Properties

Label 804.2.e.a.535.2
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.2
Character \(\chi\) = 804.535
Dual form 804.2.e.a.535.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.41091 + 0.0966035i) q^{2} -1.00000 q^{3} +(1.98134 - 0.272598i) q^{4} +2.83991i q^{5} +(1.41091 - 0.0966035i) q^{6} +0.830707 q^{7} +(-2.76915 + 0.576015i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(-1.41091 + 0.0966035i) q^{2} -1.00000 q^{3} +(1.98134 - 0.272598i) q^{4} +2.83991i q^{5} +(1.41091 - 0.0966035i) q^{6} +0.830707 q^{7} +(-2.76915 + 0.576015i) q^{8} +1.00000 q^{9} +(-0.274345 - 4.00685i) q^{10} +3.46355 q^{11} +(-1.98134 + 0.272598i) q^{12} +0.104361i q^{13} +(-1.17205 + 0.0802492i) q^{14} -2.83991i q^{15} +(3.85138 - 1.08021i) q^{16} +4.98563 q^{17} +(-1.41091 + 0.0966035i) q^{18} -5.61991i q^{19} +(0.774152 + 5.62681i) q^{20} -0.830707 q^{21} +(-4.88675 + 0.334590i) q^{22} +7.10115i q^{23} +(2.76915 - 0.576015i) q^{24} -3.06507 q^{25} +(-0.0100817 - 0.147244i) q^{26} -1.00000 q^{27} +(1.64591 - 0.226449i) q^{28} -0.746108 q^{29} +(0.274345 + 4.00685i) q^{30} -2.40557 q^{31} +(-5.32960 + 1.89614i) q^{32} -3.46355 q^{33} +(-7.03427 + 0.481629i) q^{34} +2.35913i q^{35} +(1.98134 - 0.272598i) q^{36} +0.364230 q^{37} +(0.542903 + 7.92918i) q^{38} -0.104361i q^{39} +(-1.63583 - 7.86414i) q^{40} -9.73143i q^{41} +(1.17205 - 0.0802492i) q^{42} +11.3309 q^{43} +(6.86244 - 0.944154i) q^{44} +2.83991i q^{45} +(-0.685996 - 10.0191i) q^{46} +3.75302i q^{47} +(-3.85138 + 1.08021i) q^{48} -6.30993 q^{49} +(4.32454 - 0.296097i) q^{50} -4.98563 q^{51} +(0.0284486 + 0.206775i) q^{52} +6.44190i q^{53} +(1.41091 - 0.0966035i) q^{54} +9.83615i q^{55} +(-2.30036 + 0.478500i) q^{56} +5.61991i q^{57} +(1.05269 - 0.0720766i) q^{58} +14.0828i q^{59} +(-0.774152 - 5.62681i) q^{60} +8.51998i q^{61} +(3.39404 - 0.232386i) q^{62} +0.830707 q^{63} +(7.33641 - 3.19015i) q^{64} -0.296376 q^{65} +(4.88675 - 0.334590i) q^{66} +(-3.84069 + 7.22836i) q^{67} +(9.87820 - 1.35907i) q^{68} -7.10115i q^{69} +(-0.227900 - 3.32852i) q^{70} -6.72717i q^{71} +(-2.76915 + 0.576015i) q^{72} +14.6886 q^{73} +(-0.513895 + 0.0351858i) q^{74} +3.06507 q^{75} +(-1.53197 - 11.1349i) q^{76} +2.87719 q^{77} +(0.0100817 + 0.147244i) q^{78} -2.89902 q^{79} +(3.06771 + 10.9376i) q^{80} +1.00000 q^{81} +(0.940090 + 13.7302i) q^{82} +12.2117i q^{83} +(-1.64591 + 0.226449i) q^{84} +14.1587i q^{85} +(-15.9869 + 1.09460i) q^{86} +0.746108 q^{87} +(-9.59109 + 1.99505i) q^{88} +0.183921 q^{89} +(-0.274345 - 4.00685i) q^{90} +0.0866936i q^{91} +(1.93576 + 14.0698i) q^{92} +2.40557 q^{93} +(-0.362555 - 5.29517i) q^{94} +15.9600 q^{95} +(5.32960 - 1.89614i) q^{96} -11.8227i q^{97} +(8.90274 - 0.609561i) q^{98} +3.46355 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} - 6q^{10} - 2q^{12} - 4q^{14} + 2q^{16} + 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} - 34q^{27} + 8q^{28} - 16q^{29} + 6q^{30} + 4q^{31} + 2q^{36} + 12q^{37} - 26q^{38} - 18q^{40} + 4q^{42} + 4q^{43} - 26q^{44} + 4q^{46} - 2q^{48} + 46q^{49} + 18q^{50} - 32q^{52} + 14q^{56} - 4q^{58} - 12q^{60} - 2q^{62} - 4q^{63} + 26q^{64} + 8q^{66} + 18q^{67} - 34q^{68} - 56q^{70} + 6q^{72} + 12q^{73} - 22q^{74} + 34q^{75} - 32q^{76} - 8q^{77} - 10q^{78} + 12q^{79} + 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} + 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} - 32q^{94} + 40q^{95} + 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41091 + 0.0966035i −0.997664 + 0.0683090i
\(3\) −1.00000 −0.577350
\(4\) 1.98134 0.272598i 0.990668 0.136299i
\(5\) 2.83991i 1.27005i 0.772494 + 0.635023i \(0.219009\pi\)
−0.772494 + 0.635023i \(0.780991\pi\)
\(6\) 1.41091 0.0966035i 0.576002 0.0394382i
\(7\) 0.830707 0.313978 0.156989 0.987600i \(-0.449821\pi\)
0.156989 + 0.987600i \(0.449821\pi\)
\(8\) −2.76915 + 0.576015i −0.979043 + 0.203652i
\(9\) 1.00000 0.333333
\(10\) −0.274345 4.00685i −0.0867555 1.26708i
\(11\) 3.46355 1.04430 0.522149 0.852854i \(-0.325130\pi\)
0.522149 + 0.852854i \(0.325130\pi\)
\(12\) −1.98134 + 0.272598i −0.571962 + 0.0786922i
\(13\) 0.104361i 0.0289446i 0.999895 + 0.0144723i \(0.00460684\pi\)
−0.999895 + 0.0144723i \(0.995393\pi\)
\(14\) −1.17205 + 0.0802492i −0.313244 + 0.0214475i
\(15\) 2.83991i 0.733261i
\(16\) 3.85138 1.08021i 0.962845 0.270054i
\(17\) 4.98563 1.20919 0.604596 0.796532i \(-0.293335\pi\)
0.604596 + 0.796532i \(0.293335\pi\)
\(18\) −1.41091 + 0.0966035i −0.332555 + 0.0227697i
\(19\) 5.61991i 1.28930i −0.764480 0.644648i \(-0.777004\pi\)
0.764480 0.644648i \(-0.222996\pi\)
\(20\) 0.774152 + 5.62681i 0.173106 + 1.25819i
\(21\) −0.830707 −0.181275
\(22\) −4.88675 + 0.334590i −1.04186 + 0.0713349i
\(23\) 7.10115i 1.48069i 0.672225 + 0.740347i \(0.265339\pi\)
−0.672225 + 0.740347i \(0.734661\pi\)
\(24\) 2.76915 0.576015i 0.565251 0.117579i
\(25\) −3.06507 −0.613014
\(26\) −0.0100817 0.147244i −0.00197718 0.0288770i
\(27\) −1.00000 −0.192450
\(28\) 1.64591 0.226449i 0.311048 0.0427948i
\(29\) −0.746108 −0.138549 −0.0692744 0.997598i \(-0.522068\pi\)
−0.0692744 + 0.997598i \(0.522068\pi\)
\(30\) 0.274345 + 4.00685i 0.0500883 + 0.731548i
\(31\) −2.40557 −0.432053 −0.216026 0.976388i \(-0.569310\pi\)
−0.216026 + 0.976388i \(0.569310\pi\)
\(32\) −5.32960 + 1.89614i −0.942149 + 0.335194i
\(33\) −3.46355 −0.602926
