0.340193i
\(227\) 17.8100i 1.18209i 0.806637 + 0.591047i \(0.201285\pi\)
−0.806637 + 0.591047i \(0.798715\pi\)
\(228\) −2.43533 3.29975i −0.161284 0.218531i
\(229\) 15.6488i 1.03410i −0.855956 0.517049i \(-0.827030\pi\)
0.855956 0.517049i \(-0.172970\pi\)
\(230\) −22.6060 + 7.43875i −1.49060 + 0.490497i
\(231\) −11.2444 −0.739829
\(232\) −10.3160 + 14.5391i −0.677279 + 0.954541i
\(233\) 21.3398i 1.39802i 0.715114 + 0.699008i \(0.246375\pi\)
−0.715114 + 0.699008i \(0.753625\pi\)
\(234\) 2.76762 + 8.41067i 0.180925 + 0.549823i
\(235\) 10.5362 0.687306
\(236\) −5.66956 7.68196i −0.369057 0.500053i
\(237\) −1.63399 −0.106139
\(238\) 5.35980 1.76370i 0.347424 0.114324i
\(239\) 14.7710 0.955455 0.477727 0.878508i \(-0.341461\pi\)
0.477727 + 0.878508i \(0.341461\pi\)
\(240\) −8.67948 2.67723i −0.560258 0.172814i
\(241\) 12.6074 0.812116 0.406058 0.913847i \(-0.366903\pi\)
0.406058 + 0.913847i \(0.366903\pi\)
\(242\) −7.91436 + 2.60430i −0.508754 + 0.167411i
\(243\) −1.00000 −0.0641500
\(244\) −12.5387 16.9893i −0.802710 1.08763i
\(245\) 40.3066i 2.57509i
\(246\) −0.0189029 0.0574452i −0.00120521 0.00366257i
\(247\) −12.8385 −0.816892
\(248\) 4.18086 5.89240i 0.265485 0.374168i
\(249\) 5.62827i 0.356677i
\(250\) 4.86197 + 14.7753i 0.307498 + 0.934472i
\(251\) −10.5634 −0.666758 −0.333379 0.942793i \(-0.608189\pi\)
−0.333379 + 0.942793i \(0.608189\pi\)
\(252\) −8.00569 + 5.90849i −0.504311 + 0.372200i
\(253\) 16.7499i 1.05306i
\(254\) 1.19963 + 3.64563i 0.0752718 + 0.228747i
\(255\) 1.82111i 0.114043i
\(256\) −13.2199 9.01303i −0.826243 0.563314i
\(257\) −28.7622 −1.79414 −0.897069 0.441891i \(-0.854308\pi\)
−0.897069 + 0.441891i \(0.854308\pi\)
\(258\) −0.164212 + 0.0540358i −0.0102234 + 0.00336412i
\(259\) 52.6620 3.27226
\(260\) −22.8780 + 16.8848i −1.41883 + 1.04715i
\(261\) −6.30284 −0.390136
\(262\) 7.00234 + 21.2798i 0.432606 + 1.31467i
\(263\) 27.1396i 1.67350i 0.547584 + 0.836751i \(0.315548\pi\)
−0.547584 + 0.836751i \(0.684452\pi\)
\(264\) 3.69932 5.21374i 0.227678 0.320883i
\(265\) −14.8569 −0.912650
\(266\) −4.50951 13.7042i −0.276496 0.840257i
\(267\) −11.1834 −0.684413
\(268\) 5.08800 + 15.5600i 0.310799 + 0.950476i
\(269\) −26.0364 −1.58747 −0.793734 0.608265i \(-0.791866\pi\)
−0.793734 + 0.608265i \(0.791866\pi\)
\(270\) −1.00377 3.05042i −0.0610876 0.185643i
\(271\) 22.5243 1.36825 0.684127 0.729363i \(-0.260183\pi\)
0.684127 + 0.729363i \(0.260183\pi\)
\(272\) −0.945550 + 3.06543i −0.0573324 + 0.185869i
\(273\) 31.1481i 1.88517i
\(274\) −2.84427 8.64361i −0.171829 0.522180i
\(275\) 0.353282 0.0213037
\(276\) −8.80138 11.9254i −0.529781 0.717825i
\(277\) 26.8832 1.61525 0.807627 0.589693i \(-0.200751\pi\)
0.807627 + 0.589693i \(0.200751\pi\)
\(278\) 12.7353 4.19068i 0.763811 0.251340i
\(279\) 2.55441 0.152928
\(280\) −26.0593 18.4899i −1.55734 1.10498i
\(281\) 9.50374i 0.566946i 0.958980 + 0.283473i \(0.0914866\pi\)
−0.958980 + 0.283473i \(0.908513\pi\)
\(282\) 2.05107 + 6.23311i 0.122139 + 0.371176i
\(283\) 30.5183i 1.81413i 0.420995 + 0.907063i \(0.361681\pi\)
−0.420995 + 0.907063i \(0.638319\pi\)
\(284\) 5.06875 + 6.86789i 0.300775 + 0.407534i
\(285\) 4.65631 0.275816
\(286\) −6.25537 19.0098i −0.369888 1.12407i
\(287\) 0.212742i 0.0125578i
\(288\) −0.105802 5.65586i −0.00623442 0.333275i
\(289\) −16.3568 −0.962166
\(290\) −6.32662 19.2263i −0.371512 1.12901i
