Properties

Label 804.2.e.a.535.13
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.13
Character \(\chi\) = 804.535
Dual form 804.2.e.a.535.14

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.483740 - 1.32891i) q^{2} -1.00000 q^{3} +(-1.53199 + 1.28569i) q^{4} +3.80010i q^{5} +(0.483740 + 1.32891i) q^{6} +0.504221 q^{7} +(2.44965 + 1.41393i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(-0.483740 - 1.32891i) q^{2} -1.00000 q^{3} +(-1.53199 + 1.28569i) q^{4} +3.80010i q^{5} +(0.483740 + 1.32891i) q^{6} +0.504221 q^{7} +(2.44965 + 1.41393i) q^{8} +1.00000 q^{9} +(5.04998 - 1.83826i) q^{10} +0.340071 q^{11} +(1.53199 - 1.28569i) q^{12} +4.62451i q^{13} +(-0.243912 - 0.670063i) q^{14} -3.80010i q^{15} +(0.693993 - 3.93934i) q^{16} -5.54179 q^{17} +(-0.483740 - 1.32891i) q^{18} -5.66175i q^{19} +(-4.88575 - 5.82171i) q^{20} -0.504221 q^{21} +(-0.164506 - 0.451923i) q^{22} +2.26733i q^{23} +(-2.44965 - 1.41393i) q^{24} -9.44073 q^{25} +(6.14555 - 2.23706i) q^{26} -1.00000 q^{27} +(-0.772462 + 0.648273i) q^{28} +2.67950 q^{29} +(-5.04998 + 1.83826i) q^{30} -3.48870 q^{31} +(-5.57073 + 0.983362i) q^{32} -0.340071 q^{33} +(2.68078 + 7.36452i) q^{34} +1.91609i q^{35} +(-1.53199 + 1.28569i) q^{36} +3.22313 q^{37} +(-7.52395 + 2.73882i) q^{38} -4.62451i q^{39} +(-5.37309 + 9.30891i) q^{40} +5.82399i q^{41} +(0.243912 + 0.670063i) q^{42} -10.1339 q^{43} +(-0.520986 + 0.437226i) q^{44} +3.80010i q^{45} +(3.01308 - 1.09680i) q^{46} +4.07078i q^{47} +(-0.693993 + 3.93934i) q^{48} -6.74576 q^{49} +(4.56686 + 12.5459i) q^{50} +5.54179 q^{51} +(-5.94570 - 7.08471i) q^{52} -2.30104i q^{53} +(0.483740 + 1.32891i) q^{54} +1.29230i q^{55} +(1.23517 + 0.712935i) q^{56} +5.66175i q^{57} +(-1.29618 - 3.56081i) q^{58} -4.68692i q^{59} +(4.88575 + 5.82171i) q^{60} -5.81766i q^{61} +(1.68762 + 4.63616i) q^{62} +0.504221 q^{63} +(4.00158 + 6.92729i) q^{64} -17.5736 q^{65} +(0.164506 + 0.451923i) q^{66} +(1.18570 - 8.09902i) q^{67} +(8.48997 - 7.12503i) q^{68} -2.26733i q^{69} +(2.54631 - 0.926889i) q^{70} +9.21056i q^{71} +(2.44965 + 1.41393i) q^{72} +10.5523 q^{73} +(-1.55916 - 4.28324i) q^{74} +9.44073 q^{75} +(7.27927 + 8.67376i) q^{76} +0.171471 q^{77} +(-6.14555 + 2.23706i) q^{78} -9.58435 q^{79} +(14.9699 + 2.63724i) q^{80} +1.00000 q^{81} +(7.73954 - 2.81730i) q^{82} +16.5312i q^{83} +(0.772462 - 0.648273i) q^{84} -21.0593i q^{85} +(4.90216 + 13.4670i) q^{86} -2.67950 q^{87} +(0.833055 + 0.480838i) q^{88} -9.37374 q^{89} +(5.04998 - 1.83826i) q^{90} +2.33178i q^{91} +(-2.91509 - 3.47354i) q^{92} +3.48870 q^{93} +(5.40969 - 1.96920i) q^{94} +21.5152 q^{95} +(5.57073 - 0.983362i) q^{96} -0.449792i q^{97} +(3.26320 + 8.96449i) q^{98} +0.340071 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} - 6q^{10} - 2q^{12} - 4q^{14} + 2q^{16} + 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} - 34q^{27} + 8q^{28} - 16q^{29} + 6q^{30} + 4q^{31} + 2q^{36} + 12q^{37} - 26q^{38} - 18q^{40} + 4q^{42} + 4q^{43} - 26q^{44} + 4q^{46} - 2q^{48} + 46q^{49} + 18q^{50} - 32q^{52} + 14q^{56} - 4q^{58} - 12q^{60} - 2q^{62} - 4q^{63} + 26q^{64} + 8q^{66} + 18q^{67} - 34q^{68} - 56q^{70} + 6q^{72} + 12q^{73} - 22q^{74} + 34q^{75} - 32q^{76} - 8q^{77} - 10q^{78} + 12q^{79} + 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} + 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} - 32q^{94} + 40q^{95} + 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.483740 1.32891i −0.342056 0.939680i
\(3\) −1.00000 −0.577350
\(4\) −1.53199 + 1.28569i −0.765996 + 0.642846i
\(5\) 3.80010i 1.69945i 0.527222 + 0.849727i \(0.323233\pi\)
−0.527222 + 0.849727i \(0.676767\pi\)
\(6\) 0.483740 + 1.32891i 0.197486 + 0.542524i
\(7\) 0.504221 0.190578 0.0952888 0.995450i \(-0.469623\pi\)
0.0952888 + 0.995450i \(0.469623\pi\)
\(8\) 2.44965 + 1.41393i 0.866082 + 0.499901i
\(9\) 1.00000 0.333333
\(10\) 5.04998 1.83826i 1.59694 0.581308i
\(11\) 0.340071 0.102535 0.0512676 0.998685i \(-0.483674\pi\)
0.0512676 + 0.998685i \(0.483674\pi\)
\(12\) 1.53199 1.28569i 0.442248 0.371147i
\(13\) 4.62451i 1.28261i 0.767287 + 0.641304i \(0.221606\pi\)
−0.767287 + 0.641304i \(0.778394\pi\)
\(14\) −0.243912 0.670063i −0.0651882 0.179082i
\(15\) 3.80010i 0.981181i
\(16\) 0.693993 3.93934i 0.173498 0.984834i
\(17\) −5.54179 −1.34408 −0.672040 0.740514i \(-0.734582\pi\)
−0.672040 + 0.740514i \(0.734582\pi\)
\(18\) −0.483740 1.32891i −0.114019 0.313227i
\(19\) 5.66175i 1.29890i −0.760406 0.649448i \(-0.775000\pi\)
0.760406 0.649448i \(-0.225000\pi\)
\(20\) −4.88575 5.82171i −1.09249 1.30177i
\(21\) −0.504221 −0.110030
\(22\) −0.164506 0.451923i −0.0350728 0.0963503i
\(23\) 2.26733i 0.472772i 0.971659 + 0.236386i \(0.0759630\pi\)
−0.971659 + 0.236386i \(0.924037\pi\)
\(24\) −2.44965 1.41393i −0.500033 0.288618i
\(25\) −9.44073 −1.88815
\(26\) 6.14555 2.23706i 1.20524 0.438724i
\(27\) −1.00000 −0.192450
\(28\) −0.772462 + 0.648273i −0.145982 + 0.122512i
\(29\) 2.67950 0.497571 0.248785 0.968559i \(-0.419969\pi\)
0.248785 + 0.968559i \(0.419969\pi\)
\(30\) −5.04998 + 1.83826i −0.921995 + 0.335619i
\(31\) −3.48870 −0.626589 −0.313295 0.949656i \(-0.601433\pi\)
−0.313295 + 0.949656i \(0.601433\pi\)
\(32\) −5.57073 + 0.983362i −0.984775 + 0.173836i
\(33\) −0.340071 −0.0591987
