Properties

Label 804.2.e.a.535.25
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.25
Character \(\chi\) = 804.535
Dual form 804.2.e.a.535.26

$q$-expansion

\(f(q)\) \(=\) \(q+(1.01423 - 0.985563i) q^{2} -1.00000 q^{3} +(0.0573324 - 1.99918i) q^{4} +1.66897i q^{5} +(-1.01423 + 0.985563i) q^{6} -0.193635 q^{7} +(-1.91217 - 2.08413i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(1.01423 - 0.985563i) q^{2} -1.00000 q^{3} +(0.0573324 - 1.99918i) q^{4} +1.66897i q^{5} +(-1.01423 + 0.985563i) q^{6} -0.193635 q^{7} +(-1.91217 - 2.08413i) q^{8} +1.00000 q^{9} +(1.64487 + 1.69272i) q^{10} -5.43109 q^{11} +(-0.0573324 + 1.99918i) q^{12} -3.51804i q^{13} +(-0.196391 + 0.190839i) q^{14} -1.66897i q^{15} +(-3.99343 - 0.229235i) q^{16} -4.63759 q^{17} +(1.01423 - 0.985563i) q^{18} -1.14965i q^{19} +(3.33656 + 0.0956859i) q^{20} +0.193635 q^{21} +(-5.50839 + 5.35268i) q^{22} -7.82441i q^{23} +(1.91217 + 2.08413i) q^{24} +2.21455 q^{25} +(-3.46725 - 3.56811i) q^{26} -1.00000 q^{27} +(-0.0111015 + 0.387110i) q^{28} -3.87278 q^{29} +(-1.64487 - 1.69272i) q^{30} -8.23578 q^{31} +(-4.27619 + 3.70327i) q^{32} +5.43109 q^{33} +(-4.70359 + 4.57063i) q^{34} -0.323170i q^{35} +(0.0573324 - 1.99918i) q^{36} +11.0522 q^{37} +(-1.13305 - 1.16601i) q^{38} +3.51804i q^{39} +(3.47835 - 3.19134i) q^{40} -0.746078i q^{41} +(0.196391 - 0.190839i) q^{42} -3.05894 q^{43} +(-0.311378 + 10.8577i) q^{44} +1.66897i q^{45} +(-7.71144 - 7.93576i) q^{46} +2.28894i q^{47} +(3.99343 + 0.229235i) q^{48} -6.96251 q^{49} +(2.24607 - 2.18258i) q^{50} +4.63759 q^{51} +(-7.03319 - 0.201698i) q^{52} +6.58420i q^{53} +(-1.01423 + 0.985563i) q^{54} -9.06432i q^{55} +(0.370262 + 0.403561i) q^{56} +1.14965i q^{57} +(-3.92789 + 3.81687i) q^{58} -1.92869i q^{59} +(-3.33656 - 0.0956859i) q^{60} +1.81536i q^{61} +(-8.35299 + 8.11688i) q^{62} -0.193635 q^{63} +(-0.687235 + 7.97043i) q^{64} +5.87149 q^{65} +(5.50839 - 5.35268i) q^{66} +(-0.790407 + 8.14710i) q^{67} +(-0.265884 + 9.27136i) q^{68} +7.82441i q^{69} +(-0.318504 - 0.327769i) q^{70} -15.3336i q^{71} +(-1.91217 - 2.08413i) q^{72} +5.05518 q^{73} +(11.2095 - 10.8926i) q^{74} -2.21455 q^{75} +(-2.29835 - 0.0659120i) q^{76} +1.05165 q^{77} +(3.46725 + 3.56811i) q^{78} +8.43664 q^{79} +(0.382586 - 6.66490i) q^{80} +1.00000 q^{81} +(-0.735307 - 0.756696i) q^{82} +8.12919i q^{83} +(0.0111015 - 0.387110i) q^{84} -7.73998i q^{85} +(-3.10248 + 3.01478i) q^{86} +3.87278 q^{87} +(10.3852 + 11.3191i) q^{88} +4.29990 q^{89} +(1.64487 + 1.69272i) q^{90} +0.681215i q^{91} +(-15.6424 - 0.448592i) q^{92} +8.23578 q^{93} +(2.25589 + 2.32151i) q^{94} +1.91872 q^{95} +(4.27619 - 3.70327i) q^{96} -8.73711i q^{97} +(-7.06159 + 6.86199i) q^{98} -5.43109 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} - 6q^{10} - 2q^{12} - 4q^{14} + 2q^{16} + 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} - 34q^{27} + 8q^{28} - 16q^{29} + 6q^{30} + 4q^{31} + 2q^{36} + 12q^{37} - 26q^{38} - 18q^{40} + 4q^{42} + 4q^{43} - 26q^{44} + 4q^{46} - 2q^{48} + 46q^{49} + 18q^{50} - 32q^{52} + 14q^{56} - 4q^{58} - 12q^{60} - 2q^{62} - 4q^{63} + 26q^{64} + 8q^{66} + 18q^{67} - 34q^{68} - 56q^{70} + 6q^{72} + 12q^{73} - 22q^{74} + 34q^{75} - 32q^{76} - 8q^{77} - 10q^{78} + 12q^{79} + 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} + 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} - 32q^{94} + 40q^{95} + 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.01423 0.985563i 0.717170 0.696898i
\(3\) −1.00000 −0.577350
\(4\) 0.0573324 1.99918i 0.0286662 0.999589i
\(5\) 1.66897i 0.746385i 0.927754 + 0.373192i \(0.121737\pi\)
−0.927754 + 0.373192i \(0.878263\pi\)
\(6\) −1.01423 + 0.985563i −0.414058 + 0.402354i
\(7\) −0.193635 −0.0731871 −0.0365935 0.999330i \(-0.511651\pi\)
−0.0365935 + 0.999330i \(0.511651\pi\)
\(8\) −1.91217 2.08413i −0.676053 0.736853i
\(9\) 1.00000 0.333333
\(10\) 1.64487 + 1.69272i 0.520154 + 0.535285i
\(11\) −5.43109 −1.63754 −0.818768 0.574124i \(-0.805343\pi\)
−0.818768 + 0.574124i \(0.805343\pi\)
\(12\) −0.0573324 + 1.99918i −0.0165504 + 0.577113i
\(13\) 3.51804i 0.975729i −0.872919 0.487865i \(-0.837776\pi\)
0.872919 0.487865i \(-0.162224\pi\)
\(14\) −0.196391 + 0.190839i −0.0524876 + 0.0510039i
\(15\) 1.66897i 0.430925i
\(16\) −3.99343 0.229235i −0.998356 0.0573088i
\(17\) −4.63759 −1.12478 −0.562390 0.826872i \(-0.690118\pi\)
−0.562390 + 0.826872i \(0.690118\pi\)
\(18\) 1.01423 0.985563i 0.239057 0.232299i
\(19\) 1.14965i 0.263747i −0.991267 0.131874i \(-0.957901\pi\)
0.991267 0.131874i \(-0.0420993\pi\)
\(20\) 3.33656 + 0.0956859i 0.746078 + 0.0213960i
\(21\) 0.193635 0.0422546
\(22\) −5.50839 + 5.35268i −1.17439 + 1.14120i
\(23\) 7.82441i 1.63150i −0.578404 0.815751i \(-0.696324\pi\)
0.578404 0.815751i \(-0.303676\pi\)
\(24\) 1.91217 + 2.08413i 0.390319 + 0.425422i
\(25\) 2.21455 0.442910
\(26\) −3.46725 3.56811i −0.679984 0.699764i
\(27\) −1.00000 −0.192450
\(28\) −0.0111015 + 0.387110i −0.00209800 + 0.0731570i
\(29\) −3.87278 −0.719157 −0.359578 0.933115i \(-0.617079\pi\)
−0.359578 + 0.933115i \(0.617079\pi\)
\(30\) −1.64487 1.69272i −0.300311 0.309047i
\(31\) −8.23578 −1.47919 −0.739595 0.673052i \(-0.764983\pi\)
−0.739595 + 0.673052i \(0.764983\pi\)
\(32\) −4.27619 + 3.70327i −0.755930 + 0.654653i
\(33\) 5.43109 0.945432