\(291\) 14.5826i 0.854844i
\(292\) 19.3422 14.2752i 1.13191 0.835394i
\(293\) 27.4962 1.60634 0.803172 0.595748i \(-0.203144\pi\)
0.803172 + 0.595748i \(0.203144\pi\)
\(294\) −23.8450 + 7.84644i −1.39067 + 0.457614i
\(295\) 10.8401 0.631135
\(296\) −17.3254 + 24.4180i −1.00702 + 1.41926i
\(297\) 2.26020 0.131150
\(298\) −3.43715 + 1.13103i −0.199109 + 0.0655188i
\(299\) −46.3986 −2.68330
\(300\) 0.251526 0.185635i 0.0145218 0.0107177i
\(301\) −0.608144 −0.0350529
\(302\) −4.29814 13.0619i −0.247330 0.751626i
\(303\) 12.0397i 0.691661i
\(304\) 7.83784 + 2.41762i 0.449531 + 0.138660i
\(305\) 23.9738 1.37274
\(306\) −1.07735 + 0.354514i −0.0615882 + 0.0202662i
\(307\) 30.1875i 1.72289i 0.507849 + 0.861446i \(0.330441\pi\)
−0.507849 + 0.861446i \(0.669559\pi\)
\(308\) 18.0945 13.3544i 1.03103 0.760936i
\(309\) 0.784321i 0.0446184i
\(310\) 2.56404 + 7.79201i 0.145628 + 0.442556i
\(311\) 3.78543 0.214652 0.107326 0.994224i \(-0.465771\pi\)
0.107326 + 0.994224i \(0.465771\pi\)
\(312\) −14.4425 10.2475i −0.817646 0.580148i
\(313\) 2.73274i 0.154463i −0.997013 0.0772317i \(-0.975392\pi\)
0.997013 0.0772317i \(-0.0246081\pi\)
\(314\) −1.43739 + 0.472987i −0.0811164 + 0.0266922i
\(315\) 11.2969i 0.636509i
\(316\) 2.62941 1.94060i 0.147916 0.109167i
\(317\) 22.7802 1.27946 0.639731 0.768599i \(-0.279046\pi\)
0.639731 + 0.768599i \(0.279046\pi\)
\(318\) −2.89217 8.78917i −0.162185 0.492872i
\(319\) 14.2457 0.797605
\(320\) 17.1466 5.99994i 0.958521 0.335407i
\(321\) 8.08673i 0.451357i
\(322\) −16.2975 49.5274i −0.908225 2.76005i
\(323\) 1.64452i 0.0915038i
\(324\) 1.60919 1.18764i 0.0893996 0.0659802i
\(325\) 0.978621i 0.0542842i
\(326\) −5.55606 16.8846i −0.307721 0.935151i
\(327\) 0.577666i 0.0319450i
\(328\) 0.0986429 + 0.0699904i 0.00544664 + 0.00386458i
\(329\) 23.0837i 1.27265i
\(330\) 2.26873 + 6.89456i 0.124889 + 0.379533i
\(331\) 30.0443 1.65138 0.825692 0.564121i \(-0.190785\pi\)
0.825692 + 0.564121i \(0.190785\pi\)
\(332\) 6.68438 + 9.05698i 0.366853 + 0.497066i
\(333\) −10.5854 −0.580076
\(334\) 8.12733 + 24.6986i 0.444707 + 1.35145i
\(335\) −17.6447 5.84269i −0.964033 0.319220i
\(336\) 5.86553 19.0158i 0.319991 1.03740i
\(337\) 4.09206i 0.222909i 0.993770 + 0.111454i \(0.0355509\pi\)
−0.993770 + 0.111454i \(0.964449\pi\)
\(338\) −35.1952 + 11.5814i −1.91437 + 0.629943i
\(339\) 3.80706i 0.206771i
\(340\) −2.16283 2.93052i −0.117296 0.158930i
\(341\) −5.77347 −0.312651
\(342\) 0.906438 + 2.75462i 0.0490146 + 0.148953i
\(343\) −53.4827 −2.88779
\(344\) 0.200074 0.281980i 0.0107873 0.0152033i
\(345\) 16.8281 0.905992
\(346\) 10.0813 3.31737i 0.541976 0.178343i
\(347\) −23.6605 −1.27016 −0.635082 0.772445i \(-0.719034\pi\)
−0.635082 + 0.772445i \(0.719034\pi\)
\(348\) 10.1425 7.48553i 0.543695 0.401266i
\(349\) −15.4316 −0.826036 −0.413018 0.910723i \(-0.635525\pi\)
−0.413018 + 0.910723i \(0.635525\pi\)
\(350\) 1.04461 0.343741i 0.0558368 0.0183737i
\(351\) 6.26095i 0.334185i
\(352\) 0.239133 + 12.7834i 0.0127458 + 0.681357i
\(353\) 26.5179i 1.41141i 0.708508 + 0.705703i \(0.249369\pi\)
−0.708508 + 0.705703i \(0.750631\pi\)
\(354\) 2.11023 + 6.41289i 0.112157 + 0.340841i
\(355\) −9.69136 −0.514364
\(356\) 17.9962 13.2819i 0.953799 0.703938i
\(357\) −3.98987 −0.211166
\(358\) 21.7373 7.15287i 1.14885 0.378041i
\(359\) 5.34011i 0.281840i −0.990021 0.140920i \(-0.954994\pi\)
0.990021 0.140920i \(-0.0450061\pi\)