\(34\) 2.68078 + 7.36452i 0.459751 + 1.26301i
\(35\) 1.91609i 0.323878i
\(36\) −1.53199 + 1.28569i −0.255332 + 0.214282i
\(37\) 3.22313 0.529879 0.264939 0.964265i \(-0.414648\pi\)
0.264939 + 0.964265i \(0.414648\pi\)
\(38\) −7.52395 + 2.73882i −1.22055 + 0.444295i
\(39\) 4.62451i 0.740514i
\(40\) −5.37309 + 9.30891i −0.849559 + 1.47187i
\(41\) 5.82399i 0.909554i 0.890605 + 0.454777i \(0.150281\pi\)
−0.890605 + 0.454777i \(0.849719\pi\)
\(42\) 0.243912 + 0.670063i 0.0376364 + 0.103393i
\(43\) −10.1339 −1.54540 −0.772701 0.634771i \(-0.781095\pi\)
−0.772701 + 0.634771i \(0.781095\pi\)
\(44\) −0.520986 + 0.437226i −0.0785415 + 0.0659143i
\(45\) 3.80010i 0.566485i
\(46\) 3.01308 1.09680i 0.444254 0.161714i
\(47\) 4.07078i 0.593784i 0.954911 + 0.296892i \(0.0959501\pi\)
−0.954911 + 0.296892i \(0.904050\pi\)
\(48\) −0.693993 + 3.93934i −0.100169 + 0.568594i
\(49\) −6.74576 −0.963680
\(50\) 4.56686 + 12.5459i 0.645852 + 1.77425i
\(51\) 5.54179 0.776005
\(52\) −5.94570 7.08471i −0.824520 0.982472i
\(53\) 2.30104i 0.316072i −0.987433 0.158036i \(-0.949484\pi\)
0.987433 0.158036i \(-0.0505162\pi\)
\(54\) 0.483740 + 1.32891i 0.0658287 + 0.180841i
\(55\) 1.29230i 0.174254i
\(56\) 1.23517 + 0.712935i 0.165056 + 0.0952700i
\(57\) 5.66175i 0.749918i
\(58\) −1.29618 3.56081i −0.170197 0.467557i
\(59\) 4.68692i 0.610185i −0.952323 0.305092i \(-0.901313\pi\)
0.952323 0.305092i \(-0.0986874\pi\)
\(60\) 4.88575 + 5.82171i 0.630748 + 0.751580i
\(61\) 5.81766i 0.744875i −0.928057 0.372437i \(-0.878522\pi\)
0.928057 0.372437i \(-0.121478\pi\)
\(62\) 1.68762 + 4.63616i 0.214329 + 0.588793i
\(63\) 0.504221 0.0635259
\(64\) 4.00158 + 6.92729i 0.500198 + 0.865911i
\(65\) −17.5736 −2.17973
\(66\) 0.164506 + 0.451923i 0.0202493 + 0.0556278i
\(67\) 1.18570 8.09902i 0.144856 0.989453i
\(68\) 8.48997 7.12503i 1.02956 0.864037i
\(69\) 2.26733i 0.272955i
\(70\) 2.54631 0.926889i 0.304342 0.110784i
\(71\) 9.21056i 1.09309i 0.837429 + 0.546546i \(0.184058\pi\)
−0.837429 + 0.546546i \(0.815942\pi\)
\(72\) 2.44965 + 1.41393i 0.288694 + 0.166634i
\(73\) 10.5523 1.23505 0.617525 0.786551i \(-0.288135\pi\)
0.617525 + 0.786551i \(0.288135\pi\)
\(74\) −1.55916 4.28324i −0.181248 0.497916i
\(75\) 9.44073 1.09012
\(76\) 7.27927 + 8.67376i 0.834989 + 0.994948i
\(77\) 0.171471 0.0195409
\(78\) −6.14555 + 2.23706i −0.695846 + 0.253297i
\(79\) −9.58435 −1.07832 −0.539162 0.842202i \(-0.681259\pi\)
−0.539162 + 0.842202i \(0.681259\pi\)
\(80\) 14.9699 + 2.63724i 1.67368 + 0.294853i
\(81\) 1.00000 0.111111
\(82\) 7.73954 2.81730i 0.854690 0.311118i
\(83\) 16.5312i 1.81454i 0.420554 + 0.907268i \(0.361836\pi\)
−0.420554 + 0.907268i \(0.638164\pi\)
\(84\) 0.772462 0.648273i 0.0842825 0.0707324i
\(85\) 21.0593i 2.28420i
\(86\) 4.90216 + 13.4670i 0.528614 + 1.45218i
\(87\) −2.67950 −0.287273
\(88\) 0.833055 + 0.480838i 0.0888040 + 0.0512575i
\(89\) −9.37374 −0.993614 −0.496807 0.867861i \(-0.665494\pi\)
−0.496807 + 0.867861i \(0.665494\pi\)
\(90\) 5.04998 1.83826i 0.532314 0.193769i
\(91\) 2.33178i 0.244437i
\(92\) −2.91509 3.47354i −0.303920 0.362141i
\(93\) 3.48870 0.361761
\(94\) 5.40969 1.96920i 0.557967 0.203107i
\(95\) 21.5152 2.20741
\(96\) 5.57073 0.983362i 0.568560 0.100364i
\(97\) 0.449792i 0.0456695i −0.999739 0.0228347i \(-0.992731\pi\)
0.999739 0.0228347i \(-0.00726916\pi\)
\(98\) 3.26320 + 8.96449i 0.329632 + 0.905551i
\(99\) 0.340071 0.0341784
\(100\) 14.4631 12.1379i 1.44631 1.21379i
\(101\) 5.32681i 0.530038i 0.964243 + 0.265019i \(0.0853782\pi\)
−0.964243 + 0.265019i \(0.914622\pi\)
\(102\) −2.68078 7.36452i −0.265437 0.729196i
\(103\) 1.81617i 0.178953i −0.995989 0.0894763i \(-0.971481\pi\)
0.995989 0.0894763i \(-0.0285193\pi\)
\(104\) −6.53875 + 11.3284i −0.641177 + 1.11084i
\(105\) 1.91609i 0.186991i
\(106\) −3.05787 + 1.11310i −0.297006 + 0.108114i
\(107\) 3.66598i 0.354404i 0.984175 + 0.177202i \(0.0567045\pi\)
−0.984175 + 0.177202i \(0.943295\pi\)
\(108\) 1.53199 1.28569i 0.147416 0.123716i
\(109\) 6.47504i 0.620196i −0.950705 0.310098i \(-0.899638\pi\)
0.950705 0.310098i \(-0.100362\pi\)
\(110\) 1.71735 0.625138i 0.163743 0.0596046i
\(111\) −3.22313 −0.305926
\(112\) 0.349926 1.98630i 0.0330649 0.187687i
\(113\) 12.8033i 1.20444i 0.798332 + 0.602218i \(0.205716\pi\)
−0.798332 + 0.602218i \(0.794284\pi\)
\(114\) 7.52395 2.73882i 0.704682 0.256514i
\(115\) −8.61609 −0.803455
\(116\) −4.10497 + 3.44501i −0.381137 + 0.319861i
\(117\) 4.62451i 0.427536i
\(118\) −6.22848 + 2.26725i −0.573378 + 0.208717i
\(119\) −2.79429 −0.256152
\(120\) 5.37309 9.30891i 0.490493 0.849783i
\(121\) −10.8844 −0.989487
\(122\) −7.73113 + 2.81423i −0.699944 + 0.254789i
\(123\) 5.82399i 0.525131i
\(124\) 5.34466 4.48539i 0.479965 0.402800i
\(125\) 16.8752i 1.50936i
\(126\) −0.243912 0.670063i −0.0217294 0.0596940i
\(127\) 13.0192i 1.15527i −0.816295 0.577635i \(-0.803976\pi\)
0.816295 0.577635i \(-0.196024\pi\)
\(128\) 7.27000 8.66874i 0.642584 0.766216i
\(129\) 10.1339 0.892238
\(130\) 8.50105 + 23.3537i 0.745591 + 2.04825i
\(131\) 18.9830i 1.65855i −0.558840 0.829276i \(-0.688753\pi\)
0.558840 0.829276i \(-0.311247\pi\)
\(132\) 0.520986 0.437226i 0.0453460 0.0380557i
\(133\) 2.85478i 0.247540i
\(134\) −11.3364 + 2.34213i −0.979317 + 0.202330i
\(135\) 3.80010i 0.327060i
\(136\) −13.5754 7.83572i −1.16408 0.671908i