\(34\) −4.70359 + 4.57063i −0.806659 + 0.783857i
\(35\) 0.323170i 0.0546257i
\(36\) 0.0573324 1.99918i 0.00955540 0.333196i
\(37\) 11.0522 1.81697 0.908485 0.417918i \(-0.137240\pi\)
0.908485 + 0.417918i \(0.137240\pi\)
\(38\) −1.13305 1.16601i −0.183805 0.189152i
\(39\) 3.51804i 0.563337i
\(40\) 3.47835 3.19134i 0.549976 0.504596i
\(41\) 0.746078i 0.116518i −0.998302 0.0582589i \(-0.981445\pi\)
0.998302 0.0582589i \(-0.0185549\pi\)
\(42\) 0.196391 0.190839i 0.0303037 0.0294471i
\(43\) −3.05894 −0.466485 −0.233242 0.972419i \(-0.574934\pi\)
−0.233242 + 0.972419i \(0.574934\pi\)
\(44\) −0.311378 + 10.8577i −0.0469420 + 1.63686i
\(45\) 1.66897i 0.248795i
\(46\) −7.71144 7.93576i −1.13699 1.17006i
\(47\) 2.28894i 0.333876i 0.985967 + 0.166938i \(0.0533879\pi\)
−0.985967 + 0.166938i \(0.946612\pi\)
\(48\) 3.99343 + 0.229235i 0.576401 + 0.0330873i
\(49\) −6.96251 −0.994644
\(50\) 2.24607 2.18258i 0.317642 0.308663i
\(51\) 4.63759 0.649392
\(52\) −7.03319 0.201698i −0.975328 0.0279704i
\(53\) 6.58420i 0.904409i 0.891914 + 0.452204i \(0.149362\pi\)
−0.891914 + 0.452204i \(0.850638\pi\)
\(54\) −1.01423 + 0.985563i −0.138019 + 0.134118i
\(55\) 9.06432i 1.22223i
\(56\) 0.370262 + 0.403561i 0.0494784 + 0.0539281i
\(57\) 1.14965i 0.152274i
\(58\) −3.92789 + 3.81687i −0.515758 + 0.501179i
\(59\) 1.92869i 0.251094i −0.992088 0.125547i \(-0.959931\pi\)
0.992088 0.125547i \(-0.0400687\pi\)
\(60\) −3.33656 0.0956859i −0.430748 0.0123530i
\(61\) 1.81536i 0.232433i 0.993224 + 0.116217i \(0.0370766\pi\)
−0.993224 + 0.116217i \(0.962923\pi\)
\(62\) −8.35299 + 8.11688i −1.06083 + 1.03084i
\(63\) −0.193635 −0.0243957
\(64\) −0.687235 + 7.97043i −0.0859044 + 0.996303i
\(65\) 5.87149 0.728269
\(66\) 5.50839 5.35268i 0.678036 0.658870i
\(67\) −0.790407 + 8.14710i −0.0965635 + 0.995327i
\(68\) −0.265884 + 9.27136i −0.0322432 + 1.12432i
\(69\) 7.82441i 0.941948i
\(70\) −0.318504 0.327769i −0.0380686 0.0391759i
\(71\) 15.3336i 1.81977i −0.414866 0.909883i \(-0.636172\pi\)
0.414866 0.909883i \(-0.363828\pi\)
\(72\) −1.91217 2.08413i −0.225351 0.245618i
\(73\) 5.05518 0.591664 0.295832 0.955240i \(-0.404403\pi\)
0.295832 + 0.955240i \(0.404403\pi\)
\(74\) 11.2095 10.8926i 1.30308 1.26624i
\(75\) −2.21455 −0.255714
\(76\) −2.29835 0.0659120i −0.263639 0.00756063i
\(77\) 1.05165 0.119847
\(78\) 3.46725 + 3.56811i 0.392589 + 0.404009i
\(79\) 8.43664 0.949196 0.474598 0.880203i \(-0.342593\pi\)
0.474598 + 0.880203i \(0.342593\pi\)
\(80\) 0.382586 6.66490i 0.0427744 0.745158i
\(81\) 1.00000 0.111111
\(82\) −0.735307 0.756696i −0.0812011 0.0835631i
\(83\) 8.12919i 0.892295i 0.894960 + 0.446147i \(0.147204\pi\)
−0.894960 + 0.446147i \(0.852796\pi\)
\(84\) 0.0111015 0.387110i 0.00121128 0.0422372i
\(85\) 7.73998i 0.839519i
\(86\) −3.10248 + 3.01478i −0.334549 + 0.325092i
\(87\) 3.87278 0.415205
\(88\) 10.3852 + 11.3191i 1.10706 + 1.20662i
\(89\) 4.29990 0.455789 0.227894 0.973686i \(-0.426816\pi\)
0.227894 + 0.973686i \(0.426816\pi\)
\(90\) 1.64487 + 1.69272i 0.173385 + 0.178428i
\(91\) 0.681215i 0.0714108i
\(92\) −15.6424 0.448592i −1.63083 0.0467689i
\(93\) 8.23578 0.854011
\(94\) 2.25589 + 2.32151i 0.232677 + 0.239446i
\(95\) 1.91872 0.196857
\(96\) 4.27619 3.70327i 0.436436 0.377964i
\(97\) 8.73711i 0.887120i −0.896245 0.443560i \(-0.853715\pi\)
0.896245 0.443560i \(-0.146285\pi\)
\(98\) −7.06159 + 6.86199i −0.713329 + 0.693165i
\(99\) −5.43109 −0.545846
\(100\) 0.126965 4.42728i 0.0126965 0.442728i
\(101\) 8.56779i 0.852527i 0.904599 + 0.426263i \(0.140170\pi\)
−0.904599 + 0.426263i \(0.859830\pi\)
\(102\) 4.70359 4.57063i 0.465725 0.452560i
\(103\) 0.478168i 0.0471153i 0.999722 + 0.0235576i \(0.00749932\pi\)
−0.999722 + 0.0235576i \(0.992501\pi\)
\(104\) −7.33207 + 6.72708i −0.718969 + 0.659645i
\(105\) 0.323170i 0.0315382i
\(106\) 6.48914 + 6.67790i 0.630281 + 0.648615i
\(107\) 6.08812i 0.588560i 0.955719 + 0.294280i \(0.0950799\pi\)
−0.955719 + 0.294280i \(0.904920\pi\)
\(108\) −0.0573324 + 1.99918i −0.00551681 + 0.192371i
\(109\) 19.2147i 1.84043i −0.391412 0.920215i \(-0.628013\pi\)
0.391412 0.920215i \(-0.371987\pi\)
\(110\) −8.93345 9.19332i −0.851771 0.876549i
\(111\) −11.0522 −1.04903
\(112\) 0.773266 + 0.0443879i 0.0730668 + 0.00419427i
\(113\) 7.52704i 0.708084i −0.935229 0.354042i \(-0.884807\pi\)
0.935229 0.354042i \(-0.115193\pi\)
\(114\) 1.13305 + 1.16601i 0.106120 + 0.109207i
\(115\) 13.0587 1.21773
\(116\) −0.222036 + 7.74237i −0.0206155 + 0.718861i
\(117\) 3.51804i 0.325243i
\(118\) −1.90085 1.95614i −0.174987 0.180077i
\(119\) 0.897998 0.0823194
\(120\) −3.47835 + 3.19134i −0.317529 + 0.291328i
\(121\) 18.4968 1.68153
\(122\) 1.78915 + 1.84120i 0.161982 + 0.166694i
\(123\) 0.746078i 0.0672716i
\(124\) −0.472177 + 16.4648i −0.0424027 + 1.47858i
\(125\) 12.0408i 1.07697i
\(126\) −0.196391 + 0.190839i −0.0174959 + 0.0170013i
\(127\) 15.4036i 1.36685i −0.730023 0.683423i \(-0.760491\pi\)
0.730023 0.683423i \(-0.239509\pi\)
\(128\) 7.15834 + 8.76117i 0.632714 + 0.774386i
\(129\) 3.05894 0.269325
\(130\) 5.95506 5.78673i 0.522293 0.507529i
\(131\) 11.6507i 1.01793i −0.860788 0.508964i \(-0.830028\pi\)
0.860788 0.508964i \(-0.169972\pi\)
\(132\) 0.311378 10.8577i 0.0271019 0.945044i
\(133\) 0.222612i 0.0193029i
\(134\) 7.22782 + 9.04204i 0.624389 + 0.781114i
\(135\) 1.66897i 0.143642i