\(360\) 5.23807 + 3.71659i 0.276071 + 0.195881i
\(361\) 14.7952 0.778695
\(362\) −10.4219 + 3.42943i −0.547761 + 0.180247i
\(363\) 5.89150 0.309223
\(364\) −36.9928 50.1233i −1.93895 2.62717i
\(365\) 27.2939i 1.42863i
\(366\) 4.66695 + 14.1827i 0.243946 + 0.741340i
\(367\) 1.83574 0.0958246 0.0479123 0.998852i \(-0.484743\pi\)
0.0479123 + 0.998852i \(0.484743\pi\)
\(368\) 28.3262 + 8.73738i 1.47661 + 0.455467i
\(369\) 0.0427625i 0.00222613i
\(370\) −10.6253 32.2899i −0.552384 1.67867i
\(371\) 32.5498i 1.68990i
\(372\) −4.11053 + 3.03372i −0.213121 + 0.157291i
\(373\) 7.22623i 0.374160i 0.982345 + 0.187080i \(0.0599024\pi\)
−0.982345 + 0.187080i \(0.940098\pi\)
\(374\) 2.43503 0.801273i 0.125913 0.0414329i
\(375\) 10.9988i 0.567977i
\(376\) −10.7033 7.59434i −0.551980 0.391648i
\(377\) 39.4618i 2.03239i
\(378\) 6.68314 2.19916i 0.343744 0.113113i
\(379\) −5.69650 −0.292610 −0.146305 0.989240i \(-0.546738\pi\)
−0.146305 + 0.989240i \(0.546738\pi\)
\(380\) −7.49290 + 5.53003i −0.384378 + 0.283685i
\(381\) 2.71383i 0.139034i
\(382\) −29.7703 + 9.79622i −1.52318 + 0.501218i
\(383\) −5.56592 −0.284405 −0.142203 0.989838i \(-0.545418\pi\)
−0.142203 + 0.989838i \(0.545418\pi\)
\(384\) 6.88740 + 8.97573i 0.351471 + 0.458041i
\(385\) 25.5333i 1.30130i
\(386\) −2.80219 + 0.922090i −0.142628 + 0.0469331i
\(387\) 0.122241 0.00621385
\(388\) −17.3189 23.4662i −0.879232 1.19131i
\(389\) 10.8987 0.552584 0.276292 0.961074i \(-0.410894\pi\)
0.276292 + 0.961074i \(0.410894\pi\)
\(390\) 19.0985 6.28457i 0.967092 0.318232i
\(391\) 5.94337i 0.300569i
\(392\) 29.0524 40.9458i 1.46737 2.06807i
\(393\) 15.8408i 0.799063i
\(394\) 4.50892 + 13.7024i 0.227156 + 0.690316i
\(395\) 3.71039i 0.186690i
\(396\) −3.63710 + 2.68431i −0.182771 + 0.134892i
\(397\) 24.9955 1.25449 0.627244 0.778823i \(-0.284183\pi\)
0.627244 + 0.778823i \(0.284183\pi\)
\(398\) 4.38570 + 13.3279i 0.219835 + 0.668069i
\(399\) 10.2015i 0.510713i
\(400\) −0.184285 + 0.597446i −0.00921426 + 0.0298723i
\(401\) 34.5434i 1.72502i −0.506043 0.862508i \(-0.668892\pi\)
0.506043 0.862508i \(-0.331108\pi\)
\(402\) 0.0216033 11.5758i 0.00107747 0.577349i
\(403\) 15.9930i 0.796669i
\(404\) 14.2988 + 19.3742i 0.711394 + 0.963901i
\(405\) 2.27075i 0.112834i
\(406\) 42.1228 13.8610i 2.09052 0.687907i
\(407\) 23.9251 1.18592
\(408\) 1.31263 1.84999i 0.0649850 0.0915883i
\(409\) 24.7341i 1.22302i −0.791236 0.611511i \(-0.790562\pi\)
0.791236 0.611511i \(-0.209438\pi\)
\(410\) −0.130444 + 0.0429238i −0.00644215 + 0.00211986i
\(411\) 6.43436i 0.317383i
\(412\) −0.931493 1.26212i −0.0458914 0.0621804i
\(413\) 23.7495i 1.16864i
\(414\) 3.27590 + 9.95531i 0.161002 + 0.489277i
\(415\) −12.7804 −0.627365
\(416\) 35.4111 0.662419i 1.73617 0.0324778i
\(417\) −9.48021 −0.464248
\(418\) −2.04873 6.22600i −0.100207 0.304524i
\(419\) 20.1239i 0.983115i 0.870845 + 0.491558i \(0.163572\pi\)
−0.870845 + 0.491558i \(0.836428\pi\)
\(420\) 13.4167 + 18.1789i 0.654668 + 0.887041i
\(421\) −28.3976 −1.38401 −0.692007 0.721891i \(-0.743273\pi\)
−0.692007 + 0.721891i \(0.743273\pi\)
\(422\) 2.12276 + 6.45098i 0.103334 + 0.314029i
\(423\) 4.63996i 0.225603i
\(424\) 15.0925 + 10.7086i 0.732955 + 0.520056i
\(425\) 0.125355 0.00608062
\(426\) −1.88661 5.73331i −0.0914064 0.277780i
\(427\) 52.5241i 2.54182i
\(428\) −9.60415 13.0131i −0.464234 0.629013i
\(429\) 14.1510i 0.683217i