\(137\) 0.648578i 0.0554118i −0.999616 0.0277059i \(-0.991180\pi\)
0.999616 0.0277059i \(-0.00882018\pi\)
\(138\) −3.01308 + 1.09680i −0.256490 + 0.0933659i
\(139\) −15.1383 −1.28402 −0.642009 0.766697i \(-0.721899\pi\)
−0.642009 + 0.766697i \(0.721899\pi\)
\(140\) −2.46350 2.93543i −0.208204 0.248089i
\(141\) 4.07078i 0.342821i
\(142\) 12.2400 4.45552i 1.02716 0.373899i
\(143\) 1.57266i 0.131513i
\(144\) 0.693993 3.93934i 0.0578328 0.328278i
\(145\) 10.1824i 0.845599i
\(146\) −5.10456 14.0230i −0.422456 1.16055i
\(147\) 6.74576 0.556381
\(148\) −4.93780 + 4.14395i −0.405885 + 0.340631i
\(149\) −16.4646 −1.34883 −0.674414 0.738353i \(-0.735604\pi\)
−0.674414 + 0.738353i \(0.735604\pi\)
\(150\) −4.56686 12.5459i −0.372883 1.02437i
\(151\) 22.4874i 1.83000i 0.403459 + 0.914998i \(0.367808\pi\)
−0.403459 + 0.914998i \(0.632192\pi\)
\(152\) 8.00535 13.8693i 0.649319 1.12495i
\(153\) −5.54179 −0.448027
\(154\) −0.0829473 0.227869i −0.00668409 0.0183622i
\(155\) 13.2574i 1.06486i
\(156\) 5.94570 + 7.08471i 0.476037 + 0.567231i
\(157\) 4.28597 0.342058 0.171029 0.985266i \(-0.445291\pi\)
0.171029 + 0.985266i \(0.445291\pi\)
\(158\) 4.63634 + 12.7367i 0.368847 + 1.01328i
\(159\) 2.30104i 0.182484i
\(160\) −3.73687 21.1693i −0.295426 1.67358i
\(161\) 1.14324i 0.0900998i
\(162\) −0.483740 1.32891i −0.0380062 0.104409i
\(163\) 1.28405i 0.100574i −0.998735 0.0502871i \(-0.983986\pi\)
0.998735 0.0502871i \(-0.0160136\pi\)
\(164\) −7.48786 8.92230i −0.584703 0.696715i
\(165\) 1.29230i 0.100606i
\(166\) 21.9684 7.99681i 1.70508 0.620672i
\(167\) 2.23120i 0.172655i 0.996267 + 0.0863275i \(0.0275132\pi\)
−0.996267 + 0.0863275i \(0.972487\pi\)
\(168\) −1.23517 0.712935i −0.0952951 0.0550042i
\(169\) −8.38610 −0.645084
\(170\) −27.9859 + 10.1872i −2.14642 + 0.781326i
\(171\) 5.66175i 0.432965i
\(172\) 15.5250 13.0290i 1.18377 0.993455i
\(173\) 8.76686 0.666532 0.333266 0.942833i \(-0.391849\pi\)
0.333266 + 0.942833i \(0.391849\pi\)
\(174\) 1.29618 + 3.56081i 0.0982633 + 0.269944i
\(175\) −4.76022 −0.359839
\(176\) 0.236007 1.33965i 0.0177897 0.100980i
\(177\) 4.68692i 0.352290i
\(178\) 4.53445 + 12.4568i 0.339872 + 0.933679i
\(179\) 18.6985 1.39759 0.698795 0.715322i \(-0.253720\pi\)
0.698795 + 0.715322i \(0.253720\pi\)
\(180\) −4.88575 5.82171i −0.364162 0.433925i
\(181\) 15.0472 1.11845 0.559225 0.829016i \(-0.311099\pi\)
0.559225 + 0.829016i \(0.311099\pi\)
\(182\) 3.09871 1.12797i 0.229692 0.0836110i
\(183\) 5.81766i 0.430054i
\(184\) −3.20586 + 5.55418i −0.236339 + 0.409460i
\(185\) 12.2482i 0.900505i
\(186\) −1.68762 4.63616i −0.123743 0.339940i
\(187\) −1.88460 −0.137816
\(188\) −5.23377 6.23640i −0.381712 0.454836i
\(189\) −0.504221 −0.0366767
\(190\) −10.4078 28.5917i −0.755059 2.07426i
\(191\) −15.4232 −1.11599 −0.557993 0.829846i \(-0.688428\pi\)
−0.557993 + 0.829846i \(0.688428\pi\)
\(192\) −4.00158 6.92729i −0.288789 0.499934i
\(193\) 20.7634 1.49458 0.747291 0.664497i \(-0.231354\pi\)
0.747291 + 0.664497i \(0.231354\pi\)
\(194\) −0.597733 + 0.217583i −0.0429147 + 0.0156215i
\(195\) 17.5736 1.25847
\(196\) 10.3344 8.67297i 0.738175 0.619498i
\(197\) 19.2813i 1.37374i 0.726781 + 0.686869i \(0.241015\pi\)
−0.726781 + 0.686869i \(0.758985\pi\)
\(198\) −0.164506 0.451923i −0.0116909 0.0321168i
\(199\) 3.70408i 0.262575i −0.991344 0.131288i \(-0.958089\pi\)
0.991344 0.131288i \(-0.0419112\pi\)
\(200\) −23.1265 13.3486i −1.63529 0.943886i
\(201\) −1.18570 + 8.09902i −0.0836328 + 0.571261i
\(202\) 7.07884 2.57679i 0.498066 0.181302i
\(203\) 1.35106 0.0948259
\(204\) −8.48997 + 7.12503i −0.594417 + 0.498852i
\(205\) −22.1317 −1.54575
\(206\) −2.41352 + 0.878554i −0.168158 + 0.0612118i
\(207\) 2.26733i 0.157591i
\(208\) 18.2175 + 3.20938i 1.26316 + 0.222530i
\(209\) 1.92540i 0.133183i
\(210\) −2.54631 + 0.926889i −0.175712 + 0.0639614i
\(211\) 8.23671i 0.567039i −0.958967 0.283519i \(-0.908498\pi\)
0.958967 0.283519i \(-0.0915020\pi\)
\(212\) 2.95842 + 3.52517i 0.203185 + 0.242110i
\(213\) 9.21056i 0.631097i
\(214\) 4.87175 1.77338i 0.333026 0.121226i
\(215\) 38.5097i 2.62634i
\(216\) −2.44965 1.41393i −0.166678 0.0962060i
\(217\) −1.75908 −0.119414
\(218\) −8.60473 + 3.13224i −0.582786 + 0.212142i
\(219\) −10.5523 −0.713057
\(220\) −1.66150 1.97980i −0.112018 0.133478i
\(221\) 25.6281i 1.72393i
\(222\) 1.55916 + 4.28324i 0.104644 + 0.287472i
\(223\) 28.5150i 1.90951i 0.297401 + 0.954753i \(0.403880\pi\)
−0.297401 + 0.954753i \(0.596120\pi\)
\(224\) −2.80888 + 0.495832i −0.187676 + 0.0331292i
\(225\) −9.44073 −0.629382
\(226\) 17.0144 6.19348i 1.13178 0.411984i
\(227\) 22.6375i 1.50250i 0.660017 + 0.751251i \(0.270549\pi\)
−0.660017 + 0.751251i \(0.729451\pi\)
\(228\) −7.27927 8.67376i −0.482081 0.574433i
\(229\) 23.6814i 1.56491i 0.622708 + 0.782455i \(0.286033\pi\)
−0.622708 + 0.782455i \(0.713967\pi\)
\(230\) 4.16795 + 11.4500i 0.274826 + 0.754990i
\(231\) −0.171471 −0.0112820
\(232\) 6.56384 + 3.78864i 0.430937 + 0.248736i
\(233\) 5.29881i 0.347136i −0.984822 0.173568i \(-0.944470\pi\)
0.984822 0.173568i \(-0.0555297\pi\)
\(234\) 6.14555 2.23706i 0.401747 0.146241i
\(235\) −15.4693 −1.00911
\(236\) 6.02593 + 7.18032i 0.392255 + 0.467399i
\(237\) 9.58435 0.622571
\(238\) 1.35171 + 3.71335i 0.0876182 + 0.240701i
