Properties

Label 804.2.e.a.535.12
Level 804
Weight 2
Character 804.535
Analytic conductor 6.420
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(34\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 535.12
Character \(\chi\) = 804.535
Dual form 804.2.e.a.535.11

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.921850 + 1.07247i) q^{2} -1.00000 q^{3} +(-0.300386 - 1.97731i) q^{4} +1.54735i q^{5} +(0.921850 - 1.07247i) q^{6} +4.78228 q^{7} +(2.39752 + 1.50063i) q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(-0.921850 + 1.07247i) q^{2} -1.00000 q^{3} +(-0.300386 - 1.97731i) q^{4} +1.54735i q^{5} +(0.921850 - 1.07247i) q^{6} +4.78228 q^{7} +(2.39752 + 1.50063i) q^{8} +1.00000 q^{9} +(-1.65949 - 1.42642i) q^{10} +3.05580 q^{11} +(0.300386 + 1.97731i) q^{12} -3.50455i q^{13} +(-4.40854 + 5.12886i) q^{14} -1.54735i q^{15} +(-3.81954 + 1.18791i) q^{16} -4.48195 q^{17} +(-0.921850 + 1.07247i) q^{18} -6.47223i q^{19} +(3.05959 - 0.464802i) q^{20} -4.78228 q^{21} +(-2.81698 + 3.27725i) q^{22} -5.90022i q^{23} +(-2.39752 - 1.50063i) q^{24} +2.60571 q^{25} +(3.75853 + 3.23067i) q^{26} -1.00000 q^{27} +(-1.43653 - 9.45607i) q^{28} +5.56432 q^{29} +(1.65949 + 1.42642i) q^{30} -8.11655 q^{31} +(2.24704 - 5.19142i) q^{32} -3.05580 q^{33} +(4.13168 - 4.80676i) q^{34} +7.39986i q^{35} +(-0.300386 - 1.97731i) q^{36} +2.86229 q^{37} +(6.94127 + 5.96642i) q^{38} +3.50455i q^{39} +(-2.32200 + 3.70980i) q^{40} +5.82224i q^{41} +(4.40854 - 5.12886i) q^{42} +8.69388 q^{43} +(-0.917918 - 6.04227i) q^{44} +1.54735i q^{45} +(6.32781 + 5.43911i) q^{46} +3.02486i q^{47} +(3.81954 - 1.18791i) q^{48} +15.8702 q^{49} +(-2.40207 + 2.79455i) q^{50} +4.48195 q^{51} +(-6.92960 + 1.05272i) q^{52} +5.29439i q^{53} +(0.921850 - 1.07247i) q^{54} +4.72838i q^{55} +(11.4656 + 7.17644i) q^{56} +6.47223i q^{57} +(-5.12946 + 5.96756i) q^{58} -14.0544i q^{59} +(-3.05959 + 0.464802i) q^{60} +0.366956i q^{61} +(7.48224 - 8.70476i) q^{62} +4.78228 q^{63} +(3.49622 + 7.19559i) q^{64} +5.42277 q^{65} +(2.81698 - 3.27725i) q^{66} +(-2.49611 - 7.79547i) q^{67} +(1.34631 + 8.86222i) q^{68} +5.90022i q^{69} +(-7.93613 - 6.82156i) q^{70} +4.06493i q^{71} +(2.39752 + 1.50063i) q^{72} -14.7237 q^{73} +(-2.63860 + 3.06973i) q^{74} -2.60571 q^{75} +(-12.7976 + 1.94417i) q^{76} +14.6137 q^{77} +(-3.75853 - 3.23067i) q^{78} +12.4188 q^{79} +(-1.83812 - 5.91016i) q^{80} +1.00000 q^{81} +(-6.24418 - 5.36723i) q^{82} +7.10690i q^{83} +(1.43653 + 9.45607i) q^{84} -6.93514i q^{85} +(-8.01445 + 9.32393i) q^{86} -5.56432 q^{87} +(7.32633 + 4.58562i) q^{88} +4.89866 q^{89} +(-1.65949 - 