\(430\) 0.122702 + 0.372885i 0.00591721 + 0.0179821i
\(431\) 21.5989i 1.04038i −0.854050 0.520190i \(-0.825861\pi\)
0.854050 0.520190i \(-0.174139\pi\)
\(432\) −1.17901 + 3.82230i −0.0567250 + 0.183900i
\(433\) 24.8260i 1.19306i 0.802591 + 0.596530i \(0.203454\pi\)
−0.802591 + 0.596530i \(0.796546\pi\)
\(434\) −17.0715 + 5.61755i −0.819456 + 0.269651i
\(435\) 14.3122i 0.686216i
\(436\) 0.686061 + 0.929576i 0.0328563 + 0.0445186i
\(437\) −15.1963 −0.726936
\(438\) −16.1468 + 5.31328i −0.771525 + 0.253878i
\(439\) 30.2045i 1.44158i 0.693153 + 0.720790i \(0.256221\pi\)
−0.693153 + 0.720790i \(0.743779\pi\)
\(440\) −11.8391 8.40024i −0.564407 0.400466i
\(441\) 17.7503 0.845255
\(442\) −2.21960 6.74526i −0.105575 0.320839i
\(443\) −8.19067 −0.389150 −0.194575 0.980888i \(-0.562333\pi\)
−0.194575 + 0.980888i \(0.562333\pi\)
\(444\) 17.0339 12.5717i 0.808395 0.596625i
\(445\) 25.3947i 1.20382i
\(446\) −9.06459 27.5469i −0.429221 1.30438i
\(447\) 2.55864 0.121019
\(448\) 13.1452 + 37.5663i 0.621054 + 1.77484i
\(449\) −19.9290 −0.940507 −0.470253 0.882532i \(-0.655837\pi\)
−0.470253 + 0.882532i \(0.655837\pi\)
\(450\) −0.209973 + 0.0690940i −0.00989824 + 0.00325712i
\(451\) 0.0966519i 0.00455116i
\(452\) 4.52143 + 6.12630i 0.212670 + 0.288157i
\(453\) 9.72333i 0.456842i
\(454\) 7.87283 + 23.9252i 0.369490 + 1.12286i
\(455\) 70.7295 3.31585
\(456\) −4.73015 3.35620i −0.221509 0.157168i
\(457\) 10.7034 0.500684 0.250342 0.968157i \(-0.419457\pi\)
0.250342 + 0.968157i \(0.419457\pi\)
\(458\) −6.91744 21.0218i −0.323231 0.982284i
\(459\) 0.801988 0.0374336
\(460\) −27.0796 + 19.9857i −1.26259 + 0.931839i
\(461\) −5.20155 −0.242260 −0.121130 0.992637i \(-0.538652\pi\)
−0.121130 + 0.992637i \(0.538652\pi\)
\(462\) −15.1052 + 4.97054i −0.702759 + 0.231250i
\(463\) 13.5838 0.631295 0.315647 0.948877i \(-0.397778\pi\)
0.315647 + 0.948877i \(0.397778\pi\)
\(464\) −7.43110 + 24.0913i −0.344980 + 1.11841i
\(465\) 5.80042i 0.268988i
\(466\) 9.43313 + 28.6669i 0.436981 + 1.32797i
\(467\) 20.1652i 0.933133i −0.884486 0.466567i \(-0.845491\pi\)
0.884486 0.466567i \(-0.154509\pi\)
\(468\) 7.43578 + 10.0751i 0.343719 + 0.465721i
\(469\) 12.8007 38.6577i 0.591082 1.78504i
\(470\) 14.1538 4.65747i 0.652868 0.214833i
\(471\) 1.07000 0.0493029
\(472\) −11.0120 7.81338i −0.506868 0.359640i
\(473\) −0.276289 −0.0127038
\(474\) −2.19503 + 0.722297i −0.100821 + 0.0331762i
\(475\) 0.320514i 0.0147062i
\(476\) 6.42047 4.73854i 0.294282 0.217191i
\(477\) 6.54272i 0.299570i
\(478\) 19.8426 6.52942i 0.907581 0.298649i
\(479\) 1.14279i 0.0522153i 0.999659 + 0.0261076i \(0.00831126\pi\)
−0.999659 + 0.0261076i \(0.991689\pi\)
\(480\) −12.8431 + 0.240249i −0.586203 + 0.0109658i
\(481\) 66.2747i 3.02186i
\(482\) 16.9362 5.57305i 0.771424 0.253845i
\(483\) 36.8685i 1.67757i
\(484\) −9.48056 + 6.99699i −0.430934 + 0.318045i
\(485\) 33.1133 1.50360
\(486\) −1.34335 + 0.442044i −0.0609357 + 0.0200515i
\(487\) 1.60567 0.0727597 0.0363799 0.999338i \(-0.488417\pi\)
0.0363799 + 0.999338i \(0.488417\pi\)
\(488\) −24.3540 17.2800i −1.10245 0.782228i
\(489\) 12.5690i 0.568390i
\(490\) 17.8173 + 54.1460i 0.804904 + 2.44607i
\(491\) 13.2070i 0.596025i −0.954562 0.298013i \(-0.903676\pi\)
0.954562 0.298013i \(-0.0963237\pi\)
\(492\) −0.0507866 0.0688132i −0.00228964 0.00310234i
\(493\) 5.05480 0.227657
\(494\) −17.2466 + 5.67517i −0.775960 + 0.255338i