\(239\) 2.32000 0.150068 0.0750341 0.997181i \(-0.476093\pi\)
0.0750341 + 0.997181i \(0.476093\pi\)
\(240\) −14.9699 2.63724i −0.966300 0.170233i
\(241\) −3.69645 −0.238109 −0.119055 0.992888i \(-0.537986\pi\)
−0.119055 + 0.992888i \(0.537986\pi\)
\(242\) 5.26520 + 14.4643i 0.338460 + 0.929800i
\(243\) −1.00000 −0.0641500
\(244\) 7.47972 + 8.91260i 0.478840 + 0.570571i
\(245\) 25.6345i 1.63773i
\(246\) −7.73954 + 2.81730i −0.493455 + 0.179624i
\(247\) 26.1828 1.66597
\(248\) −8.54610 4.93279i −0.542678 0.313233i
\(249\) 16.5312i 1.04762i
\(250\) −22.4256 + 8.16321i −1.41832 + 0.516287i
\(251\) 5.87230 0.370656 0.185328 0.982677i \(-0.440665\pi\)
0.185328 + 0.982677i \(0.440665\pi\)
\(252\) −0.772462 + 0.648273i −0.0486605 + 0.0408374i
\(253\) 0.771055i 0.0484758i
\(254\) −17.3014 + 6.29792i −1.08558 + 0.395167i
\(255\) 21.0593i 1.31879i
\(256\) −15.0367 5.46775i −0.939797 0.341734i
\(257\) 19.7965 1.23487 0.617437 0.786620i \(-0.288171\pi\)
0.617437 + 0.786620i \(0.288171\pi\)
\(258\) −4.90216 13.4670i −0.305195 0.838418i
\(259\) 1.62517 0.100983
\(260\) 26.9226 22.5942i 1.66967 1.40123i
\(261\) 2.67950 0.165857
\(262\) −25.2266 + 9.18283i −1.55851 + 0.567317i
\(263\) 22.7728i 1.40423i −0.712062 0.702116i \(-0.752239\pi\)
0.712062 0.702116i \(-0.247761\pi\)
\(264\) −0.833055 0.480838i −0.0512710 0.0295935i
\(265\) 8.74416 0.537150
\(266\) −3.79373 + 1.38097i −0.232609 + 0.0846727i
\(267\) 9.37374 0.573663
\(268\) 8.59636 + 13.9321i 0.525106 + 0.851037i
\(269\) 25.2625 1.54028 0.770142 0.637872i \(-0.220185\pi\)
0.770142 + 0.637872i \(0.220185\pi\)
\(270\) −5.04998 + 1.83826i −0.307332 + 0.111873i
\(271\) 28.1672 1.71103 0.855517 0.517774i \(-0.173239\pi\)
0.855517 + 0.517774i \(0.173239\pi\)
\(272\) −3.84596 + 21.8310i −0.233196 + 1.32370i
\(273\) 2.33178i 0.141125i
\(274\) −0.861900 + 0.313743i −0.0520693 + 0.0189539i
\(275\) −3.21052 −0.193601
\(276\) 2.91509 + 3.47354i 0.175468 + 0.209082i
\(277\) −11.1117 −0.667640 −0.333820 0.942637i \(-0.608338\pi\)
−0.333820 + 0.942637i \(0.608338\pi\)
\(278\) 7.32302 + 20.1175i 0.439206 + 1.20656i
\(279\) −3.48870 −0.208863
\(280\) −2.70922 + 4.69375i −0.161907 + 0.280505i
\(281\) 17.7385i 1.05819i −0.848563 0.529094i \(-0.822532\pi\)
0.848563 0.529094i \(-0.177468\pi\)
\(282\) −5.40969 + 1.96920i −0.322142 + 0.117264i
\(283\) 1.11568i 0.0663202i −0.999450 0.0331601i \(-0.989443\pi\)
0.999450 0.0331601i \(-0.0105571\pi\)
\(284\) −11.8419 14.1105i −0.702690 0.837304i
\(285\) −21.5152 −1.27445
\(286\) 2.08992 0.760759i 0.123580 0.0449846i
\(287\) 2.93658i 0.173341i
\(288\) −5.57073 + 0.983362i −0.328258 + 0.0579452i
\(289\) 13.7114 0.806553
\(290\) 13.5314 4.92561i 0.794592 0.289242i
\(291\) 0.449792i 0.0263673i
\(292\) −16.1660 + 13.5670i −0.946043 + 0.793947i
\(293\) 14.1069 0.824134 0.412067 0.911154i \(-0.364807\pi\)
0.412067 + 0.911154i \(0.364807\pi\)
\(294\) −3.26320 8.96449i −0.190313 0.522820i
\(295\) 17.8107 1.03698
\(296\) 7.89554 + 4.55729i 0.458919 + 0.264887i
\(297\) −0.340071 −0.0197329
\(298\) 7.96456 + 21.8799i 0.461375 + 1.26747i
\(299\) −10.4853 −0.606381
\(300\) −14.4631 + 12.1379i −0.835028 + 0.700780i
\(301\) −5.10971 −0.294519
\(302\) 29.8836 10.8780i 1.71961 0.625961i
\(303\) 5.32681i 0.306017i
\(304\) −22.3036 3.92922i −1.27920 0.225356i
\(305\) 22.1077 1.26588
\(306\) 2.68078 + 7.36452i 0.153250 + 0.421002i
\(307\) 9.22285i 0.526376i 0.964745 + 0.263188i \(0.0847739\pi\)
−0.964745 + 0.263188i \(0.915226\pi\)
\(308\) −0.262692 + 0.220459i −0.0149683 + 0.0125618i
\(309\) 1.81617i 0.103318i
\(310\) −17.6179 + 6.41314i −1.00063 + 0.364242i
\(311\) −12.4064 −0.703503 −0.351752 0.936093i \(-0.614414\pi\)
−0.351752 + 0.936093i \(0.614414\pi\)
\(312\) 6.53875 11.3284i 0.370184 0.641346i
\(313\) 24.7560i 1.39929i 0.714490 + 0.699646i \(0.246659\pi\)
−0.714490 + 0.699646i \(0.753341\pi\)
\(314\) −2.07330 5.69566i −0.117003 0.321425i
\(315\) 1.91609i 0.107959i
\(316\) 14.6831 12.3225i 0.825991 0.693196i
\(317\) −9.58106 −0.538126 −0.269063 0.963123i \(-0.586714\pi\)
−0.269063 + 0.963123i \(0.586714\pi\)
\(318\) 3.05787 1.11310i 0.171477 0.0624198i
\(319\) 0.911220 0.0510185
\(320\) −26.3244 + 15.2064i −1.47158 + 0.850063i
\(321\) 3.66598i 0.204615i
\(322\) 1.51926 0.553030i 0.0846649 0.0308192i
\(323\) 31.3762i 1.74582i
\(324\) −1.53199 + 1.28569i −0.0851106 + 0.0714273i
\(325\) 43.6588i 2.42175i
\(326\) −1.70638 + 0.621144i −0.0945075 + 0.0344020i
\(327\) 6.47504i 0.358070i
\(328\) −8.23474 + 14.2667i −0.454687 + 0.787749i
\(329\) 2.05257i 0.113162i
\(330\) −1.71735 + 0.625138i −0.0945370 + 0.0344127i
\(331\) 5.90506 0.324572 0.162286 0.986744i \(-0.448113\pi\)
0.162286 + 0.986744i \(0.448113\pi\)
\(332\) −21.2540 25.3257i −1.16647 1.38993i
\(333\) 3.22313 0.176626
\(334\) 2.96505 1.07932i 0.162240 0.0590577i
\(335\) 30.7771 + 4.50577i 1.68153 + 0.246177i
\(336\) −0.349926 + 1.98630i −0.0190900 + 0.108361i
\(337\) 30.3217i 1.65173i −0.563869 0.825864i \(-0.690688\pi\)
0.563869 0.825864i \(-0.309312\pi\)
\(338\) 4.05669 + 11.1443i 0.220655 + 0.606173i
\(339\) 12.8033i 0.695381i
\(340\) 27.0758 + 32.2627i 1.46839 + 1.74969i
\(341\) −1.18641 −0.0642475
\(342\) −7.52395 + 2.73882i −0.406848 + 0.148098i
\(343\) −6.93090 −0.374234
\(344\) −24.8245 14.3286i −1.33845 0.772548i