\(34\) −7.03427 + 0.481629i −1.20637 + 0.0825986i
\(35\) 2.35913i 0.398766i
\(36\) 1.98134 0.272598i 0.330223 0.0454329i
\(37\) 0.364230 0.0598790 0.0299395 0.999552i \(-0.490469\pi\)
0.0299395 + 0.999552i \(0.490469\pi\)
\(38\) 0.542903 + 7.92918i 0.0880704 + 1.28628i
\(39\) 0.104361i 0.0167112i
\(40\) −1.63583 7.86414i −0.258647 1.24343i
\(41\) 9.73143i 1.51979i −0.650043 0.759897i \(-0.725249\pi\)
0.650043 0.759897i \(-0.274751\pi\)
\(42\) 1.17205 0.0802492i 0.180852 0.0123827i
\(43\) 11.3309 1.72795 0.863974 0.503537i \(-0.167968\pi\)
0.863974 + 0.503537i \(0.167968\pi\)
\(44\) 6.86244 0.944154i 1.03455 0.142337i
\(45\) 2.83991i 0.423348i
\(46\) −0.685996 10.0191i −0.101145 1.47723i
\(47\) 3.75302i 0.547434i 0.961810 + 0.273717i \(0.0882532\pi\)
−0.961810 + 0.273717i \(0.911747\pi\)
\(48\) −3.85138 + 1.08021i −0.555899 + 0.155916i
\(49\) −6.30993 −0.901418
\(50\) 4.32454 0.296097i 0.611583 0.0418744i
\(51\) −4.98563 −0.698127
\(52\) 0.0284486 + 0.206775i 0.00394511 + 0.0286745i
\(53\) 6.44190i 0.884863i 0.896802 + 0.442431i \(0.145884\pi\)
−0.896802 + 0.442431i \(0.854116\pi\)
\(54\) 1.41091 0.0966035i 0.192001 0.0131461i
\(55\) 9.83615i 1.32631i
\(56\) −2.30036 + 0.478500i −0.307398 + 0.0639422i
\(57\) 5.61991i 0.744375i
\(58\) 1.05269 0.0720766i 0.138225 0.00946412i
\(59\) 14.0828i 1.83342i 0.399554 + 0.916710i \(0.369165\pi\)
−0.399554 + 0.916710i \(0.630835\pi\)
\(60\) −0.774152 5.62681i −0.0999426 0.726418i
\(61\) 8.51998i 1.09087i 0.838152 + 0.545436i \(0.183636\pi\)
−0.838152 + 0.545436i \(0.816364\pi\)
\(62\) 3.39404 0.232386i 0.431043 0.0295131i
\(63\) 0.830707 0.104659
\(64\) 7.33641 3.19015i 0.917052 0.398768i
\(65\) −0.296376 −0.0367609
\(66\) 4.88675 0.334590i 0.601518 0.0411852i
\(67\) −3.84069 + 7.22836i −0.469214 + 0.883084i
\(68\) 9.87820 1.35907i 1.19791 0.164811i
\(69\) 7.10115i 0.854879i
\(70\) −0.227900 3.32852i −0.0272393 0.397835i
\(71\) 6.72717i 0.798368i −0.916871 0.399184i \(-0.869293\pi\)
0.916871 0.399184i \(-0.130707\pi\)
\(72\) −2.76915 + 0.576015i −0.326348 + 0.0678840i
\(73\) 14.6886 1.71917 0.859587 0.510990i \(-0.170721\pi\)
0.859587 + 0.510990i \(0.170721\pi\)
\(74\) −0.513895 + 0.0351858i −0.0597391 + 0.00409027i
\(75\) 3.06507 0.353924
\(76\) −1.53197 11.1349i −0.175729 1.27726i
\(77\) 2.87719 0.327886
\(78\) 0.0100817 + 0.147244i 0.00114152 + 0.0166721i
\(79\) −2.89902 −0.326166 −0.163083 0.986612i \(-0.552144\pi\)
−0.163083 + 0.986612i \(0.552144\pi\)
\(80\) 3.06771 + 10.9376i 0.342980 + 1.22286i
\(81\) 1.00000 0.111111
\(82\) 0.940090 + 13.7302i 0.103816 + 1.51624i
\(83\) 12.2117i 1.34041i 0.742176 + 0.670205i \(0.233794\pi\)
−0.742176 + 0.670205i \(0.766206\pi\)
\(84\) −1.64591 + 0.226449i −0.179583 + 0.0247076i
\(85\) 14.1587i 1.53573i
\(86\) −15.9869 + 1.09460i −1.72391 + 0.118034i
\(87\) 0.746108 0.0799912
\(88\) −9.59109 + 1.99505i −1.02241 + 0.212673i
\(89\) 0.183921 0.0194956 0.00974781 0.999952i \(-0.496897\pi\)
0.00974781 + 0.999952i \(0.496897\pi\)
\(90\) −0.274345 4.00685i −0.0289185 0.422359i
\(91\) 0.0866936i 0.00908796i
\(92\) 1.93576 + 14.0698i 0.201817 + 1.46687i
\(93\) 2.40557 0.249446
\(94\) −0.362555 5.29517i −0.0373947 0.546155i
\(95\) 15.9600 1.63746
\(96\) 5.32960 1.89614i 0.543950 0.193524i
\(97\) 11.8227i 1.20042i −0.799843 0.600209i \(-0.795084\pi\)
0.799843 0.600209i \(-0.204916\pi\)
\(98\) 8.90274 0.609561i 0.899312 0.0615749i
\(99\) 3.46355 0.348099
\(100\) −6.07294 + 0.835531i −0.607294 + 0.0835531i
\(101\) 6.95362i 0.691911i −0.938251 0.345956i \(-0.887555\pi\)
0.938251 0.345956i \(-0.112445\pi\)
\(102\) 7.03427 0.481629i 0.696497 0.0476884i
\(103\) 9.83657i 0.969226i 0.874729 + 0.484613i \(0.161040\pi\)
−0.874729 + 0.484613i \(0.838960\pi\)
\(104\) −0.0601136 0.288992i −0.00589462 0.0283380i
\(105\) 2.35913i 0.230228i
\(106\) −0.622310 9.08894i −0.0604441 0.882796i
\(107\) 2.81620i 0.272253i 0.990691 + 0.136126i \(0.0434653\pi\)
−0.990691 + 0.136126i \(0.956535\pi\)
\(108\) −1.98134 + 0.272598i −0.190654 + 0.0262307i
\(109\) 12.0217i 1.15147i 0.817637 + 0.575733i \(0.195283\pi\)
−0.817637 + 0.575733i \(0.804717\pi\)
\(110\) −0.950206 13.8779i −0.0905986 1.32321i
\(111\) −0.364230 −0.0345711
\(112\) 3.19937 0.897342i 0.302312 0.0847909i
\(113\) 0.369820i 0.0347898i −0.999849 0.0173949i \(-0.994463\pi\)
0.999849 0.0173949i \(-0.00553724\pi\)
\(114\) −0.542903 7.92918i −0.0508475 0.742636i
\(115\) −20.1666 −1.88055
\(116\) −1.47829 + 0.203387i −0.137256 + 0.0188840i
\(117\) 0.104361i 0.00964820i
\(118\) −1.36044 19.8695i −0.125239 1.82914i
\(119\) 4.14160 0.379659
\(120\) 1.63583 + 7.86414i 0.149330 + 0.717894i
\(121\) 0.996145 0.0905586
\(122\) −0.823060 12.0209i −0.0745163 1.08832i
\(123\) 9.73143i 0.877454i
\(124\) −4.76624 + 0.655752i −0.428021 + 0.0588883i
\(125\) 5.49502i 0.491489i
\(126\) −1.17205 + 0.0802492i −0.104415 + 0.00714917i
\(127\) 3.14382i 0.278969i −0.990224 0.139484i \(-0.955455\pi\)
0.990224 0.139484i \(-0.0445445\pi\)
\(128\) −10.0428 + 5.20973i −0.887670 + 0.460480i
\(129\) −11.3309 −0.997631
\(130\) 0.418160 0.0286310i 0.0366751 0.00251110i
\(131\) 6.23500i 0.544754i −0.962191 0.272377i \(-0.912190\pi\)
0.962191 0.272377i \(-0.0878098\pi\)
\(132\) −6.86244 + 0.944154i −0.597299 + 0.0821781i
\(133\) 4.66850i 0.404810i
\(134\) 4.72058 10.5696i 0.407796 0.913073i
\(135\) 2.83991i 0.244420i
\(136\) −13.8060 + 2.87179i −1.18385 + 0.246254i