\(495\) 5.13235i 0.230682i
\(496\) 3.01166 9.76370i 0.135228 0.438403i
\(497\) 21.2327i 0.952418i
\(498\) −2.48795 7.56076i −0.111488 0.338806i
\(499\) −8.99468 −0.402657 −0.201329 0.979524i \(-0.564526\pi\)
−0.201329 + 0.979524i \(0.564526\pi\)
\(500\) 13.0627 + 17.6992i 0.584180 + 0.791534i
\(501\) 18.3858i 0.821416i
\(502\) −14.1904 + 4.66951i −0.633350 + 0.208410i
\(503\) −26.6513 −1.18832 −0.594162 0.804345i \(-0.702516\pi\)
−0.594162 + 0.804345i \(0.702516\pi\)
\(504\) −8.14265 + 11.4761i −0.362703 + 0.511184i
\(505\) −27.3391 −1.21657
\(506\) −7.40419 22.5010i −0.329156 1.00029i
\(507\) 26.1995 1.16356
\(508\) 3.22306 + 4.36708i 0.143000 + 0.193758i
\(509\) −13.3609 −0.592212 −0.296106 0.955155i \(-0.595688\pi\)
−0.296106 + 0.955155i \(0.595688\pi\)
\(510\) 0.805013 + 2.44640i 0.0356466 + 0.108328i
\(511\) −59.7981 −2.64531
\(512\) −21.7431 6.26390i −0.960920 0.276828i
\(513\) 2.05056i 0.0905344i
\(514\) −38.6378 + 12.7142i −1.70424 + 0.560798i
\(515\) 1.78100 0.0784801
\(516\) −0.196709 + 0.145178i −0.00865963 + 0.00639112i
\(517\) 10.4872i 0.461229i
\(518\) 70.7437 23.2790i 3.10830 1.02282i
\(519\) −7.50460 −0.329415
\(520\) −23.2694 + 32.7953i −1.02043 + 1.43817i
\(521\) 1.99406i 0.0873612i −0.999046 0.0436806i \(-0.986092\pi\)
0.999046 0.0436806i \(-0.0139084\pi\)
\(522\) −8.46694 + 2.78614i −0.370588 + 0.121946i
\(523\) 22.8614i 0.999657i −0.866124 0.499829i \(-0.833396\pi\)
0.866124 0.499829i \(-0.166604\pi\)
\(524\) 18.8132 + 25.4909i 0.821860 + 1.11358i
\(525\) −0.777615 −0.0339379
\(526\) 11.9969 + 36.4581i 0.523091 + 1.58965i
\(527\) −2.04860 −0.0892386
\(528\) 2.66479 8.63915i 0.115970 0.375971i
\(529\) −31.9199 −1.38782
\(530\) −19.9580 + 6.56740i −0.866921 + 0.285269i
\(531\) 4.77379i 0.207165i
\(532\) −12.1157 16.4161i −0.525283 0.711730i
\(533\) −0.267734 −0.0115969
\(534\) −15.0232 + 4.94356i −0.650119 + 0.213929i
\(535\) 18.3629 0.793899
\(536\) 13.7132 + 18.6534i 0.592319 + 0.805704i
\(537\) −16.1813 −0.698277
\(538\) −34.9761 + 11.5093i −1.50793 + 0.496199i
\(539\) −40.1193 −1.72806
\(540\) −2.69684 3.65408i −0.116054 0.157246i
\(541\) 34.9068i 1.50076i 0.661006 + 0.750381i \(0.270130\pi\)
−0.661006 + 0.750381i \(0.729870\pi\)
\(542\) 30.2581 9.95674i 1.29970 0.427679i
\(543\) 7.75811 0.332932
\(544\) 0.0848516 + 4.53594i 0.00363798 + 0.194477i
\(545\) −1.31173 −0.0561885
\(546\) 13.7688 + 41.8428i 0.589252 + 1.79071i
\(547\) −15.7623 −0.673949 −0.336974 0.941514i \(-0.609404\pi\)
−0.336974 + 0.941514i \(0.609404\pi\)
\(548\) −7.64172 10.3541i −0.326438 0.442306i
\(549\) 10.5577i 0.450590i
\(550\) 0.474582 0.156166i 0.0202362 0.00665895i
\(551\) 12.9244i 0.550596i
\(552\) −17.0949 12.1294i −0.727608 0.516262i
\(553\) −8.12906 −0.345683
\(554\) 36.1136 11.8836i 1.53432 0.504884i
\(555\) 24.0368i 1.02030i
\(556\) 15.2555 11.2591i 0.646977 0.477493i
\(557\) −17.8525 −0.756434 −0.378217 0.925717i \(-0.623463\pi\)
−0.378217 + 0.925717i \(0.623463\pi\)
\(558\) 3.43147 1.12916i 0.145266 0.0478012i
\(559\) 0.765344i 0.0323706i
\(560\) −43.1802 13.3191i −1.82469 0.562837i
\(561\) −1.81265 −0.0765303
\(562\) 4.20107 + 12.7669i 0.177212 + 0.538538i
\(563\) −4.39824 −0.185364 −0.0926819 0.995696i \(-0.529544\pi\)
−0.0926819 + 0.995696i \(0.529544\pi\)
\(564\) 5.51062 + 7.46660i 0.232039 + 0.314401i
\(565\) −8.64488 −0.363693
\(566\) 13.4905 + 40.9969i 0.567046 + 1.72323i