\(345\) 8.61609 0.463875
\(346\) −4.24088 11.6504i −0.227991 0.626327i
\(347\) 25.4209 1.36466 0.682331 0.731043i \(-0.260966\pi\)
0.682331 + 0.731043i \(0.260966\pi\)
\(348\) 4.10497 3.44501i 0.220049 0.184672i
\(349\) 28.2378 1.51154 0.755768 0.654840i \(-0.227264\pi\)
0.755768 + 0.654840i \(0.227264\pi\)
\(350\) 2.30271 + 6.32589i 0.123085 + 0.338133i
\(351\) 4.62451i 0.246838i
\(352\) −1.89444 + 0.334413i −0.100974 + 0.0178243i
\(353\) 3.21842i 0.171299i 0.996325 + 0.0856496i \(0.0272965\pi\)
−0.996325 + 0.0856496i \(0.972703\pi\)
\(354\) 6.22848 2.26725i 0.331040 0.120503i
\(355\) −35.0010 −1.85766
\(356\) 14.3605 12.0517i 0.761104 0.638741i
\(357\) 2.79429 0.147889
\(358\) −9.04520 24.8485i −0.478054 1.31329i
\(359\) 10.2583i 0.541410i 0.962662 + 0.270705i \(0.0872568\pi\)
−0.962662 + 0.270705i \(0.912743\pi\)
\(360\) −5.37309 + 9.30891i −0.283186 + 0.490623i
\(361\) −13.0554 −0.687129
\(362\) −7.27894 19.9964i −0.382573 1.05099i
\(363\) 10.8844 0.571280
\(364\) −2.99795 3.57226i −0.157135 0.187237i
\(365\) 40.0997i 2.09891i
\(366\) 7.73113 2.81423i 0.404113 0.147102i
\(367\) 10.4326 0.544577 0.272288 0.962216i \(-0.412220\pi\)
0.272288 + 0.962216i \(0.412220\pi\)
\(368\) 8.93180 + 1.57352i 0.465602 + 0.0820251i
\(369\) 5.82399i 0.303185i
\(370\) 16.2767 5.92494i 0.846186 0.308023i
\(371\) 1.16023i 0.0602362i
\(372\) −5.34466 + 4.48539i −0.277108 + 0.232557i
\(373\) 18.9000i 0.978603i 0.872115 + 0.489301i \(0.162748\pi\)
−0.872115 + 0.489301i \(0.837252\pi\)
\(374\) 0.911657 + 2.50446i 0.0471406 + 0.129503i
\(375\) 16.8752i 0.871432i
\(376\) −5.75581 + 9.97199i −0.296833 + 0.514266i
\(377\) 12.3914i 0.638188i
\(378\) 0.243912 + 0.670063i 0.0125455 + 0.0344643i
\(379\) −37.2326 −1.91251 −0.956255 0.292536i \(-0.905501\pi\)
−0.956255 + 0.292536i \(0.905501\pi\)
\(380\) −32.9611 + 27.6619i −1.69087 + 1.41903i
\(381\) 13.0192i 0.666995i
\(382\) 7.46083 + 20.4960i 0.381729 + 1.04867i
\(383\) −27.8686 −1.42402 −0.712009 0.702171i \(-0.752214\pi\)
−0.712009 + 0.702171i \(0.752214\pi\)
\(384\) −7.27000 + 8.66874i −0.370996 + 0.442375i
\(385\) 0.651606i 0.0332089i
\(386\) −10.0441 27.5926i −0.511230 1.40443i
\(387\) −10.1339 −0.515134
\(388\) 0.578294 + 0.689078i 0.0293584 + 0.0349826i
\(389\) −31.7538 −1.60998 −0.804990 0.593288i \(-0.797829\pi\)
−0.804990 + 0.593288i \(0.797829\pi\)
\(390\) −8.50105 23.3537i −0.430467 1.18256i
\(391\) 12.5651i 0.635444i
\(392\) −16.5248 9.53806i −0.834626 0.481745i
\(393\) 18.9830i 0.957565i
\(394\) 25.6231 9.32715i 1.29087 0.469895i
\(395\) 36.4215i 1.83256i
\(396\) −0.520986 + 0.437226i −0.0261805 + 0.0219714i
\(397\) 30.5857 1.53505 0.767526 0.641018i \(-0.221488\pi\)
0.767526 + 0.641018i \(0.221488\pi\)
\(398\) −4.92238 + 1.79181i −0.246737 + 0.0898154i
\(399\) 2.85478i 0.142918i
\(400\) −6.55180 + 37.1902i −0.327590 + 1.85951i
\(401\) 1.33382i 0.0666076i −0.999445 0.0333038i \(-0.989397\pi\)
0.999445 0.0333038i \(-0.0106029\pi\)
\(402\) 11.3364 2.34213i 0.565409 0.116815i
\(403\) 16.1335i 0.803669i
\(404\) −6.84864 8.16063i −0.340732 0.406006i
\(405\) 3.80010i 0.188828i
\(406\) −0.653562 1.79543i −0.0324357 0.0891059i
\(407\) 1.09609 0.0543313
\(408\) 13.5754 + 7.83572i 0.672085 + 0.387926i
\(409\) 17.0811i 0.844607i 0.906454 + 0.422304i \(0.138778\pi\)
−0.906454 + 0.422304i \(0.861222\pi\)
\(410\) 10.7060 + 29.4110i 0.528732 + 1.45251i
\(411\) 0.648578i 0.0319920i
\(412\) 2.33503 + 2.78236i 0.115039 + 0.137077i
\(413\) 2.36324i 0.116288i
\(414\) 3.01308 1.09680i 0.148085 0.0539048i
\(415\) −62.8202 −3.08372
\(416\) −4.54757 25.7619i −0.222963 1.26308i
\(417\) 15.1383 0.741328
\(418\) −2.55868 + 0.931392i −0.125149 + 0.0455559i
\(419\) 30.8172i 1.50552i 0.658295 + 0.752760i \(0.271278\pi\)
−0.658295 + 0.752760i \(0.728722\pi\)
\(420\) 2.46350 + 2.93543i 0.120206 + 0.143234i
\(421\) −10.1332 −0.493861 −0.246930 0.969033i \(-0.579422\pi\)
−0.246930 + 0.969033i \(0.579422\pi\)
\(422\) −10.9458 + 3.98443i −0.532835 + 0.193959i
\(423\) 4.07078i 0.197928i
\(424\) 3.25351 5.63674i 0.158005 0.273744i
\(425\) 52.3185 2.53782
\(426\) −12.2400 + 4.45552i −0.593029 + 0.215871i
\(427\) 2.93339i 0.141957i
\(428\) −4.71332 5.61625i −0.227827 0.271472i
\(429\) 1.57266i 0.0759288i
\(430\) −51.1758 + 18.6287i −2.46792 + 0.898355i
\(431\) 21.3334i 1.02759i 0.857912 + 0.513797i \(0.171762\pi\)
−0.857912 + 0.513797i \(0.828238\pi\)
\(432\) −0.693993 + 3.93934i −0.0333898 + 0.189531i
\(433\) 35.9047i 1.72547i 0.505655 + 0.862736i \(0.331251\pi\)
−0.505655 + 0.862736i \(0.668749\pi\)
\(434\) 0.850936 + 2.33765i 0.0408462 + 0.112211i
\(435\) 10.1824i 0.488207i
\(436\) 8.32490 + 9.91970i 0.398691 + 0.475067i
\(437\) 12.8371 0.614081
\(438\) 5.10456 + 14.0230i 0.243905 + 0.670045i
\(439\) 15.4552i 0.737638i 0.929501 + 0.368819i \(0.120238\pi\)
−0.929501 + 0.368819i \(0.879762\pi\)
\(440\) −1.82723 + 3.16569i −0.0871098 + 0.150918i
\(441\) −6.74576 −0.321227
\(442\) −34.0573 + 12.3973i −1.61994 + 0.589680i
\(443\) 0.526859 0.0250318 0.0125159 0.999922i \(-0.496016\pi\)
0.0125159 + 0.999922i \(0.496016\pi\)
\(444\) 4.93780 4.14395i 0.234338 0.196663i
\(445\) 35.6211i 1.68860i
\(446\) 37.8938 13.7938i 1.79432 0.653158i
\(447\) 16.4646 0.778747
\(448\) 2.01768 + 3.49289i 0.0953265 + 0.165023i
\(449\) 8.56014 0.403978 0.201989 0.979388i \(-0.435259\pi\)