\(136\) 8.86784 + 9.66536i 0.760411 + 0.828797i
\(137\) 18.6423i 1.59272i −0.604826 0.796358i \(-0.706757\pi\)
0.604826 0.796358i \(-0.293243\pi\)
\(138\) 7.71144 + 7.93576i 0.656442 + 0.675537i
\(139\) 19.0240 1.61359 0.806796 0.590831i \(-0.201200\pi\)
0.806796 + 0.590831i \(0.201200\pi\)
\(140\) −0.646075 0.0185281i −0.0546033 0.00156591i
\(141\) 2.28894i 0.192763i
\(142\) −15.1122 15.5518i −1.26819 1.30508i
\(143\) 19.1068i 1.59779i
\(144\) −3.99343 0.229235i −0.332785 0.0191029i
\(145\) 6.46354i 0.536768i
\(146\) 5.12712 4.98220i 0.424324 0.412329i
\(147\) 6.96251 0.574258
\(148\) 0.633649 22.0953i 0.0520856 1.81622i
\(149\) −9.99677 −0.818967 −0.409484 0.912317i \(-0.634291\pi\)
−0.409484 + 0.912317i \(0.634291\pi\)
\(150\) −2.24607 + 2.18258i −0.183391 + 0.178207i
\(151\) 4.23887i 0.344954i −0.985014 0.172477i \(-0.944823\pi\)
0.985014 0.172477i \(-0.0551771\pi\)
\(152\) −2.39602 + 2.19832i −0.194343 + 0.178307i
\(153\) −4.63759 −0.374927
\(154\) 1.06662 1.03647i 0.0859504 0.0835208i
\(155\) 13.7452i 1.10404i
\(156\) 7.03319 + 0.201698i 0.563106 + 0.0161487i
\(157\) −18.8209 −1.50207 −0.751037 0.660260i \(-0.770446\pi\)
−0.751037 + 0.660260i \(0.770446\pi\)
\(158\) 8.55671 8.31484i 0.680735 0.661493i
\(159\) 6.58420i 0.522161i
\(160\) −6.18064 7.13681i −0.488623 0.564215i
\(161\) 1.51508i 0.119405i
\(162\) 1.01423 0.985563i 0.0796856 0.0774331i
\(163\) 8.80860i 0.689943i −0.938613 0.344971i \(-0.887889\pi\)
0.938613 0.344971i \(-0.112111\pi\)
\(164\) −1.49154 0.0427745i −0.116470 0.00334012i
\(165\) 9.06432i 0.705656i
\(166\) 8.01183 + 8.24488i 0.621838 + 0.639927i
\(167\) 21.5220i 1.66542i 0.553707 + 0.832712i \(0.313213\pi\)
−0.553707 + 0.832712i \(0.686787\pi\)
\(168\) −0.370262 0.403561i −0.0285663 0.0311354i
\(169\) 0.623384 0.0479527
\(170\) −7.62824 7.85013i −0.585059 0.602078i
\(171\) 1.14965i 0.0879157i
\(172\) −0.175377 + 6.11537i −0.0133723 + 0.466293i
\(173\) −10.5131 −0.799297 −0.399648 0.916668i \(-0.630868\pi\)
−0.399648 + 0.916668i \(0.630868\pi\)
\(174\) 3.92789 3.81687i 0.297773 0.289356i
\(175\) −0.428814 −0.0324153
\(176\) 21.6887 + 1.24500i 1.63485 + 0.0938453i
\(177\) 1.92869i 0.144969i
\(178\) 4.36110 4.23783i 0.326878 0.317638i
\(179\) −13.0002 −0.971679 −0.485839 0.874048i \(-0.661486\pi\)
−0.485839 + 0.874048i \(0.661486\pi\)
\(180\) 3.33656 + 0.0956859i 0.248693 + 0.00713200i
\(181\) 18.7366 1.39268 0.696341 0.717711i \(-0.254810\pi\)
0.696341 + 0.717711i \(0.254810\pi\)
\(182\) 0.671380 + 0.690910i 0.0497660 + 0.0512137i
\(183\) 1.81536i 0.134195i
\(184\) −16.3071 + 14.9616i −1.20218 + 1.10298i
\(185\) 18.4457i 1.35616i
\(186\) 8.35299 8.11688i 0.612471 0.595158i
\(187\) 25.1872 1.84187
\(188\) 4.57599 + 0.131230i 0.333739 + 0.00957095i
\(189\) 0.193635 0.0140849
\(190\) 1.94603 1.89102i 0.141180 0.137189i
\(191\) 10.8552 0.785455 0.392727 0.919655i \(-0.371532\pi\)
0.392727 + 0.919655i \(0.371532\pi\)
\(192\) 0.687235 7.97043i 0.0495969 0.575216i
\(193\) −10.6188 −0.764356 −0.382178 0.924089i \(-0.624826\pi\)
−0.382178 + 0.924089i \(0.624826\pi\)
\(194\) −8.61097 8.86146i −0.618232 0.636216i
\(195\) −5.87149 −0.420466
\(196\) −0.399177 + 13.9193i −0.0285127 + 0.994235i
\(197\) 4.94237i 0.352129i 0.984379 + 0.176065i \(0.0563368\pi\)
−0.984379 + 0.176065i \(0.943663\pi\)
\(198\) −5.50839 + 5.35268i −0.391464 + 0.380399i
\(199\) 14.8405i 1.05202i −0.850480 0.526008i \(-0.823688\pi\)
0.850480 0.526008i \(-0.176312\pi\)
\(200\) −4.23459 4.61542i −0.299431 0.326359i
\(201\) 0.790407 8.14710i 0.0557510 0.574652i
\(202\) 8.44409 + 8.68972i 0.594124 + 0.611407i
\(203\) 0.749905 0.0526330
\(204\) 0.265884 9.27136i 0.0186156 0.649125i
\(205\) 1.24518 0.0869672
\(206\) 0.471264 + 0.484973i 0.0328346 + 0.0337897i
\(207\) 7.82441i 0.543834i
\(208\) −0.806459 + 14.0490i −0.0559179 + 0.974126i
\(209\) 6.24384i 0.431895i
\(210\) 0.318504 + 0.327769i 0.0219789 + 0.0226182i
\(211\) 18.5215i 1.27507i 0.770421 + 0.637535i \(0.220046\pi\)
−0.770421 + 0.637535i \(0.779954\pi\)
\(212\) 13.1630 + 0.377488i 0.904037 + 0.0259260i
\(213\) 15.3336i 1.05064i
\(214\) 6.00022 + 6.17476i 0.410167 + 0.422098i
\(215\) 5.10528i 0.348177i
\(216\) 1.91217 + 2.08413i 0.130106 + 0.141807i
\(217\) 1.59473 0.108258
\(218\) −18.9373 19.4881i −1.28259 1.31990i
\(219\) −5.05518 −0.341597
\(220\) −18.1212 0.519679i −1.22173 0.0350368i
\(221\) 16.3152i 1.09748i
\(222\) −11.2095 + 10.8926i −0.752331 + 0.731065i
\(223\) 22.7959i 1.52653i 0.646087 + 0.763264i \(0.276404\pi\)
−0.646087 + 0.763264i \(0.723596\pi\)
\(224\) 0.828018 0.717083i 0.0553243 0.0479121i
\(225\) 2.21455 0.147637
\(226\) −7.41837 7.63416i −0.493463 0.507817i
\(227\) 3.82420i 0.253821i −0.991914 0.126911i \(-0.959494\pi\)
0.991914 0.126911i \(-0.0405061\pi\)
\(228\) 2.29835 + 0.0659120i 0.152212 + 0.00436513i
\(229\) 1.55395i 0.102688i −0.998681 0.0513438i \(-0.983650\pi\)
0.998681 0.0513438i \(-0.0163504\pi\)
\(230\) 13.2445 12.8701i 0.873318 0.848632i
\(231\) −1.05165 −0.0691934
\(232\) 7.40540 + 8.07139i 0.486188 + 0.529913i
\(233\) 21.8298i 1.43012i −0.699063 0.715060i \(-0.746399\pi\)
0.699063 0.715060i \(-0.253601\pi\)
\(234\) −3.46725 3.56811i −0.226661 0.233255i
\(235\) −3.82016 −0.249200
\(236\) −3.85580 0.110577i −0.250991 0.00719792i
\(237\) −8.43664 −0.548019
\(238\) 0.910779 0.885034i 0.0590370 0.0573682i