\(567\) −4.97497 −0.208929
\(568\) 9.84504 + 6.98539i 0.413089 + 0.293100i
\(569\) 30.0978 1.26177 0.630883 0.775878i \(-0.282693\pi\)
0.630883 + 0.775878i \(0.282693\pi\)
\(570\) 6.25506 2.05830i 0.261996 0.0862125i
\(571\) 14.9871i 0.627193i −0.949556 0.313596i \(-0.898466\pi\)
0.949556 0.313596i \(-0.101534\pi\)
\(572\) −16.8063 22.7717i −0.702709 0.952133i
\(573\) 22.1612 0.925796
\(574\) −0.0940416 0.285788i −0.00392522 0.0119286i
\(575\) 1.15835i 0.0483064i
\(576\) −2.64227 7.55105i −0.110095 0.314627i
\(577\) 8.20721i 0.341671i 0.985300 + 0.170835i \(0.0546466\pi\)
−0.985300 + 0.170835i \(0.945353\pi\)
\(578\) −21.9730 + 7.23044i −0.913955 + 0.300747i
\(579\) 2.08597 0.0866898
\(580\) −16.9978 23.0311i −0.705794 0.956313i
\(581\) 28.0005i 1.16166i
\(582\) 6.44614 + 19.5895i 0.267201 + 0.812012i
\(583\) 14.7878i 0.612450i
\(584\) 19.6731 27.7268i 0.814078 1.14734i
\(585\) −14.2171 −0.587803
\(586\) 36.9371 12.1545i 1.52586 0.502099i
\(587\) 40.7038 1.68003 0.840013 0.542567i \(-0.182548\pi\)
0.840013 + 0.542567i \(0.182548\pi\)
\(588\) −28.5637 + 21.0811i −1.17795 + 0.869369i
\(589\) 5.23796i 0.215827i
\(590\) 14.5621 4.79180i 0.599511 0.197275i
\(591\) 10.2001i 0.419578i
\(592\) −12.4803 + 40.4605i −0.512935 + 1.66292i
\(593\) 25.6918i 1.05504i −0.849544 0.527518i \(-0.823123\pi\)
0.849544 0.527518i \(-0.176877\pi\)
\(594\) 3.03625 0.999109i 0.124579 0.0409939i
\(595\) 9.05999i 0.371423i
\(596\) −4.11734 + 3.03875i −0.168653 + 0.124472i
\(597\) 9.92139i 0.406056i
\(598\) −62.3297 + 20.5103i −2.54885 + 0.838727i
\(599\) 11.2224 0.458534 0.229267 0.973364i \(-0.426367\pi\)
0.229267 + 0.973364i \(0.426367\pi\)
\(600\) 0.255829 0.360559i 0.0104442 0.0147198i
\(601\) 41.1487 1.67849 0.839246 0.543752i \(-0.182997\pi\)
0.839246 + 0.543752i \(0.182997\pi\)
\(602\) −0.816952 + 0.268827i −0.0332965 + 0.0109566i
\(603\) −2.57302 + 7.77043i −0.104782 + 0.316436i
\(604\) −11.5478 15.6467i −0.469875 0.636656i
\(605\) 13.3781i 0.543898i
\(606\) −5.32207 16.1735i −0.216194 0.657005i
\(607\) 30.0411i 1.21933i −0.792658 0.609666i \(-0.791304\pi\)
0.792658 0.609666i \(-0.208696\pi\)
\(608\) 11.5977 0.216953i 0.470348 0.00879859i
\(609\) −31.3565 −1.27063
\(610\) 32.2053 10.5975i 1.30395 0.429080i
\(611\) 29.0506 1.17526
\(612\) −1.29055 + 0.952476i −0.0521675 + 0.0385015i
\(613\) 14.2161 0.574183 0.287091 0.957903i \(-0.407312\pi\)
0.287091 + 0.957903i \(0.407312\pi\)
\(614\) 13.3442 + 40.5525i 0.538529 + 1.63657i
\(615\) 0.0971030 0.00391557
\(616\) 18.4040 25.9382i 0.741519 1.04508i
\(617\) −15.1626 −0.610422 −0.305211 0.952285i \(-0.598727\pi\)
−0.305211 + 0.952285i \(0.598727\pi\)
\(618\) 0.346705 + 1.05362i 0.0139465 + 0.0423828i
\(619\) 25.2680i 1.01561i 0.861473 + 0.507803i \(0.169542\pi\)
−0.861473 + 0.507803i \(0.830458\pi\)
\(620\) 6.88883 + 9.33400i 0.276662 + 0.374862i
\(621\) 7.41079i 0.297385i
\(622\) 5.08516 1.67333i 0.203896 0.0670943i
\(623\) −55.6371 −2.22905
\(624\) −23.9312 7.38171i −0.958015 0.295505i
\(625\) −25.7571 −1.03028
\(626\) −1.20799 3.67103i −0.0482811 0.146724i
\(627\) 4.63468i 0.185091i
\(628\) −1.72183 + 1.27078i −0.0687087 + 0.0507095i
\(629\) 8.48936 0.338493
\(630\) −4.99374 15.1757i −0.198955 0.604616i
\(631\) 21.9479 0.873730 0.436865 0.899527i \(-0.356089\pi\)
0.436865 + 0.899527i \(0.356089\pi\)
\(632\) 2.67439 3.76923i 0.106382 0.149932i