0.201989 + 0.979388i \(0.435259\pi\)
\(450\) 4.56686 + 12.5459i 0.215284 + 0.591418i
\(451\) 1.98057i 0.0932613i
\(452\) −16.4611 19.6146i −0.774267 0.922592i
\(453\) 22.4874i 1.05655i
\(454\) 30.0831 10.9506i 1.41187 0.513939i
\(455\) −8.86097 −0.415409
\(456\) −8.00535 + 13.8693i −0.374885 + 0.649490i
\(457\) 38.8655 1.81805 0.909025 0.416741i \(-0.136828\pi\)
0.909025 + 0.416741i \(0.136828\pi\)
\(458\) 31.4704 11.4556i 1.47051 0.535286i
\(459\) 5.54179 0.258668
\(460\) 13.1998 11.0776i 0.615443 0.516498i
\(461\) 36.1291 1.68270 0.841350 0.540491i \(-0.181761\pi\)
0.841350 + 0.540491i \(0.181761\pi\)
\(462\) 0.0829473 + 0.227869i 0.00385906 + 0.0106014i
\(463\) −34.8790 −1.62097 −0.810483 0.585762i \(-0.800795\pi\)
−0.810483 + 0.585762i \(0.800795\pi\)
\(464\) 1.85955 10.5555i 0.0863277 0.490025i
\(465\) 13.2574i 0.614797i
\(466\) −7.04163 + 2.56325i −0.326197 + 0.118740i
\(467\) 4.62628i 0.214079i 0.994255 + 0.107039i \(0.0341371\pi\)
−0.994255 + 0.107039i \(0.965863\pi\)
\(468\) −5.94570 7.08471i −0.274840 0.327491i
\(469\) 0.597855 4.08370i 0.0276064 0.188568i
\(470\) 7.48314 + 20.5573i 0.345172 + 0.948239i
\(471\) −4.28597 −0.197487
\(472\) 6.62699 11.4813i 0.305032 0.528471i
\(473\) −3.44624 −0.158458
\(474\) −4.63634 12.7367i −0.212954 0.585017i
\(475\) 53.4511i 2.45250i
\(476\) 4.28082 3.59259i 0.196211 0.164666i
\(477\) 2.30104i 0.105357i
\(478\) −1.12228 3.08307i −0.0513317 0.141016i
\(479\) 4.21394i 0.192540i 0.995355 + 0.0962700i \(0.0306912\pi\)
−0.995355 + 0.0962700i \(0.969309\pi\)
\(480\) 3.73687 + 21.1693i 0.170564 + 0.966242i
\(481\) 14.9054i 0.679627i
\(482\) 1.78812 + 4.91224i 0.0814467 + 0.223747i
\(483\) 1.14324i 0.0520191i
\(484\) 16.6747 13.9939i 0.757942 0.636087i
\(485\) 1.70925 0.0776132
\(486\) 0.483740 + 1.32891i 0.0219429 + 0.0602805i
\(487\) 19.4897 0.883161 0.441580 0.897222i \(-0.354418\pi\)
0.441580 + 0.897222i \(0.354418\pi\)
\(488\) 8.22578 14.2512i 0.372364 0.645123i
\(489\) 1.28405i 0.0580665i
\(490\) −34.0659 + 12.4005i −1.53894 + 0.560195i
\(491\) 10.2182i 0.461142i −0.973055 0.230571i \(-0.925941\pi\)
0.973055 0.230571i \(-0.0740594\pi\)
\(492\) 7.48786 + 8.92230i 0.337579 + 0.402248i
\(493\) −14.8492 −0.668775
\(494\) −12.6657 34.7946i −0.569856 1.56548i
\(495\) 1.29230i 0.0580847i
\(496\) −2.42113 + 13.7432i −0.108712 + 0.617086i
\(497\) 4.64416i 0.208319i
\(498\) −21.9684 + 7.99681i −0.984429 + 0.358345i
\(499\) 38.0177 1.70191 0.850954 0.525241i \(-0.176025\pi\)
0.850954 + 0.525241i \(0.176025\pi\)
\(500\) 21.6963 + 25.8527i 0.970289 + 1.15617i
\(501\) 2.23120i 0.0996825i
\(502\) −2.84066 7.80374i −0.126785 0.348298i
\(503\) −22.0210 −0.981867 −0.490933 0.871197i \(-0.663344\pi\)
−0.490933 + 0.871197i \(0.663344\pi\)
\(504\) 1.23517 + 0.712935i 0.0550187 + 0.0317567i
\(505\) −20.2424 −0.900775
\(506\) 1.02466 0.372990i 0.0455517 0.0165814i
\(507\) 8.38610 0.372440
\(508\) 16.7387 + 19.9453i 0.742660 + 0.884932i
\(509\) −13.9675 −0.619099 −0.309550 0.950883i \(-0.600178\pi\)
−0.309550 + 0.950883i \(0.600178\pi\)
\(510\) 27.9859 10.1872i 1.23924 0.451099i
\(511\) 5.32068 0.235373
\(512\) 0.00774800 + 22.6274i 0.000342417 + 1.00000i
\(513\) 5.66175i 0.249973i
\(514\) −9.57638 26.3078i −0.422396 1.16039i
\(515\) 6.90162 0.304122
\(516\) −15.5250 + 13.0290i −0.683450 + 0.573571i
\(517\) 1.38435i 0.0608838i
\(518\) −0.786159 2.15970i −0.0345419 0.0948918i
\(519\) −8.76686 −0.384823
\(520\) −43.0492 24.8479i −1.88783 1.08965i
\(521\) 24.9200i 1.09177i 0.837862 + 0.545883i \(0.183806\pi\)
−0.837862 + 0.545883i \(0.816194\pi\)
\(522\) −1.29618 3.56081i −0.0567323 0.155852i
\(523\) 40.3900i 1.76613i 0.469248 + 0.883066i \(0.344525\pi\)
−0.469248 + 0.883066i \(0.655475\pi\)
\(524\) 24.4063 + 29.0818i 1.06619 + 1.27044i
\(525\) 4.76022 0.207753
\(526\) −30.2630 + 11.0161i −1.31953 + 0.480326i
\(527\) 19.3336 0.842187
\(528\) −0.236007 + 1.33965i −0.0102709 + 0.0583009i
\(529\) 17.8592 0.776487
\(530\) −4.22990 11.6202i −0.183735 0.504748i
\(531\) 4.68692i 0.203395i
\(532\) 3.67036 + 4.37349i 0.159130 + 0.189615i
\(533\) −26.9331 −1.16660
\(534\) −4.53445 12.4568i −0.196225 0.539060i
\(535\) −13.9311 −0.602293
\(536\) 14.3560 18.1633i 0.620086 0.784534i
\(537\) −18.6985 −0.806899
\(538\) −12.2205 33.5716i −0.526863 1.44737i
\(539\) −2.29404 −0.0988112
\(540\) 4.88575 + 5.82171i 0.210249 + 0.250527i
\(541\) 10.9995i 0.472906i −0.971643 0.236453i \(-0.924015\pi\)
0.971643 0.236453i \(-0.0759849\pi\)
\(542\) −13.6256 37.4316i −0.585269 1.60782i
\(543\) −15.0472 −0.645738
\(544\) 30.8718 5.44958i 1.32362 0.233649i
\(545\) 24.6058 1.05400
\(546\) −3.09871 + 1.12797i −0.132613 + 0.0482728i
\(547\) −27.1656 −1.16152 −0.580758 0.814077i \(-0.697244\pi\)
−0.580758 + 0.814077i \(0.697244\pi\)
\(548\) 0.833871 + 0.993616i 0.0356212 + 0.0424452i
\(549\) 5.81766i 0.248292i
\(550\) 1.55306 + 4.26648i 0.0662225 + 0.181923i
\(551\) 15.1707i 0.646292i
\(552\) 3.20586 5.55418i 0.136451 0.236402i
\(553\) −4.83263 −0.205504
\(554\) 5.37520 + 14.7665i 0.228370 + 0.627368i
\(555\) 12.2482i 0.519907i
\(556\) 23.1918 19.4632i 0.983552 0.825425i
\(557\) −26.7154 −1.13197 −0.565984 0.824416i \(-0.691504\pi\)
−0.565984 + 0.824416i \(0.691504\pi\)
\(558\) 1.68762 + 4.63616i 0.0714428 + 0.196264i