\(137\) 0.00820934i 0.000701371i 1.00000 0.000350686i \(0.000111627\pi\)
−1.00000 0.000350686i \(0.999888\pi\)
\(138\) 0.685996 + 10.0191i 0.0583959 + 0.852882i
\(139\) 14.5052 1.23031 0.615157 0.788404i \(-0.289092\pi\)
0.615157 + 0.788404i \(0.289092\pi\)
\(140\) 0.643094 + 4.67423i 0.0543513 + 0.395045i
\(141\) 3.75302i 0.316061i
\(142\) 0.649868 + 9.49143i 0.0545357 + 0.796503i
\(143\) 0.361460i 0.0302268i
\(144\) 3.85138 1.08021i 0.320948 0.0900179i
\(145\) 2.11888i 0.175963i
\(146\) −20.7243 + 1.41897i −1.71516 + 0.117435i
\(147\) 6.30993 0.520434
\(148\) 0.721661 0.0992881i 0.0593202 0.00816143i
\(149\) −17.3042 −1.41762 −0.708810 0.705400i \(-0.750767\pi\)
−0.708810 + 0.705400i \(0.750767\pi\)
\(150\) −4.32454 + 0.296097i −0.353097 + 0.0241762i
\(151\) 1.50526i 0.122496i −0.998123 0.0612480i \(-0.980492\pi\)
0.998123 0.0612480i \(-0.0195081\pi\)
\(152\) 3.23715 + 15.5624i 0.262567 + 1.26228i
\(153\) 4.98563 0.403064
\(154\) −4.05946 + 0.277947i −0.327121 + 0.0223976i
\(155\) 6.83159i 0.548726i
\(156\) −0.0284486 0.206775i −0.00227771 0.0165552i
\(157\) −18.4737 −1.47436 −0.737181 0.675695i \(-0.763843\pi\)
−0.737181 + 0.675695i \(0.763843\pi\)
\(158\) 4.09026 0.280056i 0.325404 0.0222800i
\(159\) 6.44190i 0.510876i
\(160\) −5.38487 15.1356i −0.425711 1.19657i
\(161\) 5.89898i 0.464905i
\(162\) −1.41091 + 0.0966035i −0.110852 + 0.00758989i
\(163\) 5.89228i 0.461519i −0.973011 0.230760i \(-0.925879\pi\)
0.973011 0.230760i \(-0.0741211\pi\)
\(164\) −2.65277 19.2812i −0.207146 1.50561i
\(165\) 9.83615i 0.765743i
\(166\) −1.17969 17.2296i −0.0915621 1.33728i
\(167\) 16.4590i 1.27364i −0.771014 0.636818i \(-0.780250\pi\)
0.771014 0.636818i \(-0.219750\pi\)
\(168\) 2.30036 0.478500i 0.177476 0.0369170i
\(169\) 12.9891 0.999162
\(170\) −1.36778 19.9767i −0.104904 1.53214i
\(171\) 5.61991i 0.429765i
\(172\) 22.4503 3.08878i 1.71182 0.235517i
\(173\) −20.5170 −1.55988 −0.779939 0.625856i \(-0.784750\pi\)
−0.779939 + 0.625856i \(0.784750\pi\)
\(174\) −1.05269 + 0.0720766i −0.0798043 + 0.00546411i
\(175\) −2.54618 −0.192473
\(176\) 13.3394 3.74137i 1.00550 0.282017i
\(177\) 14.0828i 1.05853i
\(178\) −0.259497 + 0.0177674i −0.0194501 + 0.00133173i
\(179\) 1.77927 0.132989 0.0664946 0.997787i \(-0.478818\pi\)
0.0664946 + 0.997787i \(0.478818\pi\)
\(180\) 0.774152 + 5.62681i 0.0577019 + 0.419398i
\(181\) 6.31217 0.469180 0.234590 0.972094i \(-0.424625\pi\)
0.234590 + 0.972094i \(0.424625\pi\)
\(182\) −0.00837490 0.122317i −0.000620789 0.00906673i
\(183\) 8.51998i 0.629815i
\(184\) −4.09037 19.6642i −0.301546 1.44966i
\(185\) 1.03438i 0.0760490i
\(186\) −3.39404 + 0.232386i −0.248863 + 0.0170394i
\(187\) 17.2679 1.26276
\(188\) 1.02306 + 7.43599i 0.0746146 + 0.542325i
\(189\) −0.830707 −0.0604251
\(190\) −22.5181 + 1.54179i −1.63364 + 0.111853i
\(191\) −6.88525 −0.498199 −0.249100 0.968478i \(-0.580135\pi\)
−0.249100 + 0.968478i \(0.580135\pi\)
\(192\) −7.33641 + 3.19015i −0.529460 + 0.230229i
\(193\) 4.52451 0.325681 0.162841 0.986652i \(-0.447934\pi\)
0.162841 + 0.986652i \(0.447934\pi\)
\(194\) 1.14212 + 16.6808i 0.0819993 + 1.19761i
\(195\) 0.296376 0.0212239
\(196\) −12.5021 + 1.72007i −0.893006 + 0.122862i
\(197\) 18.2568i 1.30074i −0.759616 0.650372i \(-0.774613\pi\)
0.759616 0.650372i \(-0.225387\pi\)
\(198\) −4.88675 + 0.334590i −0.347286 + 0.0237783i
\(199\) 21.1744i 1.50102i −0.660862 0.750508i \(-0.729809\pi\)
0.660862 0.750508i \(-0.270191\pi\)
\(200\) 8.48765 1.76553i 0.600168 0.124842i
\(201\) 3.84069 7.22836i 0.270901 0.509849i
\(202\) 0.671744 + 9.81094i 0.0472638 + 0.690295i
\(203\) −0.619797 −0.0435012
\(204\) −9.87820 + 1.35907i −0.691612 + 0.0951539i
\(205\) 27.6364 1.93021
\(206\) −0.950247 13.8785i −0.0662068 0.966962i
\(207\) 7.10115i 0.493564i
\(208\) 0.112733 + 0.401935i 0.00781659 + 0.0278692i
\(209\) 19.4648i 1.34641i
\(210\) 0.227900 + 3.32852i 0.0157266 + 0.229690i
\(211\) 1.55196i 0.106841i −0.998572 0.0534206i \(-0.982988\pi\)
0.998572 0.0534206i \(-0.0170124\pi\)
\(212\) 1.75605 + 12.7636i 0.120606 + 0.876605i
\(213\) 6.72717i 0.460938i
\(214\) −0.272055 3.97341i −0.0185973 0.271617i
\(215\) 32.1787i 2.19457i
\(216\) 2.76915 0.576015i 0.188417 0.0391928i
\(217\) −1.99832 −0.135655
\(218\) −1.16133 16.9615i −0.0786555 1.14878i
\(219\) −14.6886 −0.992565
\(220\) 2.68131 + 19.4887i 0.180774 + 1.31393i
\(221\) 0.520306i 0.0349996i
\(222\) 0.513895 0.0351858i 0.0344904 0.00236152i
\(223\) 22.1951i 1.48629i −0.669130 0.743146i \(-0.733333\pi\)
0.669130 0.743146i \(-0.266667\pi\)
\(224\) −4.42734 + 1.57514i −0.295814 + 0.105243i
\(225\) −3.06507 −0.204338
\(226\) 0.0357259 + 0.521783i 0.00237645 + 0.0347085i
\(227\) 0.0721997i 0.00479206i 0.999997 + 0.00239603i \(0.000762681\pi\)
−0.999997 + 0.00239603i \(0.999237\pi\)
\(228\) 1.53197 + 11.1349i 0.101457 + 0.737428i
\(229\) 13.6233i 0.900253i 0.892965 + 0.450126i \(0.148621\pi\)
−0.892965 + 0.450126i \(0.851379\pi\)
\(230\) 28.4533 1.94817i 1.87615 0.128458i
\(231\) −2.87719 −0.189305
\(232\) 2.06609 0.429769i 0.135645 0.0282157i
\(233\) 5.76544i 0.377707i 0.982005 + 0.188853i \(0.0604771\pi\)
−0.982005 + 0.188853i \(0.939523\pi\)
\(234\) −0.0100817 0.147244i −0.000659058 0.00962566i
\(235\) −10.6582 −0.695266
\(236\) 3.83893 + 27.9027i 0.249893 + 1.81631i
\(237\) 2.89902 0.188312