\(633\) 4.80215i 0.190868i
\(634\) 30.6018 10.0698i 1.21535 0.399925i
\(635\) −6.16243 −0.244549
\(636\) −7.77041 10.5285i −0.308117 0.417482i
\(637\) 111.134i 4.40329i
\(638\) 19.1370 6.29723i 0.757640 0.249310i
\(639\) 4.26791i 0.168836i
\(640\) 20.3816 15.6396i 0.805655 0.618208i
\(641\) 3.44266i 0.135977i −0.997686 0.0679884i \(-0.978342\pi\)
0.997686 0.0679884i \(-0.0216581\pi\)
\(642\) 3.57469 + 10.8633i 0.141082 + 0.428741i
\(643\) 15.5927i 0.614917i −0.951561 0.307459i \(-0.900521\pi\)
0.951561 0.307459i \(-0.0994785\pi\)
\(644\) −43.7866 59.3285i −1.72543 2.33787i
\(645\) 0.277578i 0.0109296i
\(646\) −0.726953 2.20918i −0.0286016 0.0869189i
\(647\) 40.7155 1.60069 0.800345 0.599540i \(-0.204650\pi\)
0.800345 + 0.599540i \(0.204650\pi\)
\(648\) 1.63672 2.30676i 0.0642966 0.0906180i
\(649\) 10.7897i 0.423534i
\(650\) −0.432594 1.31463i −0.0169677 0.0515642i
\(651\) 12.7081 0.498070
\(652\) −14.9275 20.2259i −0.584605 0.792109i
\(653\) 24.0731i 0.942053i −0.882119 0.471026i \(-0.843884\pi\)
0.882119 0.471026i \(-0.156116\pi\)
\(654\) −0.255354 0.776009i −0.00998513 0.0303443i
\(655\) −35.9705 −1.40548
\(656\) 0.163451 + 0.0504173i 0.00638169 + 0.00196847i
\(657\) 12.0198 0.468937
\(658\) 10.2040 + 31.0095i 0.397794 + 1.20888i
\(659\) 25.1795i 0.980854i 0.871482 + 0.490427i \(0.163159\pi\)
−0.871482 + 0.490427i \(0.836841\pi\)
\(660\) 6.09540 + 8.25894i 0.237263 + 0.321479i
\(661\) 2.99404i 0.116455i 0.998303 + 0.0582274i \(0.0185448\pi\)
−0.998303 + 0.0582274i \(0.981455\pi\)
\(662\) 40.3601 13.2809i 1.56864 0.516177i
\(663\) 5.02121i 0.195008i
\(664\) 12.9831 + 9.21193i 0.503841 + 0.357492i
\(665\) 23.1650 0.898300
\(666\) −14.2199 + 4.67921i −0.551011 + 0.181316i
\(667\) 46.7091i 1.80858i
\(668\) 21.8357 + 29.5863i 0.844850 + 1.14473i
\(669\) 20.5061i 0.792810i
\(670\) −26.2858 0.0490557i −1.01551 0.00189519i
\(671\) 23.8624i 0.921199i
\(672\) −0.526360 28.1378i −0.0203048 1.08544i
\(673\) 21.4314i 0.826118i −0.910704 0.413059i \(-0.864460\pi\)
0.910704 0.413059i \(-0.135540\pi\)
\(674\) 1.80887 + 5.49709i 0.0696752 + 0.211740i
\(675\) 0.156305 0.00601620
\(676\) −42.1601 + 31.1157i −1.62154 + 1.19676i
\(677\) 29.4225i 1.13080i 0.824818 + 0.565398i \(0.191278\pi\)
−0.824818 + 0.565398i \(0.808722\pi\)
\(678\) −1.68289 5.11423i −0.0646310 0.196411i
\(679\) 72.5478i 2.78413i
\(680\) −4.20087 2.98066i −0.161096 0.114303i
\(681\) 17.8100i 0.682482i
\(682\) −7.75581 + 2.55213i −0.296985 + 0.0977261i
\(683\) −40.3198 −1.54279 −0.771396 0.636355i \(-0.780441\pi\)
−0.771396 + 0.636355i \(0.780441\pi\)
\(684\) 2.43533 + 3.29975i 0.0931173 + 0.126169i
\(685\) 14.6108 0.558251
\(686\) −71.8461 + 23.6417i −2.74310 + 0.902645i
\(687\) 15.6488i 0.597037i
\(688\) 0.144123 0.467240i 0.00549463 0.0178134i
\(689\) −40.9636 −1.56059
\(690\) 22.6060 7.43875i 0.860597 0.283188i
\(691\) 43.5969i 1.65851i −0.558874 0.829253i \(-0.688766\pi\)
0.558874 0.829253i \(-0.311234\pi\)
\(692\) 12.0764 8.91279i 0.459074 0.338813i
\(693\) 11.2444 0.427141
\(694\) −31.7844 + 10.4590i −1.20652 + 0.397019i
\(695\) 21.5272i 0.816573i
\(696\) 10.3160 14.5391i 0.391027 0.551105i
\(697\) 0.0342950i 0.00129902i
\(698\) −20.7301 + 6.82146i −0.784646 + 0.258196i
\(699\) 21.3398i 0.807145i
\(700\) 1.25133 0.923530i 0.0472960 0.0349061i
\(701\) 10.9225i 0.412538i 0.978495 + 0.206269i \(0.0661322\pi\)
−0.978495 + 0.206269i \(0.933868\pi\)