\(239\) −8.15401 −0.527439 −0.263720 0.964599i \(-0.584949\pi\)
−0.263720 + 0.964599i \(0.584949\pi\)
\(240\) −0.382586 + 6.66490i −0.0246958 + 0.430217i
\(241\) −10.2682 −0.661435 −0.330717 0.943730i \(-0.607291\pi\)
−0.330717 + 0.943730i \(0.607291\pi\)
\(242\) 18.7600 18.2297i 1.20594 1.17185i
\(243\) −1.00000 −0.0641500
\(244\) 3.62923 + 0.104079i 0.232337 + 0.00666297i
\(245\) 11.6202i 0.742387i
\(246\) 0.735307 + 0.756696i 0.0468815 + 0.0482452i
\(247\) −4.04451 −0.257346
\(248\) 15.7482 + 17.1645i 1.00001 + 1.08995i
\(249\) 8.12919i 0.515167i
\(250\) 11.8670 + 12.2122i 0.750535 + 0.772368i
\(251\) 4.98013 0.314343 0.157171 0.987571i \(-0.449762\pi\)
0.157171 + 0.987571i \(0.449762\pi\)
\(252\) −0.0111015 + 0.387110i −0.000699332 + 0.0243857i
\(253\) 42.4951i 2.67164i
\(254\) −15.1812 15.6228i −0.952552 0.980261i
\(255\) 7.73998i 0.484696i
\(256\) 15.8949 + 1.83087i 0.993431 + 0.114429i
\(257\) −11.1659 −0.696512 −0.348256 0.937399i \(-0.613226\pi\)
−0.348256 + 0.937399i \(0.613226\pi\)
\(258\) 3.10248 3.01478i 0.193152 0.187692i
\(259\) −2.14009 −0.132979
\(260\) 0.336627 11.7382i 0.0208767 0.727970i
\(261\) −3.87278 −0.239719
\(262\) −11.4825 11.8165i −0.709393 0.730028i
\(263\) 19.8833i 1.22606i 0.790061 + 0.613028i \(0.210049\pi\)
−0.790061 + 0.613028i \(0.789951\pi\)
\(264\) −10.3852 11.3191i −0.639162 0.696644i
\(265\) −10.9888 −0.675037
\(266\) 0.219398 + 0.225780i 0.0134521 + 0.0138435i
\(267\) −4.29990 −0.263150
\(268\) 16.2422 + 2.04726i 0.992150 + 0.125056i
\(269\) −16.8187 −1.02546 −0.512728 0.858551i \(-0.671365\pi\)
−0.512728 + 0.858551i \(0.671365\pi\)
\(270\) −1.64487 1.69272i −0.100104 0.103016i
\(271\) 18.3784 1.11641 0.558203 0.829704i \(-0.311491\pi\)
0.558203 + 0.829704i \(0.311491\pi\)
\(272\) 18.5199 + 1.06310i 1.12293 + 0.0644598i
\(273\) 0.681215i 0.0412290i
\(274\) −18.3731 18.9076i −1.10996 1.14225i
\(275\) −12.0274 −0.725281
\(276\) 15.6424 + 0.448592i 0.941561 + 0.0270021i
\(277\) −18.1619 −1.09124 −0.545621 0.838032i \(-0.683706\pi\)
−0.545621 + 0.838032i \(0.683706\pi\)
\(278\) 19.2947 18.7493i 1.15722 1.12451i
\(279\) −8.23578 −0.493063
\(280\) −0.673530 + 0.617955i −0.0402511 + 0.0369299i
\(281\) 13.8511i 0.826286i −0.910666 0.413143i \(-0.864431\pi\)
0.910666 0.413143i \(-0.135569\pi\)
\(282\) −2.25589 2.32151i −0.134336 0.138244i
\(283\) 8.43751i 0.501558i −0.968044 0.250779i \(-0.919313\pi\)
0.968044 0.250779i \(-0.0806867\pi\)
\(284\) −30.6546 0.879113i −1.81902 0.0521657i
\(285\) −1.91872 −0.113655
\(286\) 18.8310 + 19.3787i 1.11350 + 1.14589i
\(287\) 0.144467i 0.00852760i
\(288\) −4.27619 + 3.70327i −0.251977 + 0.218218i
\(289\) 4.50722 0.265130
\(290\) −6.37022 6.55553i −0.374072 0.384954i
\(291\) 8.73711i 0.512179i
\(292\) 0.289826 10.1062i 0.0169608 0.591421i
\(293\) −13.6693 −0.798572 −0.399286 0.916826i \(-0.630742\pi\)
−0.399286 + 0.916826i \(0.630742\pi\)
\(294\) 7.06159 6.86199i 0.411841 0.400199i
\(295\) 3.21893 0.187413
\(296\) −21.1336 23.0343i −1.22837 1.33884i
\(297\) 5.43109 0.315144
\(298\) −10.1390 + 9.85244i −0.587339 + 0.570737i
\(299\) −27.5266 −1.59190
\(300\) −0.126965 + 4.42728i −0.00733035 + 0.255609i
\(301\) 0.592318 0.0341407
\(302\) −4.17767 4.29920i −0.240398 0.247391i
\(303\) 8.56779i 0.492207i
\(304\) −0.263540 + 4.59103i −0.0151150 + 0.263314i
\(305\) −3.02978 −0.173484
\(306\) −4.70359 + 4.57063i −0.268886 + 0.261286i
\(307\) 1.60135i 0.0913939i 0.998955 + 0.0456970i \(0.0145509\pi\)
−0.998955 + 0.0456970i \(0.985449\pi\)
\(308\) 0.0602936 2.10243i 0.00343554 0.119797i
\(309\) 0.478168i 0.0272020i
\(310\) −13.5468 13.9409i −0.769406 0.791788i
\(311\) 28.5520 1.61903 0.809516 0.587097i \(-0.199729\pi\)
0.809516 + 0.587097i \(0.199729\pi\)
\(312\) 7.33207 6.72708i 0.415097 0.380846i
\(313\) 26.3338i 1.48847i −0.667917 0.744236i \(-0.732814\pi\)
0.667917 0.744236i \(-0.267186\pi\)
\(314\) −19.0888 + 18.5492i −1.07724 + 1.04679i
\(315\) 0.323170i 0.0182086i
\(316\) 0.483693 16.8663i 0.0272098 0.948806i
\(317\) 13.2194 0.742476 0.371238 0.928538i \(-0.378933\pi\)
0.371238 + 0.928538i \(0.378933\pi\)
\(318\) −6.48914 6.67790i −0.363893 0.374478i
\(319\) 21.0334 1.17765
\(320\) −13.3024 1.14697i −0.743626 0.0641177i
\(321\) 6.08812i 0.339805i
\(322\) 1.49320 + 1.53664i 0.0832130 + 0.0856336i
\(323\) 5.33159i 0.296657i
\(324\) 0.0573324 1.99918i 0.00318513 0.111065i
\(325\) 7.79088i 0.432160i
\(326\) −8.68143 8.93396i −0.480820 0.494807i
\(327\) 19.2147i 1.06257i
\(328\) −1.55493 + 1.42663i −0.0858565 + 0.0787723i
\(329\) 0.443218i 0.0244354i
\(330\) 8.93345 + 9.19332i 0.491770 + 0.506076i
\(331\) −27.3525 −1.50343 −0.751715 0.659488i \(-0.770773\pi\)
−0.751715 + 0.659488i \(0.770773\pi\)
\(332\) 16.2517 + 0.466066i 0.891928 + 0.0255787i
\(333\) 11.0522 0.605656
\(334\) 21.2113 + 21.8283i 1.16063 + 1.19439i
\(335\) −13.5972 1.31916i −0.742897 0.0720735i
\(336\) −0.773266 0.0443879i −0.0421851 0.00242156i
\(337\) 5.47892i 0.298456i 0.988803 + 0.149228i \(0.0476788\pi\)
−0.988803 + 0.149228i \(0.952321\pi\)
\(338\) 0.632256 0.614384i 0.0343902 0.0334181i
\(339\) 7.52704i 0.408813i
\(340\) −15.4736 0.443752i −0.839174 0.0240658i
\(341\) 44.7293 2.42223
\(342\) −1.13305 1.16601i −0.0612683 0.0630505i
\(343\) 2.70363 0.145982
\(344\) 5.84921 + 6.37525i 0.315368 + 0.343731i