\(559\) 46.8642i 1.98214i
\(560\) 7.54812 + 1.32975i 0.318966 + 0.0561923i
\(561\) 1.88460 0.0795679
\(562\) −23.5728 + 8.58081i −0.994358 + 0.361959i
\(563\) −4.60311 −0.193998 −0.0969989 0.995284i \(-0.530924\pi\)
−0.0969989 + 0.995284i \(0.530924\pi\)
\(564\) 5.23377 + 6.23640i 0.220381 + 0.262600i
\(565\) −48.6539 −2.04688
\(566\) −1.48263 + 0.539698i −0.0623197 + 0.0226852i
\(567\) 0.504221 0.0211753
\(568\) −13.0231 + 22.5627i −0.546438 + 0.946708i
\(569\) −26.9989 −1.13185 −0.565927 0.824456i \(-0.691481\pi\)
−0.565927 + 0.824456i \(0.691481\pi\)
\(570\) 10.4078 + 28.5917i 0.435933 + 1.19758i
\(571\) 42.5338i 1.77998i −0.455978 0.889991i \(-0.650710\pi\)
0.455978 0.889991i \(-0.349290\pi\)
\(572\) −2.02196 2.40930i −0.0845423 0.100738i
\(573\) 15.4232 0.644315
\(574\) 3.90244 1.42054i 0.162885 0.0592922i
\(575\) 21.4053i 0.892663i
\(576\) 4.00158 + 6.92729i 0.166733 + 0.288637i
\(577\) 20.8087i 0.866278i −0.901327 0.433139i \(-0.857406\pi\)
0.901327 0.433139i \(-0.142594\pi\)
\(578\) −6.63276 18.2212i −0.275886 0.757902i
\(579\) −20.7634 −0.862897
\(580\) −13.0914 15.5993i −0.543590 0.647725i
\(581\) 8.33538i 0.345810i
\(582\) 0.597733 0.217583i 0.0247768 0.00901909i
\(583\) 0.782516i 0.0324085i
\(584\) 25.8494 + 14.9202i 1.06966 + 0.617403i
\(585\) −17.5736 −0.726578
\(586\) −6.82408 18.7468i −0.281900 0.774422i
\(587\) 22.3079 0.920746 0.460373 0.887726i \(-0.347716\pi\)
0.460373 + 0.887726i \(0.347716\pi\)
\(588\) −10.3344 + 8.67297i −0.426185 + 0.357667i
\(589\) 19.7522i 0.813874i
\(590\) −8.61577 23.6688i −0.354706 0.974431i
\(591\) 19.2813i 0.793128i
\(592\) 2.23683 12.6970i 0.0919331 0.521843i
\(593\) 16.7245i 0.686791i 0.939191 + 0.343396i \(0.111577\pi\)
−0.939191 + 0.343396i \(0.888423\pi\)
\(594\) 0.164506 + 0.451923i 0.00674976 + 0.0185426i
\(595\) 10.6186i 0.435318i
\(596\) 25.2235 21.1683i 1.03320 0.867089i
\(597\) 3.70408i 0.151598i
\(598\) 5.07217 + 13.9340i 0.207416 + 0.569804i
\(599\) −34.0386 −1.39078 −0.695391 0.718632i \(-0.744769\pi\)
−0.695391 + 0.718632i \(0.744769\pi\)
\(600\) 23.1265 + 13.3486i 0.944135 + 0.544953i
\(601\) −20.8952 −0.852334 −0.426167 0.904645i \(-0.640136\pi\)
−0.426167 + 0.904645i \(0.640136\pi\)
\(602\) 2.47177 + 6.79034i 0.100742 + 0.276753i
\(603\) 1.18570 8.09902i 0.0482854 0.329818i
\(604\) −28.9118 34.4504i −1.17641 1.40177i
\(605\) 41.3616i 1.68159i
\(606\) −7.07884 + 2.57679i −0.287558 + 0.104675i
\(607\) 17.6228i 0.715286i 0.933858 + 0.357643i \(0.116420\pi\)
−0.933858 + 0.357643i \(0.883580\pi\)
\(608\) 5.56755 + 31.5401i 0.225794 + 1.27912i
\(609\) −1.35106 −0.0547477
\(610\) −10.6944 29.3790i −0.433002 1.18952i
\(611\) −18.8254 −0.761592
\(612\) 8.48997 7.12503i 0.343187 0.288012i
\(613\) −11.6404 −0.470150 −0.235075 0.971977i \(-0.575534\pi\)
−0.235075 + 0.971977i \(0.575534\pi\)
\(614\) 12.2563 4.46146i 0.494624 0.180050i
\(615\) 22.1317 0.892437
\(616\) 0.420044 + 0.242449i 0.0169241 + 0.00976853i
\(617\) −24.5113 −0.986789 −0.493395 0.869806i \(-0.664244\pi\)
−0.493395 + 0.869806i \(0.664244\pi\)
\(618\) 2.41352 0.878554i 0.0970861 0.0353406i
\(619\) 12.3130i 0.494903i −0.968900 0.247452i \(-0.920407\pi\)
0.968900 0.247452i \(-0.0795931\pi\)
\(620\) 17.0449 + 20.3102i 0.684541 + 0.815678i
\(621\) 2.26733i 0.0909850i
\(622\) 6.00148 + 16.4870i 0.240637 + 0.661068i
\(623\) −4.72644 −0.189361
\(624\) −18.2175 3.20938i −0.729284 0.128478i
\(625\) 16.9238 0.676950
\(626\) 32.8984 11.9755i 1.31489 0.478636i
\(627\) 1.92540i 0.0768930i
\(628\) −6.56607 + 5.51044i −0.262015 + 0.219890i
\(629\) −17.8619 −0.712200
\(630\) 2.54631 0.926889i 0.101447 0.0369281i
\(631\) 44.6443 1.77726 0.888632 0.458622i \(-0.151657\pi\)
0.888632 + 0.458622i \(0.151657\pi\)
\(632\) −23.4783 13.5516i −0.933918 0.539055i
\(633\) 8.23671i 0.327380i
\(634\) 4.63474 + 12.7323i 0.184069 + 0.505666i
\(635\) 49.4743 1.96333
\(636\) −2.95842 3.52517i −0.117309 0.139782i
\(637\) 31.1958i 1.23602i
\(638\) −0.440794 1.21093i −0.0174512 0.0479411i
\(639\) 9.21056i 0.364364i
\(640\) 32.9420 + 27.6267i 1.30215 + 1.09204i
\(641\) 21.8812i 0.864257i 0.901812 + 0.432129i \(0.142237\pi\)
−0.901812 + 0.432129i \(0.857763\pi\)
\(642\) −4.87175 + 1.77338i −0.192273 + 0.0699898i
\(643\) 0.844350i 0.0332979i −0.999861 0.0166490i \(-0.994700\pi\)
0.999861 0.0166490i \(-0.00529977\pi\)
\(644\) −1.46985 1.75143i −0.0579203 0.0690160i
\(645\) 38.5097i 1.51632i
\(646\) 41.6961 15.1779i 1.64051 0.597168i
\(647\) −38.2100 −1.50219 −0.751095 0.660194i \(-0.770474\pi\)
−0.751095 + 0.660194i \(0.770474\pi\)
\(648\) 2.44965 + 1.41393i 0.0962314 + 0.0555446i
\(649\) 1.59388i 0.0625654i
\(650\) −58.0185 + 21.1195i −2.27567 + 0.828375i
\(651\) 1.75908 0.0689437
\(652\) 1.65089 + 1.96715i 0.0646537 + 0.0770394i
\(653\) 7.95949i 0.311479i −0.987798 0.155740i \(-0.950224\pi\)
0.987798 0.155740i \(-0.0497761\pi\)
\(654\) 8.60473 3.13224i 0.336471 0.122480i
\(655\) 72.1372 2.81863
\(656\) 22.9427 + 4.04181i 0.895760 + 0.157806i
\(657\) 10.5523 0.411684
\(658\) 2.72768 0.992911i 0.106336 0.0387077i
\(659\) 1.09591i 0.0426905i 0.999772 + 0.0213453i \(0.00679493\pi\)
−0.999772 + 0.0213453i \(0.993205\pi\)
\(660\) 1.66150 + 1.97980i 0.0646739 + 0.0770634i
\(661\) 8.08616i 0.314515i 0.987558 + 0.157258i \(0.0502653\pi\)