\(702\) −2.76762 8.41067i −0.104457 0.317440i
\(703\) 21.7060i 0.818657i
\(704\) 5.97206 + 17.0669i 0.225081 + 0.643233i
\(705\) −10.5362 −0.396816
\(706\) 11.7221 + 35.6229i 0.441167 + 1.34069i
\(707\) 59.8971i 2.25266i
\(708\) 5.66956 + 7.68196i 0.213075 + 0.288706i
\(709\) −34.3717 −1.29086 −0.645428 0.763821i \(-0.723321\pi\)
−0.645428 + 0.763821i \(0.723321\pi\)
\(710\) −13.0189 + 4.28401i −0.488591 + 0.160776i
\(711\) 1.63399 0.0612795
\(712\) 18.3041 25.7974i 0.685976 0.966798i
\(713\) 18.9302i 0.708941i
\(714\) −5.35980 + 1.76370i −0.200585 + 0.0660048i
\(715\) 32.1334 1.20172
\(716\) 26.0389 19.2177i 0.973120 0.718198i
\(717\) −14.7710 −0.551632
\(718\) −2.36057 7.17365i −0.0880955 0.267718i
\(719\) 16.3257i 0.608845i 0.952537 + 0.304423i \(0.0984635\pi\)
−0.952537 + 0.304423i \(0.901536\pi\)
\(720\) 8.67948 + 2.67723i 0.323465 + 0.0997745i
\(721\) 3.90197i 0.145317i
\(722\) 19.8752 6.54014i 0.739678 0.243399i
\(723\) −12.6074 −0.468876
\(724\) −12.4843 + 9.21386i −0.463975 + 0.342430i
\(725\) 0.985169 0.0365883
\(726\) 7.91436 2.60430i 0.293729 0.0966547i
\(727\) 6.85732 0.254324 0.127162 0.991882i \(-0.459413\pi\)
0.127162 + 0.991882i \(0.459413\pi\)
\(728\) −71.8511 50.9808i −2.66298 1.88947i
\(729\) 1.00000 0.0370370
\(730\) 12.0651 + 36.6654i 0.446551 + 1.35705i
\(731\) −0.0980356 −0.00362598
\(732\) 12.5387 + 16.9893i 0.463445 + 0.627943i
\(733\) 31.1448i 1.15036i 0.818028 + 0.575179i \(0.195068\pi\)
−0.818028 + 0.575179i \(0.804932\pi\)
\(734\) 2.46604 0.811477i 0.0910232 0.0299522i
\(735\) 40.3066i 1.48673i
\(736\) 41.9144 0.784074i 1.54499 0.0289014i
\(737\) 5.81555 17.5627i 0.214218 0.646931i
\(738\) 0.0189029 + 0.0574452i 0.000695827 + 0.00211459i
\(739\) 38.9784 1.43384 0.716921 0.697154i \(-0.245551\pi\)
0.716921 + 0.697154i \(0.245551\pi\)
\(740\) −28.5471 38.6798i −1.04941 1.42190i
\(741\) 12.8385 0.471633
\(742\) −14.3885 43.7259i −0.528217 1.60523i
\(743\) 44.4828i 1.63191i −0.578113 0.815957i \(-0.696211\pi\)
0.578113 0.815957i \(-0.303789\pi\)
\(744\) −4.18086 + 5.89240i −0.153278 + 0.216026i
\(745\) 5.81002i 0.212863i
\(746\) 3.19432 + 9.70738i 0.116952 + 0.355412i
\(747\) 5.62827i 0.205928i
\(748\) 2.91691 2.15279i 0.106653 0.0787136i
\(749\) 40.2313i 1.47002i
\(750\) −4.86197 14.7753i −0.177534 0.539517i
\(751\) 27.2477i 0.994282i −0.867670 0.497141i \(-0.834383\pi\)
0.867670 0.497141i \(-0.165617\pi\)
\(752\) −17.7353 5.47055i −0.646740 0.199491i
\(753\) 10.5634 0.384953
\(754\) −17.4439 53.0111i −0.635268 1.93055i
\(755\) 22.0793 0.803546
\(756\) 8.00569 5.90849i 0.291164 0.214890i
\(757\) 45.2637i 1.64514i −0.568665 0.822569i \(-0.692540\pi\)
0.568665 0.822569i \(-0.307460\pi\)
\(758\) −7.65241 + 2.51811i −0.277948 + 0.0914617i
\(759\) 16.7499i 0.607982i
\(760\) −7.62109 + 10.7410i −0.276446 + 0.389616i
\(761\) 8.62710 0.312732 0.156366 0.987699i \(-0.450022\pi\)
0.156366 + 0.987699i \(0.450022\pi\)
\(762\) −1.19963 3.64563i −0.0434582 0.132067i
\(763\) 2.87387i 0.104041i
\(764\) −35.6616 + 26.3196i −1.29019 + 0.952208i
\(765\) 1.82111i 0.0658425i
\(766\) −7.47699 + 2.46038i −0.270155 + 0.0888973i
\(767\) 29.8885 1.07921
\(768\) 13.2199 + 9.01303i 0.477031 + 0.325230i
\(769\) 26.2086i 0.945107i −0.881302 0.472554i \(-0.843332\pi\)
0.881302 0.472554i \(-0.156668\pi\)
\(770\) 11.2868 + 34.3002i 0.406750 + 1.23609i
\(771\) 28.7622 1.03585