\(345\) −13.0587 −0.703055
\(346\) −10.6627 + 10.3613i −0.573232 + 0.557028i
\(347\) 23.1764 1.24417 0.622086 0.782949i \(-0.286285\pi\)
0.622086 + 0.782949i \(0.286285\pi\)
\(348\) 0.222036 7.74237i 0.0119024 0.415035i
\(349\) −16.2968 −0.872346 −0.436173 0.899863i \(-0.643666\pi\)
−0.436173 + 0.899863i \(0.643666\pi\)
\(350\) −0.434917 + 0.422623i −0.0232473 + 0.0225901i
\(351\) 3.51804i 0.187779i
\(352\) 23.2244 20.1128i 1.23786 1.07202i
\(353\) 14.9502i 0.795717i 0.917447 + 0.397858i \(0.130246\pi\)
−0.917447 + 0.397858i \(0.869754\pi\)
\(354\) 1.90085 + 1.95614i 0.101029 + 0.103968i
\(355\) 25.5913 1.35824
\(356\) 0.246524 8.59628i 0.0130657 0.455602i
\(357\) −0.897998 −0.0475271
\(358\) −13.1852 + 12.8125i −0.696859 + 0.677161i
\(359\) 8.04607i 0.424655i 0.977199 + 0.212328i \(0.0681044\pi\)
−0.977199 + 0.212328i \(0.931896\pi\)
\(360\) 3.47835 3.19134i 0.183325 0.168199i
\(361\) 17.6783 0.930437
\(362\) 19.0033 18.4661i 0.998791 0.970558i
\(363\) −18.4968 −0.970830
\(364\) 1.36187 + 0.0390557i 0.0713814 + 0.00204708i
\(365\) 8.43693i 0.441609i
\(366\) −1.78915 1.84120i −0.0935204 0.0962408i
\(367\) −16.4155 −0.856881 −0.428440 0.903570i \(-0.640937\pi\)
−0.428440 + 0.903570i \(0.640937\pi\)
\(368\) −1.79363 + 31.2462i −0.0934994 + 1.62882i
\(369\) 0.746078i 0.0388393i
\(370\) 18.1794 + 18.7083i 0.945104 + 0.972596i
\(371\) 1.27493i 0.0661910i
\(372\) 0.472177 16.4648i 0.0244812 0.853660i
\(373\) 13.3676i 0.692149i −0.938207 0.346075i \(-0.887514\pi\)
0.938207 0.346075i \(-0.112486\pi\)
\(374\) 25.5456 24.8235i 1.32093 1.28359i
\(375\) 12.0408i 0.621787i
\(376\) 4.77045 4.37683i 0.246017 0.225718i
\(377\) 13.6246i 0.701702i
\(378\) 0.196391 0.190839i 0.0101012 0.00981571i
\(379\) 16.9599 0.871173 0.435586 0.900147i \(-0.356541\pi\)
0.435586 + 0.900147i \(0.356541\pi\)
\(380\) 0.110005 3.83587i 0.00564314 0.196776i
\(381\) 15.4036i 0.789149i
\(382\) 11.0097 10.6985i 0.563305 0.547382i
\(383\) 4.33588 0.221553 0.110777 0.993845i \(-0.464666\pi\)
0.110777 + 0.993845i \(0.464666\pi\)
\(384\) −7.15834 8.76117i −0.365298 0.447092i
\(385\) 1.75517i 0.0894516i
\(386\) −10.7699 + 10.4655i −0.548173 + 0.532678i
\(387\) −3.05894 −0.155495
\(388\) −17.4670 0.500920i −0.886755 0.0254303i
\(389\) 23.6337 1.19828 0.599139 0.800645i \(-0.295510\pi\)
0.599139 + 0.800645i \(0.295510\pi\)
\(390\) −5.95506 + 5.78673i −0.301546 + 0.293022i
\(391\) 36.2864i 1.83508i
\(392\) 13.3135 + 14.5108i 0.672432 + 0.732906i
\(393\) 11.6507i 0.587701i
\(394\) 4.87101 + 5.01271i 0.245398 + 0.252537i
\(395\) 14.0805i 0.708466i
\(396\) −0.311378 + 10.8577i −0.0156473 + 0.545621i
\(397\) −21.3575 −1.07190 −0.535951 0.844249i \(-0.680047\pi\)
−0.535951 + 0.844249i \(0.680047\pi\)
\(398\) −14.6262 15.0517i −0.733147 0.754474i
\(399\) 0.222612i 0.0111445i
\(400\) −8.84364 0.507653i −0.442182 0.0253827i
\(401\) 8.66412i 0.432666i 0.976320 + 0.216333i \(0.0694096\pi\)
−0.976320 + 0.216333i \(0.930590\pi\)
\(402\) −7.22782 9.04204i −0.360491 0.450976i
\(403\) 28.9738i 1.44329i
\(404\) 17.1285 + 0.491212i 0.852176 + 0.0244387i
\(405\) 1.66897i 0.0829316i
\(406\) 0.760577 0.739078i 0.0377468 0.0366798i
\(407\) −60.0255 −2.97535
\(408\) −8.86784 9.66536i −0.439024 0.478506i
\(409\) 37.3394i 1.84632i 0.384421 + 0.923158i \(0.374401\pi\)
−0.384421 + 0.923158i \(0.625599\pi\)
\(410\) 1.26290 1.22720i 0.0623703 0.0606072i
\(411\) 18.6423i 0.919555i
\(412\) 0.955943 + 0.0274145i 0.0470959 + 0.00135062i
\(413\) 0.373462i 0.0183769i
\(414\) −7.71144 7.93576i −0.378997 0.390021i
\(415\) −13.5674 −0.665995
\(416\) 13.0283 + 15.0438i 0.638764 + 0.737583i
\(417\) −19.0240 −0.931607
\(418\) 6.15370 + 6.33270i 0.300987 + 0.309743i
\(419\) 6.12426i 0.299190i −0.988747 0.149595i \(-0.952203\pi\)
0.988747 0.149595i \(-0.0477970\pi\)
\(420\) 0.646075 + 0.0185281i 0.0315252 + 0.000904080i
\(421\) −15.5965 −0.760129 −0.380064 0.924960i \(-0.624098\pi\)
−0.380064 + 0.924960i \(0.624098\pi\)
\(422\) 18.2541 + 18.7851i 0.888594 + 0.914443i
\(423\) 2.28894i 0.111292i
\(424\) 13.7224 12.5901i 0.666416 0.611428i
\(425\) −10.2702 −0.498176
\(426\) 15.1122 + 15.5518i 0.732190 + 0.753489i
\(427\) 0.351517i 0.0170111i
\(428\) 12.1712 + 0.349046i 0.588318 + 0.0168718i
\(429\) 19.1068i 0.922486i
\(430\) −5.03157 5.17793i −0.242644 0.249702i
\(431\) 32.2497i 1.55341i −0.629864 0.776706i \(-0.716889\pi\)
0.629864 0.776706i \(-0.283111\pi\)
\(432\) 3.99343 + 0.229235i 0.192134 + 0.0110291i
\(433\) 36.4007i 1.74931i −0.484749 0.874653i \(-0.661089\pi\)
0.484749 0.874653i \(-0.338911\pi\)
\(434\) 1.61743 1.57171i 0.0776391 0.0754445i
\(435\) 6.46354i 0.309903i
\(436\) −38.4135 1.10162i −1.83967 0.0527582i
\(437\) −8.99530 −0.430304
\(438\) −5.12712 + 4.98220i −0.244983 + 0.238059i
\(439\) 8.81023i 0.420489i −0.977649 0.210245i \(-0.932574\pi\)
0.977649 0.210245i \(-0.0674261\pi\)
\(440\) −18.8913 + 17.3325i −0.900605 + 0.826294i
\(441\) −6.96251 −0.331548
\(442\) 16.0797 + 16.5474i 0.764832 + 0.787080i
\(443\) −34.3211 −1.63064 −0.815322 0.579008i \(-0.803440\pi\)
−0.815322 + 0.579008i \(0.803440\pi\)
\(444\) −0.633649 + 22.0953i −0.0300716 + 1.04860i
\(445\) 7.17640i 0.340194i
\(446\) 22.4668 + 23.1203i 1.06383 + 1.09478i
\(447\) 9.99677 0.472831
\(448\) 0.133073 1.54335i 0.00628709 0.0729165i
\(449\) −26.0864 −1.23109 −0.615546 0.788101i \(-0.711064\pi\)