\(238\) −5.84342 + 0.400093i −0.378773 + 0.0259341i
\(239\) −11.4371 −0.739805 −0.369902 0.929071i \(-0.620609\pi\)
−0.369902 + 0.929071i \(0.620609\pi\)
\(240\) −3.06771 10.9376i −0.198020 0.706017i
\(241\) −6.96353 −0.448560 −0.224280 0.974525i \(-0.572003\pi\)
−0.224280 + 0.974525i \(0.572003\pi\)
\(242\) −1.40547 + 0.0962310i −0.0903471 + 0.00618596i
\(243\) −1.00000 −0.0641500
\(244\) 2.32253 + 16.8809i 0.148685 + 1.08069i
\(245\) 17.9196i 1.14484i
\(246\) −0.940090 13.7302i −0.0599380 0.875404i
\(247\) 0.586500 0.0373181
\(248\) 6.66138 1.38564i 0.422998 0.0879884i
\(249\) 12.2117i 0.773886i
\(250\) −0.530838 7.75297i −0.0335731 0.490341i
\(251\) 14.7090 0.928422 0.464211 0.885725i \(-0.346338\pi\)
0.464211 + 0.885725i \(0.346338\pi\)
\(252\) 1.64591 0.226449i 0.103683 0.0142649i
\(253\) 24.5952i 1.54628i
\(254\) 0.303704 + 4.43565i 0.0190561 + 0.278317i
\(255\) 14.1587i 0.886653i
\(256\) 13.6663 8.32064i 0.854142 0.520040i
\(257\) −9.81479 −0.612230 −0.306115 0.951995i \(-0.599029\pi\)
−0.306115 + 0.951995i \(0.599029\pi\)
\(258\) 15.9869 1.09460i 0.995301 0.0681471i
\(259\) 0.302568 0.0188007
\(260\) −0.587221 + 0.0807914i −0.0364179 + 0.00501047i
\(261\) −0.746108 −0.0461829
\(262\) 0.602322 + 8.79702i 0.0372116 + 0.543482i
\(263\) 3.55540i 0.219235i 0.993974 + 0.109618i \(0.0349626\pi\)
−0.993974 + 0.109618i \(0.965037\pi\)
\(264\) 9.59109 1.99505i 0.590291 0.122787i
\(265\) −18.2944 −1.12382
\(266\) 0.450993 + 6.58683i 0.0276522 + 0.403865i
\(267\) −0.183921 −0.0112558
\(268\) −5.63925 + 15.3688i −0.344472 + 0.938796i
\(269\) −0.496512 −0.0302729 −0.0151364 0.999885i \(-0.504818\pi\)
−0.0151364 + 0.999885i \(0.504818\pi\)
\(270\) 0.274345 + 4.00685i 0.0166961 + 0.243849i
\(271\) −0.109495 −0.00665132 −0.00332566 0.999994i \(-0.501059\pi\)
−0.00332566 + 0.999994i \(0.501059\pi\)
\(272\) 19.2015 5.38555i 1.16426 0.326547i
\(273\) 0.0866936i 0.00524694i
\(274\) −0.000793051 0.0115826i −4.79099e−5 0.000699733i
\(275\) −10.6160 −0.640170
\(276\) −1.93576 14.0698i −0.116519 0.846901i
\(277\) 24.9675 1.50015 0.750076 0.661352i \(-0.230017\pi\)
0.750076 + 0.661352i \(0.230017\pi\)
\(278\) −20.4655 + 1.40125i −1.22744 + 0.0840415i
\(279\) −2.40557 −0.144018
\(280\) −1.35889 6.53280i −0.0812095 0.390409i
\(281\) 11.6693i 0.696132i −0.937470 0.348066i \(-0.886839\pi\)
0.937470 0.348066i \(-0.113161\pi\)
\(282\) 0.362555 + 5.29517i 0.0215898 + 0.315323i
\(283\) 4.42235i 0.262881i 0.991324 + 0.131441i \(0.0419603\pi\)
−0.991324 + 0.131441i \(0.958040\pi\)
\(284\) −1.83381 13.3288i −0.108817 0.790918i
\(285\) −15.9600 −0.945390
\(286\) −0.0349183 0.509987i −0.00206476 0.0301562i
\(287\) 8.08397i 0.477182i
\(288\) −5.32960 + 1.89614i −0.314050 + 0.111731i
\(289\) 7.85646 0.462145
\(290\) 0.204691 + 2.98955i 0.0120199 + 0.175552i
\(291\) 11.8227i 0.693061i
\(292\) 29.1031 4.00408i 1.70313 0.234321i
\(293\) 20.3159 1.18687 0.593433 0.804883i \(-0.297772\pi\)
0.593433 + 0.804883i \(0.297772\pi\)
\(294\) −8.90274 + 0.609561i −0.519218 + 0.0355503i
\(295\) −39.9937 −2.32853
\(296\) −1.00861 + 0.209802i −0.0586241 + 0.0121945i
\(297\) −3.46355 −0.200975
\(298\) 24.4147 1.67165i 1.41431 0.0968361i
\(299\) −0.741085 −0.0428581
\(300\) 6.07294 0.835531i 0.350621 0.0482394i
\(301\) 9.41267 0.542537
\(302\) 0.145413 + 2.12378i 0.00836758 + 0.122210i
\(303\) 6.95362i 0.399475i
\(304\) −6.07071 21.6444i −0.348179 1.24139i
\(305\) −24.1960 −1.38546
\(306\) −7.03427 + 0.481629i −0.402122 + 0.0275329i
\(307\) 6.44138i 0.367629i 0.982961 + 0.183815i \(0.0588446\pi\)
−0.982961 + 0.183815i \(0.941155\pi\)
\(308\) 5.70068 0.784316i 0.324827 0.0446905i
\(309\) 9.83657i 0.559583i
\(310\) 0.659955 + 9.63876i 0.0374829 + 0.547445i
\(311\) 12.8429 0.728256 0.364128 0.931349i \(-0.381367\pi\)
0.364128 + 0.931349i \(0.381367\pi\)
\(312\) 0.0601136 + 0.288992i 0.00340326 + 0.0163610i
\(313\) 9.23607i 0.522054i 0.965332 + 0.261027i \(0.0840611\pi\)
−0.965332 + 0.261027i \(0.915939\pi\)
\(314\) 26.0647 1.78462i 1.47092 0.100712i
\(315\) 2.35913i 0.132922i
\(316\) −5.74394 + 0.790267i −0.323122 + 0.0444560i
\(317\) −17.3745 −0.975849 −0.487924 0.872886i \(-0.662246\pi\)
−0.487924 + 0.872886i \(0.662246\pi\)
\(318\) 0.622310 + 9.08894i 0.0348974 + 0.509682i
\(319\) −2.58418 −0.144686
\(320\) 9.05972 + 20.8347i 0.506454 + 1.16470i
\(321\) 2.81620i 0.157185i
\(322\) −0.569862 8.32293i −0.0317572 0.463819i
\(323\) 28.0188i 1.55901i
\(324\) 1.98134 0.272598i 0.110074 0.0151443i
\(325\) 0.319875i 0.0177435i
\(326\) 0.569215 + 8.31348i 0.0315259 + 0.460441i
\(327\) 12.0217i 0.664800i
\(328\) 5.60545 + 26.9478i 0.309509 + 1.48794i
\(329\) 3.11766i 0.171882i
\(330\) 0.950206 + 13.8779i 0.0523071 + 0.763954i
\(331\) 26.4364 1.45307 0.726537 0.687127i \(-0.241128\pi\)
0.726537 + 0.687127i \(0.241128\pi\)
\(332\) 3.32889 + 24.1955i 0.182696 + 1.32790i
\(333\) 0.364230 0.0199597
\(334\) 1.59000 + 23.2222i 0.0870007 + 1.27066i
\(335\) −20.5279 10.9072i −1.12156 0.595924i
\(336\) −3.19937 + 0.897342i −0.174540 + 0.0489540i
\(337\) 27.3713i 1.49101i 0.666502 + 0.745504i \(0.267791\pi\)
−0.666502 + 0.745504i \(0.732209\pi\)
\(338\) −18.3265 + 1.25479i −0.996828 + 0.0682517i
\(339\) 0.369820i 0.0200859i
\(340\) 3.85963 + 28.0532i 0.209318 + 1.52140i
\(341\) −8.33179 −0.451192
\(342\) 0.542903 + 7.92918i 0.0293568 + 0.428761i
\(343\) −11.0567 −0.597003