−0.987558 + 0.157258i \(0.949735\pi\)
\(662\) −2.85652 7.84728i −0.111022 0.304993i
\(663\) 25.6281i 0.995311i
\(664\) −23.3740 + 40.4957i −0.907088 + 1.57154i
\(665\) 10.8484 0.420684
\(666\) −1.55916 4.28324i −0.0604161 0.165972i
\(667\) 6.07532i 0.235237i
\(668\) −2.86863 3.41817i −0.110991 0.132253i
\(669\) 28.5150i 1.10245i
\(670\) −8.90034 43.0795i −0.343850 1.66431i
\(671\) 1.97842i 0.0763759i
\(672\) 2.80888 0.495832i 0.108355 0.0191271i
\(673\) 21.3833i 0.824264i 0.911124 + 0.412132i \(0.135216\pi\)
−0.911124 + 0.412132i \(0.864784\pi\)
\(674\) −40.2948 + 14.6678i −1.55210 + 0.564984i
\(675\) 9.44073 0.363374
\(676\) 12.8474 10.7819i 0.494132 0.414690i
\(677\) 35.4808i 1.36364i −0.731520 0.681820i \(-0.761189\pi\)
0.731520 0.681820i \(-0.238811\pi\)
\(678\) −17.0144 + 6.19348i −0.653436 + 0.237859i
\(679\) 0.226795i 0.00870359i
\(680\) 29.7765 51.5880i 1.14188 1.97831i
\(681\) 22.6375i 0.867470i
\(682\) 0.573912 + 1.57662i 0.0219762 + 0.0603720i
\(683\) −1.55508 −0.0595035 −0.0297518 0.999557i \(-0.509472\pi\)
−0.0297518 + 0.999557i \(0.509472\pi\)
\(684\) 7.27927 + 8.67376i 0.278330 + 0.331649i
\(685\) 2.46466 0.0941698
\(686\) 3.35276 + 9.21053i 0.128009 + 0.351660i
\(687\) 23.6814i 0.903501i
\(688\) −7.03284 + 39.9207i −0.268125 + 1.52196i
\(689\) 10.6412 0.405396
\(690\) −4.16795 11.4500i −0.158671 0.435894i
\(691\) 11.1474i 0.424069i 0.977262 + 0.212034i \(0.0680089\pi\)
−0.977262 + 0.212034i \(0.931991\pi\)
\(692\) −13.4308 + 11.2715i −0.510561 + 0.428477i
\(693\) 0.171471 0.00651364
\(694\) −12.2971 33.7820i −0.466791 1.28235i
\(695\) 57.5272i 2.18213i
\(696\) −6.56384 3.78864i −0.248802 0.143608i
\(697\) 32.2753i 1.22251i
\(698\) −13.6598 37.5255i −0.517030 1.42036i
\(699\) 5.29881i 0.200419i
\(700\) 7.29261 6.12017i 0.275635 0.231321i
\(701\) 25.9270i 0.979248i −0.871934 0.489624i \(-0.837134\pi\)
0.871934 0.489624i \(-0.162866\pi\)
\(702\) −6.14555 + 2.23706i −0.231949 + 0.0844324i
\(703\) 18.2486i 0.688257i
\(704\) 1.36082 + 2.35577i 0.0512879 + 0.0887864i
\(705\) 15.4693 0.582609
\(706\) 4.27698 1.55688i 0.160966 0.0585939i
\(707\) 2.68589i 0.101013i
\(708\) −6.02593 7.18032i −0.226468 0.269853i
\(709\) −28.4463 −1.06832 −0.534162 0.845382i \(-0.679373\pi\)
−0.534162 + 0.845382i \(0.679373\pi\)
\(710\) 16.9314 + 46.5131i 0.635424 + 1.74561i
\(711\) −9.58435 −0.359441
\(712\) −22.9624 13.2538i −0.860552 0.496709i
\(713\) 7.91005i 0.296234i
\(714\) −1.35171 3.71335i −0.0505864 0.138969i
\(715\) −5.97626 −0.223500
\(716\) −28.6459 + 24.0405i −1.07055 + 0.898435i
\(717\) −2.32000 −0.0866420
\(718\) 13.6323 4.96233i 0.508752 0.185193i
\(719\) 19.2378i 0.717449i 0.933444 + 0.358724i \(0.116788\pi\)
−0.933444 + 0.358724i \(0.883212\pi\)
\(720\) 14.9699 + 2.63724i 0.557894 + 0.0982842i
\(721\) 0.915751i 0.0341044i
\(722\) 6.31544 + 17.3495i 0.235036 + 0.645681i
\(723\) 3.69645 0.137473
\(724\) −23.0522 + 19.3461i −0.856728 + 0.718991i
\(725\) −25.2964 −0.939486
\(726\) −5.26520 14.4643i −0.195410 0.536820i
\(727\) −14.4119 −0.534506 −0.267253 0.963626i \(-0.586116\pi\)
−0.267253 + 0.963626i \(0.586116\pi\)
\(728\) −3.29698 + 5.71204i −0.122194 + 0.211702i
\(729\) 1.00000 0.0370370
\(730\) 53.2888 19.3978i 1.97231 0.717945i
\(731\) 56.1598 2.07714
\(732\) −7.47972 8.91260i −0.276458 0.329419i
\(733\) 34.5142i 1.27481i −0.770528 0.637406i \(-0.780008\pi\)
0.770528 0.637406i \(-0.219992\pi\)
\(734\) −5.04666 13.8640i −0.186276 0.511728i
\(735\) 25.6345i 0.945544i
\(736\) −2.22961 12.6307i −0.0821846 0.465574i
\(737\) 0.403222 2.75424i 0.0148529 0.101454i
\(738\) 7.73954 2.81730i 0.284897 0.103706i
\(739\) 38.1448 1.40318 0.701589 0.712582i \(-0.252474\pi\)
0.701589 + 0.712582i \(0.252474\pi\)
\(740\) −15.7474 18.7641i −0.578886 0.689783i
\(741\) −26.1828 −0.961851
\(742\) −1.54184 + 0.561250i −0.0566027 + 0.0206042i
\(743\) 3.37379i 0.123772i −0.998083 0.0618862i \(-0.980288\pi\)
0.998083 0.0618862i \(-0.0197116\pi\)
\(744\) 8.54610 + 4.93279i 0.313315 + 0.180845i
\(745\) 62.5669i 2.29227i
\(746\) 25.1163 9.14267i 0.919573 0.334737i
\(747\) 16.5312i 0.604845i
\(748\) 2.88719 2.42302i 0.105566 0.0885942i
\(749\) 1.84846i 0.0675414i
\(750\) 22.4256 8.16321i 0.818867 0.298078i
\(751\) 15.4907i 0.565265i 0.959228 + 0.282632i \(0.0912076\pi\)
−0.959228 + 0.282632i \(0.908792\pi\)
\(752\) 16.0362 + 2.82509i 0.584779 + 0.103021i
\(753\) −5.87230 −0.213998
\(754\) 16.4670 5.99420i 0.599693 0.218296i
\(755\) −85.4541 −3.10999
\(756\) 0.772462 0.648273i 0.0280942 0.0235775i
\(757\) 1.49878i 0.0544739i 0.999629 + 0.0272370i \(0.00867086\pi\)
−0.999629 + 0.0272370i \(0.991329\pi\)
\(758\) 18.0109 + 49.4787i 0.654185 + 1.79715i
\(759\) 0.771055i 0.0279875i
\(760\) 52.7048 + 30.4211i 1.91180 + 1.10349i
\(761\) −29.5458 −1.07103 −0.535517 0.844524i \(-0.679883\pi\)
−0.535517 + 0.844524i \(0.679883\pi\)
\(762\) 17.3014 6.29792i 0.626762 0.228150i
\(763\) 3.26485i 0.118196i
\(764\) 23.6282 19.8295i 0.854840 0.717407i
\(765\) 21.0593i 0.761401i
\(766\) 13.4811 + 37.0347i 0.487093 + 1.33812i
\(767\) 21.6747 0.782628
\(768\) 15.0367 + 5.46775i 0.542592 + 0.197300i
\(769\) 22.9587i 0.827914i 0.910297 + 0.413957i \(0.135854\pi\)
−0.910297 + 0.413957i \(0.864146\pi\)
\(770\) 0.865924 0.315208i 0.0312057 0.0113593i
\(771\) −19.7965 −0.712955
\(772\)