−0.615546 + 0.788101i \(0.711064\pi\)
\(450\) 2.24607 2.18258i 0.105881 0.102888i
\(451\) 4.05202i 0.190802i
\(452\) −15.0479 0.431543i −0.707793 0.0202981i
\(453\) 4.23887i 0.199159i
\(454\) −3.76899 3.87863i −0.176888 0.182033i
\(455\) −1.13693 −0.0532999
\(456\) 2.39602 2.19832i 0.112204 0.102946i
\(457\) 4.25149 0.198876 0.0994382 0.995044i \(-0.468295\pi\)
0.0994382 + 0.995044i \(0.468295\pi\)
\(458\) −1.53151 1.57606i −0.0715629 0.0736446i
\(459\) 4.63759 0.216464
\(460\) 0.748685 26.1066i 0.0349076 1.21723i
\(461\) 5.41529 0.252215 0.126108 0.992017i \(-0.459752\pi\)
0.126108 + 0.992017i \(0.459752\pi\)
\(462\) −1.06662 + 1.03647i −0.0496235 + 0.0482208i
\(463\) −22.2529 −1.03418 −0.517091 0.855930i \(-0.672985\pi\)
−0.517091 + 0.855930i \(0.672985\pi\)
\(464\) 15.4657 + 0.887778i 0.717975 + 0.0412140i
\(465\) 13.7452i 0.637420i
\(466\) −21.5147 22.1405i −0.996647 1.02564i
\(467\) 5.21056i 0.241116i −0.992706 0.120558i \(-0.961532\pi\)
0.992706 0.120558i \(-0.0384683\pi\)
\(468\) −7.03319 0.201698i −0.325109 0.00932348i
\(469\) 0.153050 1.57756i 0.00706720 0.0728451i
\(470\) −3.87453 + 3.76501i −0.178719 + 0.173667i
\(471\) 18.8209 0.867223
\(472\) −4.01966 + 3.68798i −0.185020 + 0.169753i
\(473\) 16.6134 0.763886
\(474\) −8.55671 + 8.31484i −0.393023 + 0.381913i
\(475\) 2.54595i 0.116816i
\(476\) 0.0514844 1.79526i 0.00235978 0.0822855i
\(477\) 6.58420i 0.301470i
\(478\) −8.27006 + 8.03629i −0.378264 + 0.367571i
\(479\) 11.0487i 0.504827i 0.967619 + 0.252414i \(0.0812244\pi\)
−0.967619 + 0.252414i \(0.918776\pi\)
\(480\) 6.18064 + 7.13681i 0.282106 + 0.325749i
\(481\) 38.8821i 1.77287i
\(482\) −10.4144 + 10.1200i −0.474361 + 0.460953i
\(483\) 1.51508i 0.0689384i
\(484\) 1.06047 36.9784i 0.0482030 1.68084i
\(485\) 14.5820 0.662132
\(486\) −1.01423 + 0.985563i −0.0460065 + 0.0447060i
\(487\) −21.7384 −0.985061 −0.492530 0.870295i \(-0.663928\pi\)
−0.492530 + 0.870295i \(0.663928\pi\)
\(488\) 3.78345 3.47127i 0.171269 0.157137i
\(489\) 8.80860i 0.398339i
\(490\) −11.4524 11.7856i −0.517368 0.532418i
\(491\) 16.5554i 0.747137i 0.927603 + 0.373568i \(0.121866\pi\)
−0.927603 + 0.373568i \(0.878134\pi\)
\(492\) 1.49154 + 0.0427745i 0.0672440 + 0.00192842i
\(493\) 17.9603 0.808893
\(494\) −4.10207 + 3.98611i −0.184561 + 0.179344i
\(495\) 9.06432i 0.407411i
\(496\) 32.8890 + 1.88793i 1.47676 + 0.0847706i
\(497\) 2.96912i 0.133183i
\(498\) −8.01183 8.24488i −0.359019 0.369462i
\(499\) 10.2542 0.459043 0.229521 0.973304i \(-0.426284\pi\)
0.229521 + 0.973304i \(0.426284\pi\)
\(500\) 24.0718 + 0.690330i 1.07652 + 0.0308725i
\(501\) 21.5220i 0.961533i
\(502\) 5.05100 4.90823i 0.225437 0.219065i
\(503\) 1.27505 0.0568517 0.0284258 0.999596i \(-0.490951\pi\)
0.0284258 + 0.999596i \(0.490951\pi\)
\(504\) 0.370262 + 0.403561i 0.0164928 + 0.0179760i
\(505\) −14.2994 −0.636313
\(506\) 41.8816 + 43.0999i 1.86186 + 1.91602i
\(507\) −0.623384 −0.0276855
\(508\) −30.7945 0.883124i −1.36628 0.0391823i
\(509\) 23.9599 1.06200 0.531001 0.847371i \(-0.321816\pi\)
0.531001 + 0.847371i \(0.321816\pi\)
\(510\) 7.62824 + 7.85013i 0.337784 + 0.347610i
\(511\) −0.978859 −0.0433022
\(512\) 17.9256 13.8085i 0.792205 0.610255i
\(513\) 1.14965i 0.0507581i
\(514\) −11.3249 + 11.0047i −0.499518 + 0.485398i
\(515\) −0.798047 −0.0351661
\(516\) 0.175377 6.11537i 0.00772053 0.269214i
\(517\) 12.4314i 0.546734i
\(518\) −2.17055 + 2.10919i −0.0953684 + 0.0926726i
\(519\) 10.5131 0.461474
\(520\) −11.2273 12.2370i −0.492349 0.536627i
\(521\) 41.4884i 1.81764i −0.417188 0.908820i \(-0.636984\pi\)
0.417188 0.908820i \(-0.363016\pi\)
\(522\) −3.92789 + 3.81687i −0.171919 + 0.167060i
\(523\) 22.5131i 0.984431i 0.870473 + 0.492216i \(0.163813\pi\)
−0.870473 + 0.492216i \(0.836187\pi\)
\(524\) −23.2919 0.667964i −1.01751 0.0291801i
\(525\) 0.428814 0.0187150
\(526\) 19.5962 + 20.1663i 0.854436 + 0.879291i
\(527\) 38.1941 1.66376
\(528\) −21.6887 1.24500i −0.943878 0.0541816i
\(529\) −38.2213 −1.66180
\(530\) −11.1452 + 10.8302i −0.484116 + 0.470432i
\(531\) 1.92869i 0.0836982i
\(532\) 0.445040 + 0.0127629i 0.0192949 + 0.000553340i
\(533\) −2.62473 −0.113690
\(534\) −4.36110 + 4.23783i −0.188723 + 0.183389i
\(535\) −10.1609 −0.439292
\(536\) 18.4910 13.9313i 0.798692 0.601741i
\(537\) 13.0002 0.560999
\(538\) −17.0581 + 16.5759i −0.735427 + 0.714638i
\(539\) 37.8140 1.62877
\(540\) −3.33656 0.0956859i −0.143583 0.00411766i
\(541\) 16.9263i 0.727719i 0.931454 + 0.363859i \(0.118541\pi\)
−0.931454 + 0.363859i \(0.881459\pi\)
\(542\) 18.6399 18.1130i 0.800653 0.778021i
\(543\) −18.7366 −0.804066
\(544\) 19.8312 17.1743i 0.850255 0.736340i
\(545\) 32.0686 1.37367
\(546\) −0.671380 0.690910i −0.0287324 0.0295682i
\(547\) −27.2538 −1.16529 −0.582644 0.812728i \(-0.697982\pi\)
−0.582644 + 0.812728i \(0.697982\pi\)
\(548\) −37.2692 1.06881i −1.59206 0.0456571i
\(549\) 1.81536i 0.0774777i
\(550\) −12.1986 + 11.8538i −0.520150 + 0.505447i
\(551\) 4.45233i 0.189675i
\(552\) 16.3071 14.9616i 0.694077 0.636807i
\(553\) −1.63363 −0.0694689
\(554\) −18.4204 + 17.8997i −0.782607 + 0.760485i
\(555\) 18.4457i 0.782978i
\(556\) 1.09069 38.0323i 0.0462555 1.61293i
\(557\) 2.81166 0.119134 0.0595668 0.998224i \(-0.481028\pi\)
0.0595668 + 0.998224i \(0.481028\pi\)
\(558\) −8.35299 + 8.11688i −0.353610 + 0.343615i