\(344\) −31.3770 + 6.52677i −1.69174 + 0.351900i
\(345\) 20.1666 1.08573
\(346\) 28.9476 1.98201i 1.55623 0.106554i
\(347\) −29.8369 −1.60173 −0.800863 0.598847i \(-0.795626\pi\)
−0.800863 + 0.598847i \(0.795626\pi\)
\(348\) 1.47829 0.203387i 0.0792447 0.0109027i
\(349\) 30.3983 1.62718 0.813592 0.581437i \(-0.197509\pi\)
0.813592 + 0.581437i \(0.197509\pi\)
\(350\) 3.59243 0.245970i 0.192023 0.0131476i
\(351\) 0.104361i 0.00557039i
\(352\) −18.4593 + 6.56738i −0.983885 + 0.350042i
\(353\) 32.7906i 1.74527i −0.488374 0.872634i \(-0.662410\pi\)
0.488374 0.872634i \(-0.337590\pi\)
\(354\) 1.36044 + 19.8695i 0.0723068 + 1.05605i
\(355\) 19.1045 1.01396
\(356\) 0.364410 0.0501365i 0.0193137 0.00265723i
\(357\) −4.14160 −0.219196
\(358\) −2.51040 + 0.171884i −0.132679 + 0.00908435i
\(359\) 16.1892i 0.854433i −0.904149 0.427217i \(-0.859494\pi\)
0.904149 0.427217i \(-0.140506\pi\)
\(360\) −1.63583 7.86414i −0.0862157 0.414476i
\(361\) −12.5834 −0.662282
\(362\) −8.90591 + 0.609778i −0.468084 + 0.0320492i
\(363\) −0.996145 −0.0522840
\(364\) 0.0236325 + 0.171769i 0.00123868 + 0.00900315i
\(365\) 41.7143i 2.18343i
\(366\) 0.823060 + 12.0209i 0.0430220 + 0.628344i
\(367\) −16.9909 −0.886916 −0.443458 0.896295i \(-0.646249\pi\)
−0.443458 + 0.896295i \(0.646249\pi\)
\(368\) 7.67077 + 27.3493i 0.399867 + 1.42568i
\(369\) 9.73143i 0.506598i
\(370\) −0.0999245 1.45941i −0.00519483 0.0758714i
\(371\) 5.35133i 0.277827i
\(372\) 4.76624 0.655752i 0.247118 0.0339992i
\(373\) 32.1515i 1.66474i 0.554221 + 0.832370i \(0.313016\pi\)
−0.554221 + 0.832370i \(0.686984\pi\)
\(374\) −24.3635 + 1.66814i −1.25981 + 0.0862576i
\(375\) 5.49502i 0.283761i
\(376\) −2.16179 10.3927i −0.111486 0.535962i
\(377\) 0.0778647i 0.00401024i
\(378\) 1.17205 0.0802492i 0.0602839 0.00412757i
\(379\) −2.28842 −0.117548 −0.0587740 0.998271i \(-0.518719\pi\)
−0.0587740 + 0.998271i \(0.518719\pi\)
\(380\) 31.6221 4.35066i 1.62218 0.223184i
\(381\) 3.14382i 0.161063i
\(382\) 9.71447 0.665139i 0.497036 0.0340315i
\(383\) 21.2913 1.08794 0.543968 0.839106i \(-0.316921\pi\)
0.543968 + 0.839106i \(0.316921\pi\)
\(384\) 10.0428 5.20973i 0.512497 0.265858i
\(385\) 8.17096i 0.416431i
\(386\) −6.38367 + 0.437083i −0.324920 + 0.0222469i
\(387\) 11.3309 0.575982
\(388\) −3.22285 23.4248i −0.163615 1.18921i
\(389\) 22.1748 1.12431 0.562154 0.827032i \(-0.309973\pi\)
0.562154 + 0.827032i \(0.309973\pi\)
\(390\) −0.418160 + 0.0286310i −0.0211744 + 0.00144979i
\(391\) 35.4037i 1.79044i
\(392\) 17.4731 3.63461i 0.882527 0.183576i
\(393\) 6.23500i 0.314514i
\(394\) 1.76367 + 25.7587i 0.0888525 + 1.29771i
\(395\) 8.23296i 0.414245i
\(396\) 6.86244 0.944154i 0.344851 0.0474455i
\(397\) −12.5002 −0.627366 −0.313683 0.949528i \(-0.601563\pi\)
−0.313683 + 0.949528i \(0.601563\pi\)
\(398\) 2.04552 + 29.8752i 0.102533 + 1.49751i
\(399\) 4.66850i 0.233717i
\(400\) −11.8048 + 3.31094i −0.590238 + 0.165547i
\(401\) 24.4231i 1.21963i 0.792542 + 0.609817i \(0.208757\pi\)
−0.792542 + 0.609817i \(0.791243\pi\)
\(402\) −4.72058 + 10.5696i −0.235441 + 0.527163i
\(403\) 0.251048i 0.0125056i
\(404\) −1.89554 13.7775i −0.0943067 0.685454i
\(405\) 2.83991i 0.141116i
\(406\) 0.874478 0.0598746i 0.0433996 0.00297152i
\(407\) 1.26153 0.0625315
\(408\) 13.8060 2.87179i 0.683497 0.142175i
\(409\) 32.9066i 1.62713i −0.581475 0.813564i \(-0.697524\pi\)
0.581475 0.813564i \(-0.302476\pi\)
\(410\) −38.9924 + 2.66977i −1.92570 + 0.131850i
\(411\) 0.00820934i 0.000404937i
\(412\) 2.68143 + 19.4895i 0.132104 + 0.960181i
\(413\) 11.6987i 0.575653i
\(414\) −0.685996 10.0191i −0.0337149 0.492411i
\(415\) −34.6802 −1.70238
\(416\) −0.197884 0.556204i −0.00970205 0.0272701i
\(417\) −14.5052 −0.710323
\(418\) 1.88037 + 27.4631i 0.0919718 + 1.34326i
\(419\) 19.9745i 0.975821i −0.872894 0.487910i \(-0.837759\pi\)
0.872894 0.487910i \(-0.162241\pi\)
\(420\) −0.643094 4.67423i −0.0313798 0.228079i
\(421\) −5.63833 −0.274795 −0.137398 0.990516i \(-0.543874\pi\)
−0.137398 + 0.990516i \(0.543874\pi\)
\(422\) 0.149925 + 2.18968i 0.00729822 + 0.106592i
\(423\) 3.75302i 0.182478i
\(424\) −3.71063 17.8386i −0.180204 0.866319i
\(425\) −15.2813 −0.741252
\(426\) −0.649868 9.49143i −0.0314862 0.459861i
\(427\) 7.07761i 0.342510i
\(428\) 0.767691 + 5.57985i 0.0371077 + 0.269712i
\(429\) 0.361460i 0.0174514i
\(430\) −3.10858 45.4013i −0.149909 2.18944i
\(431\) 11.6002i 0.558762i 0.960180 + 0.279381i \(0.0901293\pi\)
−0.960180 + 0.279381i \(0.909871\pi\)
\(432\) −3.85138 + 1.08021i −0.185300 + 0.0519719i
\(433\) 6.11179i 0.293714i −0.989158 0.146857i \(-0.953084\pi\)
0.989158 0.146857i \(-0.0469157\pi\)
\(434\) 2.81945 0.193045i 0.135338 0.00926645i
\(435\) 2.11888i 0.101592i
\(436\) 3.27708 + 23.8190i 0.156944 + 1.14072i
\(437\) 39.9078 1.90905
\(438\) 20.7243 1.41897i 0.990247 0.0678011i
\(439\) 16.3473i 0.780215i −0.920769 0.390108i \(-0.872438\pi\)
0.920769 0.390108i \(-0.127562\pi\)
\(440\) −5.66576 27.2378i −0.270105 1.29851i
\(441\) −6.30993 −0.300473
\(442\) −0.0502634 0.734105i −0.00239078 0.0349178i
\(443\) −17.8111 −0.846232 −0.423116 0.906076i \(-0.639064\pi\)
−0.423116 + 0.906076i \(0.639064\pi\)
\(444\) −0.721661 + 0.0992881i −0.0342485 + 0.00471201i
\(445\) 0.522320i 0.0247603i
\(446\) 2.14412 + 31.3152i 0.101527 + 1.48282i
\(447\) 17.3042 0.818463
\(448\) 6.09441 2.65008i 0.287934 0.125204i