\(559\) 10.7615i 0.455163i
\(560\) −0.0740820 + 1.29056i −0.00313054 + 0.0545359i
\(561\) −25.1872 −1.06340
\(562\) −13.6511 14.0482i −0.575837 0.592588i
\(563\) −14.7836 −0.623052 −0.311526 0.950238i \(-0.600840\pi\)
−0.311526 + 0.950238i \(0.600840\pi\)
\(564\) −4.57599 0.131230i −0.192684 0.00552579i
\(565\) 12.5624 0.528503
\(566\) −8.31569 8.55759i −0.349535 0.359702i
\(567\) −0.193635 −0.00813190
\(568\) −31.9573 + 29.3204i −1.34090 + 1.23026i
\(569\) −32.6486 −1.36870 −0.684351 0.729153i \(-0.739914\pi\)
−0.684351 + 0.729153i \(0.739914\pi\)
\(570\) −1.94603 + 1.89102i −0.0815102 + 0.0792062i
\(571\) 35.3388i 1.47888i −0.673221 0.739442i \(-0.735090\pi\)
0.673221 0.739442i \(-0.264910\pi\)
\(572\) 38.1979 + 1.09544i 1.59714 + 0.0458026i
\(573\) −10.8552 −0.453482
\(574\) 0.142381 + 0.146523i 0.00594287 + 0.00611574i
\(575\) 17.3275i 0.722608i
\(576\) −0.687235 + 7.97043i −0.0286348 + 0.332101i
\(577\) 38.5477i 1.60476i −0.596812 0.802381i \(-0.703566\pi\)
0.596812 0.802381i \(-0.296434\pi\)
\(578\) 4.57136 4.44214i 0.190144 0.184769i
\(579\) 10.6188 0.441301
\(580\) −12.9218 0.370570i −0.536547 0.0153871i
\(581\) 1.57409i 0.0653044i
\(582\) 8.61097 + 8.86146i 0.356936 + 0.367319i
\(583\) 35.7594i 1.48100i
\(584\) −9.66635 10.5357i −0.399996 0.435969i
\(585\) 5.87149 0.242756
\(586\) −13.8639 + 13.4720i −0.572712 + 0.556523i
\(587\) 17.0838 0.705122 0.352561 0.935789i \(-0.385311\pi\)
0.352561 + 0.935789i \(0.385311\pi\)
\(588\) 0.399177 13.9193i 0.0164618 0.574022i
\(589\) 9.46824i 0.390132i
\(590\) 3.26474 3.17245i 0.134407 0.130608i
\(591\) 4.94237i 0.203302i
\(592\) −44.1361 2.53355i −1.81398 0.104128i
\(593\) 45.9539i 1.88710i −0.331231 0.943550i \(-0.607464\pi\)
0.331231 0.943550i \(-0.392536\pi\)
\(594\) 5.50839 5.35268i 0.226012 0.219623i
\(595\) 1.49873i 0.0614419i
\(596\) −0.573139 + 19.9853i −0.0234767 + 0.818631i
\(597\) 14.8405i 0.607381i
\(598\) −27.9183 + 27.1292i −1.14167 + 1.10939i
\(599\) 1.35735 0.0554600 0.0277300 0.999615i \(-0.491172\pi\)
0.0277300 + 0.999615i \(0.491172\pi\)
\(600\) 4.23459 + 4.61542i 0.172876 + 0.188424i
\(601\) −4.42827 −0.180633 −0.0903165 0.995913i \(-0.528788\pi\)
−0.0903165 + 0.995913i \(0.528788\pi\)
\(602\) 0.600748 0.583767i 0.0244847 0.0237926i
\(603\) −0.790407 + 8.14710i −0.0321878 + 0.331776i
\(604\) −8.47426 0.243025i −0.344813 0.00988853i
\(605\) 30.8705i 1.25507i
\(606\) −8.44409 8.68972i −0.343018 0.352996i
\(607\) 7.40400i 0.300519i 0.988647 + 0.150259i \(0.0480109\pi\)
−0.988647 + 0.150259i \(0.951989\pi\)
\(608\) 4.25746 + 4.91610i 0.172663 + 0.199374i
\(609\) −0.749905 −0.0303877
\(610\) −3.07289 + 2.98603i −0.124418 + 0.120901i
\(611\) 8.05257 0.325772
\(612\) −0.265884 + 9.27136i −0.0107477 + 0.374773i
\(613\) 22.0294 0.889759 0.444879 0.895591i \(-0.353247\pi\)
0.444879 + 0.895591i \(0.353247\pi\)
\(614\) 1.57823 + 1.62414i 0.0636923 + 0.0655450i
\(615\) −1.24518 −0.0502105
\(616\) −2.01093 2.19178i −0.0810226 0.0883093i
\(617\) −16.2048 −0.652382 −0.326191 0.945304i \(-0.605765\pi\)
−0.326191 + 0.945304i \(0.605765\pi\)
\(618\) −0.471264 0.484973i −0.0189570 0.0195085i
\(619\) 20.7311i 0.833251i −0.909078 0.416626i \(-0.863213\pi\)
0.909078 0.416626i \(-0.136787\pi\)
\(620\) −27.4792 0.788048i −1.10359 0.0316488i
\(621\) 7.82441i 0.313983i
\(622\) 28.9583 28.1397i 1.16112 1.12830i
\(623\) −0.832611 −0.0333579
\(624\) 0.806459 14.0490i 0.0322842 0.562412i
\(625\) −9.02302 −0.360921
\(626\) −25.9536 26.7085i −1.03731 1.06749i
\(627\) 6.24384i 0.249355i
\(628\) −1.07905 + 37.6264i −0.0430587 + 1.50146i
\(629\) −51.2555 −2.04369
\(630\) −0.318504 0.327769i −0.0126895 0.0130586i
\(631\) 25.1040 0.999373 0.499687 0.866206i \(-0.333449\pi\)
0.499687 + 0.866206i \(0.333449\pi\)
\(632\) −16.1323 17.5831i −0.641707 0.699418i
\(633\) 18.5215i 0.736163i
\(634\) 13.4075 13.0286i 0.532482 0.517430i
\(635\) 25.7081 1.02019
\(636\) −13.1630 0.377488i −0.521946 0.0149684i
\(637\) 24.4944i 0.970503i
\(638\) 21.3328 20.7298i 0.844572 0.820699i
\(639\) 15.3336i 0.606588i
\(640\) −14.6221 + 11.9470i −0.577990 + 0.472248i
\(641\) 5.40357i 0.213428i −0.994290 0.106714i \(-0.965967\pi\)
0.994290 0.106714i \(-0.0340329\pi\)
\(642\) −6.00022 6.17476i −0.236810 0.243698i
\(643\) 31.7727i 1.25299i −0.779425 0.626496i \(-0.784488\pi\)
0.779425 0.626496i \(-0.215512\pi\)
\(644\) 3.02891 + 0.0868630i 0.119356 + 0.00342288i
\(645\) 5.10528i 0.201020i
\(646\) 5.25461 + 5.40747i 0.206740 + 0.212754i
\(647\) 7.97388 0.313485 0.156743 0.987639i \(-0.449901\pi\)
0.156743 + 0.987639i \(0.449901\pi\)
\(648\) −1.91217 2.08413i −0.0751170 0.0818725i
\(649\) 10.4749i 0.411176i
\(650\) −7.67840 7.90175i −0.301172 0.309932i
\(651\) −1.59473 −0.0625025
\(652\) −17.6100 0.505018i −0.689659 0.0197780i
\(653\) 6.30282i 0.246648i 0.992366 + 0.123324i \(0.0393555\pi\)
−0.992366 + 0.123324i \(0.960644\pi\)
\(654\) 18.9373 + 19.4881i 0.740505 + 0.762046i
\(655\) 19.4447 0.759766
\(656\) −0.171028 + 2.97941i −0.00667750 + 0.116326i
\(657\) 5.05518 0.197221
\(658\) −0.436819 0.449526i −0.0170290 0.0175243i
\(659\) 35.5318i 1.38412i −0.721839 0.692061i \(-0.756703\pi\)
0.721839 0.692061i \(-0.243297\pi\)
\(660\) 18.1212 + 0.519679i 0.705366 + 0.0202285i
\(661\) 21.8745i 0.850821i 0.905001 + 0.425410i \(0.139870\pi\)