\(449\) 20.4428 0.964753 0.482377 0.875964i \(-0.339774\pi\)
0.482377 + 0.875964i \(0.339774\pi\)
\(450\) 4.32454 0.296097i 0.203861 0.0139581i
\(451\) 33.7053i 1.58712i
\(452\) −0.100812 0.732738i −0.00474180 0.0344651i
\(453\) 1.50526i 0.0707231i
\(454\) −0.00697474 0.101867i −0.000327341 0.00478087i
\(455\) −0.246202 −0.0115421
\(456\) −3.23715 15.5624i −0.151593 0.728775i
\(457\) −16.9087 −0.790953 −0.395477 0.918476i \(-0.629421\pi\)
−0.395477 + 0.918476i \(0.629421\pi\)
\(458\) −1.31606 19.2212i −0.0614953 0.898150i
\(459\) −4.98563 −0.232709
\(460\) −39.9568 + 5.49737i −1.86300 + 0.256316i
\(461\) −18.0955 −0.842792 −0.421396 0.906877i \(-0.638460\pi\)
−0.421396 + 0.906877i \(0.638460\pi\)
\(462\) 4.05946 0.277947i 0.188863 0.0129313i
\(463\) 18.3474 0.852674 0.426337 0.904564i \(-0.359804\pi\)
0.426337 + 0.904564i \(0.359804\pi\)
\(464\) −2.87355 + 0.805957i −0.133401 + 0.0374156i
\(465\) 6.83159i 0.316807i
\(466\) −0.556962 8.13452i −0.0258008 0.376825i
\(467\) 41.0112i 1.89777i −0.315619 0.948886i \(-0.602212\pi\)
0.315619 0.948886i \(-0.397788\pi\)
\(468\) 0.0284486 + 0.206775i 0.00131504 + 0.00955816i
\(469\) −3.19049 + 6.00465i −0.147323 + 0.277269i
\(470\) 15.0378 1.02962i 0.693642 0.0474929i
\(471\) 18.4737 0.851223
\(472\) −8.11188 38.9973i −0.373379 1.79500i
\(473\) 39.2451 1.80449
\(474\) −4.09026 + 0.280056i −0.187872 + 0.0128634i
\(475\) 17.2254i 0.790357i
\(476\) 8.20589 1.12899i 0.376116 0.0517471i
\(477\) 6.44190i 0.294954i
\(478\) 16.1367 1.10486i 0.738077 0.0505353i
\(479\) 23.6762i 1.08179i −0.841089 0.540897i \(-0.818085\pi\)
0.841089 0.540897i \(-0.181915\pi\)
\(480\) 5.38487 + 15.1356i 0.245785 + 0.690841i
\(481\) 0.0380114i 0.00173317i
\(482\) 9.82492 0.672701i 0.447513 0.0306407i
\(483\) 5.89898i 0.268413i
\(484\) 1.97370 0.271547i 0.0897135 0.0123430i
\(485\) 33.5755 1.52458
\(486\) 1.41091 0.0966035i 0.0640002 0.00438202i
\(487\) 32.0323 1.45152 0.725762 0.687946i \(-0.241487\pi\)
0.725762 + 0.687946i \(0.241487\pi\)
\(488\) −4.90764 23.5931i −0.222158 1.06801i
\(489\) 5.89228i 0.266458i
\(490\) 1.73110 + 25.2829i 0.0782029 + 1.14217i
\(491\) 11.5070i 0.519303i 0.965702 + 0.259652i \(0.0836077\pi\)
−0.965702 + 0.259652i \(0.916392\pi\)
\(492\) 2.65277 + 19.2812i 0.119596 + 0.869265i
\(493\) −3.71981 −0.167532
\(494\) −0.827499 + 0.0566580i −0.0372310 + 0.00254916i
\(495\) 9.83615i 0.442102i
\(496\) −9.26476 + 2.59853i −0.416000 + 0.116677i
\(497\) 5.58831i 0.250670i
\(498\) 1.17969 + 17.2296i 0.0528634 + 0.772079i
\(499\) 14.7809 0.661682 0.330841 0.943686i \(-0.392668\pi\)
0.330841 + 0.943686i \(0.392668\pi\)
\(500\) 1.49793 + 10.8875i 0.0669894 + 0.486902i
\(501\) 16.4590i 0.735334i
\(502\) −20.7530 + 1.42094i −0.926253 + 0.0634195i
\(503\) 37.0722 1.65297 0.826485 0.562959i \(-0.190337\pi\)
0.826485 + 0.562959i \(0.190337\pi\)
\(504\) −2.30036 + 0.478500i −0.102466 + 0.0213141i
\(505\) 19.7476 0.878759
\(506\) −2.37598 34.7016i −0.105625 1.54267i
\(507\) −12.9891 −0.576867
\(508\) −0.856998 6.22896i −0.0380231 0.276366i
\(509\) 41.4570 1.83755 0.918774 0.394783i \(-0.129180\pi\)
0.918774 + 0.394783i \(0.129180\pi\)
\(510\) 1.36778 + 19.9767i 0.0605664 + 0.884582i
\(511\) 12.2019 0.539782
\(512\) −18.4781 + 13.0599i −0.816624 + 0.577171i
\(513\) 5.61991i 0.248125i
\(514\) 13.8478 0.948143i 0.610800 0.0418208i
\(515\) −27.9349 −1.23096
\(516\) −22.4503 + 3.08878i −0.988321 + 0.135976i
\(517\) 12.9987i 0.571684i
\(518\) −0.426897 + 0.0292291i −0.0187568 + 0.00128425i
\(519\) 20.5170 0.900596
\(520\) 0.820711 0.170717i 0.0359905 0.00748644i
\(521\) 22.0083i 0.964199i −0.876116 0.482100i \(-0.839874\pi\)
0.876116 0.482100i \(-0.160126\pi\)
\(522\) 1.05269 0.0720766i 0.0460750 0.00315471i
\(523\) 12.1900i 0.533032i −0.963830 0.266516i \(-0.914127\pi\)
0.963830 0.266516i \(-0.0858725\pi\)
\(524\) −1.69965 12.3536i −0.0742493 0.539670i
\(525\) 2.54618 0.111124
\(526\) −0.343464 5.01635i −0.0149757 0.218723i
\(527\) −11.9933 −0.522435
\(528\) −13.3394 + 3.74137i −0.580524 + 0.162822i
\(529\) −27.4264 −1.19245
\(530\) 25.8117 1.76730i 1.12119 0.0767667i
\(531\) 14.0828i 0.611140i
\(532\) −1.27262 9.24986i −0.0551751 0.401032i
\(533\) 1.01558 0.0439898
\(534\) 0.259497 0.0177674i 0.0112295 0.000768873i
\(535\) −7.99776 −0.345773
\(536\) 6.47181 22.2287i 0.279539 0.960134i
\(537\) −1.77927 −0.0767813
\(538\) 0.700534 0.0479648i 0.0302022 0.00206791i
\(539\) −21.8547 −0.941349
\(540\) −0.774152 5.62681i −0.0333142 0.242139i
\(541\) 43.1784i 1.85639i −0.372100 0.928193i \(-0.621362\pi\)
0.372100 0.928193i \(-0.378638\pi\)
\(542\) 0.154487 0.0105776i 0.00663578 0.000454345i
\(543\) −6.31217 −0.270881
\(544\) −26.5714 + 9.45346i −1.13924 + 0.405314i
\(545\) −34.1404 −1.46241
\(546\) 0.00837490 + 0.122317i 0.000358413 + 0.00523468i
\(547\) −13.8840 −0.593637 −0.296818 0.954934i \(-0.595926\pi\)
−0.296818 + 0.954934i \(0.595926\pi\)
\(548\) 0.00223785 + 0.0162655i 9.55961e−5 + 0.000694826i
\(549\) 8.51998i 0.363624i
\(550\) 14.9782 1.02554i 0.638675 0.0437293i
\(551\) 4.19306i 0.178630i
\(552\) 4.09037 + 19.6642i 0.174098 + 0.836963i
\(553\) −2.40824 −0.102409
\(554\) −35.2269 + 2.41195i −1.49665 + 0.102474i
\(555\) 1.03438i 0.0439069i
\(556\) 28.7397 3.95408i 1.21883 0.167690i
\(557\) 16.7278 0.708779 0.354390 0.935098i \(-0.384689\pi\)
0.354390 + 0.935098i \(0.384689\pi\)