−0.905001 + 0.425410i \(0.860130\pi\)
\(662\) −27.7418 + 26.9576i −1.07821 + 1.04774i
\(663\) 16.3152i 0.633631i
\(664\) 16.9423 15.5444i 0.657490 0.603239i
\(665\) −0.371532 −0.0144074
\(666\) 11.2095 10.8926i 0.434359 0.422081i
\(667\) 30.3022i 1.17331i
\(668\) 43.0263 + 1.23391i 1.66474 + 0.0477414i
\(669\) 22.7959i 0.881341i
\(670\) −15.0909 + 12.0630i −0.583011 + 0.466034i
\(671\) 9.85939i 0.380618i
\(672\) −0.828018 + 0.717083i −0.0319415 + 0.0276621i
\(673\) 8.87690i 0.342179i −0.985255 0.171090i \(-0.945271\pi\)
0.985255 0.171090i \(-0.0547288\pi\)
\(674\) 5.39982 + 5.55690i 0.207993 + 0.214044i
\(675\) −2.21455 −0.0852380
\(676\) 0.0357401 1.24626i 0.00137462 0.0479329i
\(677\) 36.5029i 1.40292i 0.712708 + 0.701461i \(0.247469\pi\)
−0.712708 + 0.701461i \(0.752531\pi\)
\(678\) 7.41837 + 7.63416i 0.284901 + 0.293188i
\(679\) 1.69181i 0.0649257i
\(680\) −16.1312 + 14.8001i −0.618602 + 0.567559i
\(681\) 3.82420i 0.146544i
\(682\) 45.3659 44.0835i 1.73715 1.68805i
\(683\) 11.0191 0.421636 0.210818 0.977525i \(-0.432387\pi\)
0.210818 + 0.977525i \(0.432387\pi\)
\(684\) −2.29835 0.0659120i −0.0878796 0.00252021i
\(685\) 31.1133 1.18878
\(686\) 2.74210 2.66459i 0.104694 0.101735i
\(687\) 1.55395i 0.0592868i
\(688\) 12.2157 + 0.701218i 0.465718 + 0.0267337i
\(689\) 23.1635 0.882458
\(690\) −13.2445 + 12.8701i −0.504210 + 0.489958i
\(691\) 11.1227i 0.423128i −0.977364 0.211564i \(-0.932144\pi\)
0.977364 0.211564i \(-0.0678556\pi\)
\(692\) −0.602742 + 21.0176i −0.0229128 + 0.798968i
\(693\) 1.05165 0.0399488
\(694\) 23.5062 22.8417i 0.892283 0.867061i
\(695\) 31.7504i 1.20436i
\(696\) −7.40540 8.07139i −0.280701 0.305945i
\(697\) 3.46000i 0.131057i
\(698\) −16.5287 + 16.0615i −0.625620 + 0.607936i
\(699\) 21.8298i 0.825680i
\(700\) −0.0245849 + 0.857275i −0.000929223 + 0.0324020i
\(701\) 9.43721i 0.356438i −0.983991 0.178219i \(-0.942966\pi\)
0.983991 0.178219i \(-0.0570336\pi\)
\(702\) 3.46725 + 3.56811i 0.130863 + 0.134670i
\(703\) 12.7061i 0.479220i
\(704\) 3.73244 43.2881i 0.140672 1.63148i
\(705\) 3.82016 0.143876
\(706\) 14.7343 + 15.1629i 0.554533 + 0.570664i
\(707\) 1.65902i 0.0623940i
\(708\) 3.85580 + 0.110577i 0.144910 + 0.00415572i
\(709\) 14.4592 0.543026 0.271513 0.962435i \(-0.412476\pi\)
0.271513 + 0.962435i \(0.412476\pi\)
\(710\) 25.9555 25.2218i 0.974093 0.946558i
\(711\) 8.43664 0.316399
\(712\) −8.22214 8.96158i −0.308138 0.335849i
\(713\) 64.4401i 2.41330i
\(714\) −0.910779 + 0.885034i −0.0340850 + 0.0331216i
\(715\) −31.8886 −1.19257
\(716\) −0.745331 + 25.9897i −0.0278543 + 0.971280i
\(717\) 8.15401 0.304517
\(718\) 7.92990 + 8.16058i 0.295941 + 0.304550i
\(719\) 14.8761i 0.554784i 0.960757 + 0.277392i \(0.0894700\pi\)
−0.960757 + 0.277392i \(0.910530\pi\)
\(720\) 0.382586 6.66490i 0.0142581 0.248386i
\(721\) 0.0925900i 0.00344823i
\(722\) 17.9299 17.4231i 0.667282 0.648420i
\(723\) 10.2682 0.381880
\(724\) 1.07422 37.4579i 0.0399229 1.39211i
\(725\) −8.57646 −0.318522
\(726\) −18.7600 + 18.2297i −0.696250 + 0.676569i
\(727\) −4.40717 −0.163453 −0.0817265 0.996655i \(-0.526043\pi\)
−0.0817265 + 0.996655i \(0.526043\pi\)
\(728\) 1.41974 1.30260i 0.0526192 0.0482775i
\(729\) 1.00000 0.0370370
\(730\) 8.31512 + 8.55700i 0.307756 + 0.316709i
\(731\) 14.1861 0.524693
\(732\) −3.62923 0.104079i −0.134140 0.00384687i
\(733\) 31.1417i 1.15024i 0.818068 + 0.575122i \(0.195045\pi\)
−0.818068 + 0.575122i \(0.804955\pi\)
\(734\) −16.6491 + 16.1785i −0.614529 + 0.597158i
\(735\) 11.6202i 0.428617i
\(736\) 28.9759 + 33.4586i 1.06807 + 1.23330i
\(737\) 4.29277 44.2477i 0.158126 1.62988i
\(738\) −0.735307 0.756696i −0.0270670 0.0278544i
\(739\) −26.8631 −0.988174 −0.494087 0.869412i \(-0.664498\pi\)
−0.494087 + 0.869412i \(0.664498\pi\)
\(740\) 36.8763 + 1.05754i 1.35560 + 0.0388759i
\(741\) 4.04451 0.148579
\(742\) −1.25652 1.29307i −0.0461284 0.0474702i
\(743\) 16.3190i 0.598685i 0.954146 + 0.299343i \(0.0967674\pi\)
−0.954146 + 0.299343i \(0.903233\pi\)
\(744\) −15.7482 17.1645i −0.577356 0.629280i
\(745\) 16.6843i 0.611265i
\(746\) −13.1746 13.5579i −0.482358 0.496389i
\(747\) 8.12919i 0.297432i
\(748\) 1.44404 50.3536i 0.0527994 1.84111i
\(749\) 1.17887i 0.0430750i
\(750\) −11.8670 12.2122i −0.433322 0.445927i
\(751\) 4.70364i 0.171638i −0.996311 0.0858191i \(-0.972649\pi\)
0.996311 0.0858191i \(-0.0273507\pi\)
\(752\) 0.524705 9.14070i 0.0191340 0.333327i
\(753\) −4.98013 −0.181486
\(754\) 13.4279 + 13.8185i 0.489015 + 0.503240i
\(755\) 7.07453 0.257469
\(756\) 0.0111015 0.387110i 0.000403759 0.0140791i
\(757\) 14.9276i 0.542551i 0.962502 + 0.271276i \(0.0874455\pi\)
−0.962502 + 0.271276i \(0.912555\pi\)
\(758\) 17.2013 16.7151i 0.624779 0.607119i
\(759\) 42.4951i 1.54247i
\(760\) −3.66892 3.99888i −0.133086 0.145054i
\(761\) 51.6472 1.87221 0.936106 0.351719i \(-0.114403\pi\)
0.936106 + 0.351719i \(0.114403\pi\)
\(762\) 15.1812 + 15.6228i 0.549956 + 0.565954i
\(763\) 3.72063i 0.134696i
\(764\) 0.622355 21.7015i 0.0225160 0.785132i
\(765\) 7.73998i 0.279840i
\(766\) 4.39759 4.27328i 0.158891 0.154400i
\(767\) −6.78522 −0.245000
\(768\) −15.8949 1.83087i −0.573558 0.0660658i
\(769\) 5.35055i 0.192946i −0.995336 0.0964729i \(-0.969244\pi\)
0.995336 0.0964729i \(-0.0307561\pi\)
\(770\) 1.72983 + 1.78015i 0.0623387 + 0.0641520i
\(771\) 11.1659 0.402132