\(558\) 3.39404 0.232386i 0.143681 0.00983769i
\(559\) 1.18251i 0.0500147i
\(560\) 2.54837 + 9.08591i 0.107688 + 0.383950i
\(561\) −17.2679 −0.729053
\(562\) 1.12729 + 16.4643i 0.0475520 + 0.694506i
\(563\) −30.4645 −1.28393 −0.641963 0.766735i \(-0.721880\pi\)
−0.641963 + 0.766735i \(0.721880\pi\)
\(564\) −1.02306 7.43599i −0.0430788 0.313112i
\(565\) 1.05026 0.0441846
\(566\) −0.427214 6.23954i −0.0179572 0.262267i
\(567\) 0.830707 0.0348864
\(568\) 3.87495 + 18.6286i 0.162589 + 0.781637i
\(569\) −25.0671 −1.05087 −0.525434 0.850835i \(-0.676097\pi\)
−0.525434 + 0.850835i \(0.676097\pi\)
\(570\) 22.5181 1.54179i 0.943181 0.0645786i
\(571\) 20.0696i 0.839888i 0.907550 + 0.419944i \(0.137950\pi\)
−0.907550 + 0.419944i \(0.862050\pi\)
\(572\) 0.0985331 + 0.716173i 0.00411988 + 0.0299447i
\(573\) 6.88525 0.287635
\(574\) 0.780940 + 11.4058i 0.0325958 + 0.476067i
\(575\) 21.7656i 0.907686i
\(576\) 7.33641 3.19015i 0.305684 0.132923i
\(577\) 29.8943i 1.24452i −0.782812 0.622258i \(-0.786215\pi\)
0.782812 0.622258i \(-0.213785\pi\)
\(578\) −11.0848 + 0.758962i −0.461065 + 0.0315686i
\(579\) −4.52451 −0.188032
\(580\) −0.577601 4.19821i −0.0239836 0.174321i
\(581\) 10.1444i 0.420859i
\(582\) −1.14212 16.6808i −0.0473423 0.691442i
\(583\) 22.3118i 0.924061i
\(584\) −40.6750 + 8.46086i −1.68314 + 0.350113i
\(585\) −0.296376 −0.0122536
\(586\) −28.6639 + 1.96259i −1.18409 + 0.0810737i
\(587\) 25.6050 1.05683 0.528416 0.848986i \(-0.322786\pi\)
0.528416 + 0.848986i \(0.322786\pi\)
\(588\) 12.5021 1.72007i 0.515577 0.0709345i
\(589\) 13.5191i 0.557043i
\(590\) 56.4276 3.86353i 2.32309 0.159059i
\(591\) 18.2568i 0.750985i
\(592\) 1.40279 0.393446i 0.0576542 0.0161705i
\(593\) 6.90656i 0.283619i 0.989894 + 0.141809i \(0.0452920\pi\)
−0.989894 + 0.141809i \(0.954708\pi\)
\(594\) 4.88675 0.334590i 0.200506 0.0137284i
\(595\) 11.7617i 0.482185i
\(596\) −34.2855 + 4.71710i −1.40439 + 0.193220i
\(597\) 21.1744i 0.866612i
\(598\) 1.04560 0.0715914i 0.0427579 0.00292759i
\(599\) 29.8357 1.21905 0.609527 0.792766i \(-0.291360\pi\)
0.609527 + 0.792766i \(0.291360\pi\)
\(600\) −8.48765 + 1.76553i −0.346507 + 0.0720773i
\(601\) 13.3621 0.545050 0.272525 0.962149i \(-0.412141\pi\)
0.272525 + 0.962149i \(0.412141\pi\)
\(602\) −13.2804 + 0.909296i −0.541270 + 0.0370602i
\(603\) −3.84069 + 7.22836i −0.156405 + 0.294361i
\(604\) −0.410329 2.98242i −0.0166961 0.121353i
\(605\) 2.82896i 0.115013i
\(606\) −0.671744 9.81094i −0.0272877 0.398542i
\(607\) 24.4502i 0.992404i −0.868207 0.496202i \(-0.834727\pi\)
0.868207 0.496202i \(-0.165273\pi\)
\(608\) 10.6561 + 29.9519i 0.432164 + 1.21471i
\(609\) 0.619797 0.0251155
\(610\) 34.1383 2.33741i 1.38222 0.0946391i
\(611\) −0.391670 −0.0158453
\(612\) 9.87820 1.35907i 0.399302 0.0549371i
\(613\) −20.8511 −0.842168 −0.421084 0.907022i \(-0.638350\pi\)
−0.421084 + 0.907022i \(0.638350\pi\)
\(614\) −0.622260 9.08821i −0.0251124 0.366770i
\(615\) −27.6364 −1.11441
\(616\) −7.96738 + 1.65731i −0.321015 + 0.0667747i
\(617\) −28.9812 −1.16674 −0.583369 0.812207i \(-0.698266\pi\)
−0.583369 + 0.812207i \(0.698266\pi\)
\(618\) 0.950247 + 13.8785i 0.0382245 + 0.558276i
\(619\) 13.8140i 0.555233i 0.960692 + 0.277616i \(0.0895444\pi\)
−0.960692 + 0.277616i \(0.910456\pi\)
\(620\) −1.86227 13.5357i −0.0747908 0.543605i
\(621\) 7.10115i 0.284960i
\(622\) −18.1202 + 1.24067i −0.726555 + 0.0497464i
\(623\) 0.152785 0.00612120
\(624\) −0.112733 0.401935i −0.00451291 0.0160903i
\(625\) −30.9307 −1.23723
\(626\) −0.892237 13.0313i −0.0356609 0.520834i
\(627\) 19.4648i 0.777349i
\(628\) −36.6026 + 5.03589i −1.46060 + 0.200954i
\(629\) 1.81591 0.0724052
\(630\) −0.227900 3.32852i −0.00907977 0.132612i
\(631\) −1.24936 −0.0497364 −0.0248682 0.999691i \(-0.507917\pi\)
−0.0248682 + 0.999691i \(0.507917\pi\)
\(632\) 8.02784 1.66988i 0.319330 0.0664243i
\(633\) 1.55196i 0.0616848i
\(634\) 24.5139 1.67844i 0.973569 0.0666592i
\(635\) 8.92816 0.354303
\(636\) −1.75605 12.7636i −0.0696318 0.506108i
\(637\) 0.658511i 0.0260912i
\(638\) 3.64604 0.249641i 0.144348 0.00988337i
\(639\) 6.72717i 0.266123i
\(640\) −14.7952 28.5207i −0.584830 1.12738i
\(641\) 13.3464i 0.527150i −0.964639 0.263575i \(-0.915098\pi\)
0.964639 0.263575i \(-0.0849017\pi\)
\(642\) 0.272055 + 3.97341i 0.0107372 + 0.156818i
\(643\) 23.2282i 0.916029i −0.888945 0.458015i \(-0.848561\pi\)
0.888945 0.458015i \(-0.151439\pi\)
\(644\) 1.60805 + 11.6879i 0.0633660 + 0.460566i
\(645\) 32.1787i 1.26704i
\(646\) 2.70671 + 39.5319i 0.106494 + 1.55536i
\(647\) −23.7784 −0.934826 −0.467413 0.884039i \(-0.654814\pi\)
−0.467413 + 0.884039i \(0.654814\pi\)
\(648\) −2.76915 + 0.576015i −0.108783 + 0.0226280i
\(649\) 48.7763i 1.91464i
\(650\) 0.0309010 + 0.451314i 0.00121204 + 0.0177020i
\(651\) 1.99832 0.0783204
\(652\) −1.60622 11.6746i −0.0629045 0.457212i
\(653\) 43.6723i 1.70903i 0.519428 + 0.854514i \(0.326145\pi\)
−0.519428 + 0.854514i \(0.673855\pi\)
\(654\) 1.16133 + 16.9615i 0.0454118 + 0.663247i
\(655\) 17.7068 0.691862
\(656\) −10.5120 37.4795i −0.410426 1.46333i
\(657\) 14.6886 0.573058
\(658\) −0.301177 4.39874i −0.0117411 0.171481i
\(659\) 39.4976i 1.53861i −0.638883 0.769304i \(-0.720603\pi\)
0.638883 0.769304i \(-0.279397\pi\)
\(660\) −2.68131 19.4887i −0.104370 0.758597i
\(661\) 24.8305i 0.965794i −0.875677 0.482897i \(-0.839585\pi\)
0.875677 0.482897i \(-0.160415\pi\)
\(662\) −37.2993 + 2.55385i −1.44968 + 0.0992580i
\(663\) 0.520306i 0.0202070i
\(664\) −7.03413 33.8161i −0.272977 1.31232i
\(665\) 13.2581 0.514127
\(666\) −0.513895 + 0.0351858i −0.0199130 + 0.00136342i
\(667\) 5.29823i 0.205148i
\(668\) −4.48668 32.6108i −0.173595 1.26175i
\(669\) 22.1951i 0.858111i
\(670\) 30.0166 + 13.4060i 1.15964 + 0.517919i
\(671\) 29.5093i 1.13920i
\(672\) 4.42734 1.57514i 0.170788 0.0607623i
\(673\) 44.6172i 1.71987i 0.510408 + 0.859933i \(0.329495\pi\)
−0.510408 + 0.859933i \(0.670505\pi\)
\(674\) −2.64416 38.6184i −0.101849 1.48752i
\(675\) 3.06507 0.117975
\(676\) 25.7358 3.54080i 0.989838 0.136185i
\(677\) 24.3623i 0.936321i −0.883643 0.468161i \(-0.844917\pi\)
0.883643 0.468161i \(-0.155083\pi\)
\(678\) −0.0357259 0.521783i −0.00137205 0.0200390i
\(679\) 9.82124i 0.376904i
\(680\) −8.15563 39.2076i −0.312754 1.50354i
\(681\) 0.0721997i 0.00276670i
\(682\) 11.7554 0.804880i 0.450138 0.0308204i
\(683\) −46.0145 −1.76069 −0.880347 0.474330i \(-0.842690\pi\)
−0.880347 + 0.474330i \(0.842690\pi\)
\(684\) −1.53197 11.1349i −0.0585765 0.425754i
\(685\) −0.0233138 −0.000890773
\(686\) 15.5999 1.06811i 0.595609 0.0407807i
\(687\) 13.6233i 0.519761i
\(688\) 43.6396 12.2398i 1.66375 0.466639i
\(689\) −0.672284 −0.0256120
\(690\) −28.4533 + 1.94817i −1.08320 + 0.0741654i
\(691\) 36.5394i 1.39002i 0.718999 + 0.695011i \(0.244601\pi\)
−0.718999 + 0.695011i \(0.755399\pi\)
\(692\) −40.6510 + 5.59288i −1.54532 + 0.212610i
\(693\) 2.87719 0.109295
\(694\) 42.0971 2.88234i 1.59799 0.109412i
\(695\) 41.1934i 1.56256i
\(696\) −2.06609 + 0.429769i −0.0783148 + 0.0162904i
\(697\) 48.5173i 1.83772i
\(698\) −42.8893 + 2.93658i −1.62338 + 0.111151i
\(699\) 5.76544i 0.218069i
\(700\) −5.04483 + 0.694082i −0.190677 + 0.0262338i
\(701\) 30.1813i 1.13993i −0.821669 0.569965i \(-0.806957\pi\)
0.821669 0.569965i \(-0.193043\pi\)
\(702\) 0.0100817 + 0.147244i 0.000380508 + 0.00555738i
\(703\) 2.04694i 0.0772017i
\(704\) 25.4100 11.0492i 0.957675 0.416433i
\(705\) 10.6582 0.401412
\(706\) 3.16769 + 46.2646i 0.119218 + 1.74119i
\(707\) 5.77643i 0.217245i
\(708\) −3.83893 27.9027i −0.144276 1.04865i
\(709\) 15.5201 0.582868 0.291434 0.956591i \(-0.405868\pi\)
0.291434 + 0.956591i \(0.405868\pi\)
\(710\) −26.9548 + 1.84556i −1.01160 + 0.0692628i
\(711\) −2.89902 −0.108722
\(712\) −0.509306 + 0.105941i −0.0190871 + 0.00397032i
\(713\) 17.0823i 0.639737i
\(714\) 5.84342 0.400093i 0.218684 0.0149731i
\(715\) −1.02651 −0.0383894
\(716\) 3.52534 0.485026i 0.131748 0.0181263i
\(717\) 11.4371 0.427127
\(718\) 1.56393 + 22.8415i 0.0583655 + 0.852438i
\(719\) 31.4631i 1.17338i 0.809813 + 0.586688i \(0.199569\pi\)
−0.809813 + 0.586688i \(0.800431\pi\)
\(720\) 3.06771 + 10.9376i 0.114327 + 0.407619i
\(721\) 8.17131i 0.304315i
\(722\) 17.7540 1.21560i 0.660735 0.0452398i
\(723\) 6.96353 0.258976
\(724\) 12.5065 1.72068i 0.464802 0.0639487i
\(725\) 2.28687 0.0849324
\(726\) 1.40547 0.0962310i 0.0521619 0.00357147i
\(727\) −16.8006 −0.623099 −0.311550 0.950230i \(-0.600848\pi\)
−0.311550 + 0.950230i \(0.600848\pi\)
\(728\) −0.0499368 0.240068i −0.00185078 0.00889751i
\(729\) 1.00000 0.0370370
\(730\) −4.02975 58.8552i −0.149148 2.17833i
\(731\) 56.4917 2.08942
\(732\) −2.32253 16.8809i −0.0858431 0.623938i
\(733\) 21.7283i 0.802553i −0.915957 0.401276i \(-0.868567\pi\)
0.915957 0.401276i \(-0.131433\pi\)
\(734\) 23.9726 1.64138i 0.884845 0.0605843i
\(735\) 17.9196i 0.660974i
\(736\) −13.4648 37.8463i −0.496319 1.39503i
\(737\) −13.3024 + 25.0357i −0.490000 + 0.922203i
\(738\) 0.940090 + 13.7302i 0.0346052 + 0.505415i
\(739\) −5.10466 −0.187778 −0.0938889 0.995583i \(-0.529930\pi\)
−0.0938889 + 0.995583i \(0.529930\pi\)
\(740\) 0.281969 + 2.04945i 0.0103654 + 0.0753393i
\(741\) −0.586500 −0.0215456
\(742\) −0.516957 7.55025i −0.0189781 0.277178i
\(743\) 24.2217i 0.888608i 0.895876 + 0.444304i \(0.146549\pi\)
−0.895876 + 0.444304i \(0.853451\pi\)
\(744\) −6.66138 + 1.38564i −0.244218 + 0.0508001i
\(745\) 49.1425i 1.80044i
\(746\) −3.10594 45.3628i −0.113717 1.66085i
\(747\) 12.2117i 0.446804i
\(748\) 34.2136 4.70720i 1.25097 0.172112i
\(749\) 2.33944i 0.0854813i
\(750\) 0.530838 + 7.75297i 0.0193834 + 0.283099i
\(751\) 3.09498i 0.112937i −0.998404 0.0564687i \(-0.982016\pi\)
0.998404 0.0564687i \(-0.0179841\pi\)
\(752\) 4.05407 + 14.4543i 0.147837 + 0.527094i
\(753\) −14.7090 −0.536025
\(754\) 0.00752200 + 0.109860i 0.000273935 + 0.00400087i
\(755\) 4.27479 0.155575
\(756\) −1.64591 + 0.226449i −0.0598612 + 0.00823587i
\(757\) 43.8075i 1.59221i −0.605159 0.796105i \(-0.706891\pi\)
0.605159 0.796105i \(-0.293109\pi\)
\(758\) 3.22875 0.221069i 0.117273 0.00802959i
\(759\) 24.5952i 0.892748i
\(760\) −44.1957 + 9.19320i −1.60315 + 0.333473i
\(761\) 11.8141 0.428261 0.214130 0.976805i \(-0.431308\pi\)
0.214130 + 0.976805i \(0.431308\pi\)
\(762\) −0.303704 4.43565i −0.0110020 0.160687i
\(763\) 9.98649i 0.361535i
\(764\) −13.6420 + 1.87690i −0.493550 + 0.0679040i
\(765\) 14.1587i 0.511909i
\(766\) −30.0402 + 2.05682i −1.08540 + 0.0743159i
\(767\) −1.46969 −0.0530676
\(768\) −13.6663 + 8.32064i −0.493139 + 0.300245i
\(769\) 8.14548i 0.293734i −0.989156 0.146867i \(-0.953081\pi\)
0.989156 0.146867i \(-0.0469189\pi\)
\(770\) −0.789343 11.5285i −0.0284459 0.415458i
\(771\) 9.81479