1.42642i) q^{90} -16.7598i q^{91} +(-11.6666 + 1.77234i) q^{92} +8.11655 q^{93} +(-3.24407 - 2.78847i) q^{94} +10.0148 q^{95} +(-2.24704 + 5.19142i) q^{96} +5.71259i q^{97} +(-14.6299 + 17.0203i) q^{98} +3.05580 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} + O(q^{10}) \) \( 34q - 34q^{3} + 2q^{4} - 4q^{7} + 6q^{8} + 34q^{9} - 6q^{10} - 2q^{12} - 4q^{14} + 2q^{16} + 12q^{20} + 4q^{21} - 8q^{22} - 6q^{24} - 34q^{25} + 10q^{26} - 34q^{27} + 8q^{28} - 16q^{29} + 6q^{30} + 4q^{31} + 2q^{36} + 12q^{37} - 26q^{38} - 18q^{40} + 4q^{42} + 4q^{43} - 26q^{44} + 4q^{46} - 2q^{48} + 46q^{49} + 18q^{50} - 32q^{52} + 14q^{56} - 4q^{58} - 12q^{60} - 2q^{62} - 4q^{63} + 26q^{64} + 8q^{66} + 18q^{67} - 34q^{68} - 56q^{70} + 6q^{72} + 12q^{73} - 22q^{74} + 34q^{75} - 32q^{76} - 8q^{77} - 10q^{78} + 12q^{79} + 2q^{80} + 34q^{81} + 26q^{82} - 8q^{84} + 6q^{86} + 16q^{87} - 28q^{88} - 6q^{90} - 46q^{92} - 4q^{93} - 32q^{94} + 40q^{95} + 40q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.921850 + 1.07247i −0.651846 + 0.758351i
\(3\) −1.00000 −0.577350
\(4\) −0.300386 1.97731i −0.150193 0.988657i
\(5\) 1.54735i 0.691995i 0.938235 + 0.345998i \(0.112460\pi\)
−0.938235 + 0.345998i \(0.887540\pi\)
\(6\) 0.921850 1.07247i 0.376344 0.437834i
\(7\) 4.78228 1.80753 0.903766 0.428027i \(-0.140791\pi\)
0.903766 + 0.428027i \(0.140791\pi\)
\(8\) 2.39752 + 1.50063i 0.847652 + 0.530553i
\(9\) 1.00000 0.333333
\(10\) −1.65949 1.42642i −0.524776 0.451075i
\(11\) 3.05580 0.921357 0.460678 0.887567i \(-0.347606\pi\)
0.460678 + 0.887567i \(0.347606\pi\)
\(12\) 0.300386 + 1.97731i 0.0867140 + 0.570801i
\(13\) 3.50455i 0.971988i −0.873962 0.485994i \(-0.838458\pi\)
0.873962 0.485994i \(-0.161542\pi\)
\(14\) −4.40854 + 5.12886i −1.17823 + 1.37074i
\(15\) 1.54735i 0.399524i
\(16\) −3.81954 + 1.18791i −0.954884 + 0.296979i
\(17\) −4.48195 −1.08703 −0.543516 0.839399i \(-0.682907\pi\)
−0.543516 + 0.839399i \(0.682907\pi\)
\(18\) −0.921850 + 1.07247i −0.217282 + 0.252784i
\(19\) 6.47223i 1.48483i −0.669940 0.742415i \(-0.733680\pi\)
0.669940 0.742415i \(-0.266320\pi\)
\(20\) 3.05959 0.464802i 0.684146 0.103933i
\(21\) −4.78228 −1.04358
\(22\) −2.81698 + 3.27725i −0.600583 + 0.698712i
\(23\) 5.90022i 1.23028i −0.788418 0.615140i \(-0.789099\pi\)
0.788418 0.615140i \(-0.210901\pi\)
\(24\) −2.39752 1.50063i −0.489392 0.306315i
\(25\) 2.60571 0.521142
\(26\) 3.75853 + 3.23067i 0.737108 + 0.633587i
\(27\) −1.00000 −0.192450
\(28\) −1.43653 9.45607i −0.271479 1.78703i
\(29\) 5.56432 1.03327 0.516634 0.856207i \(-0.327185\pi\)
0.516634 + 0.856207i \(0.327185\pi\)
\(30\) 1.65949 + 1.42642i 0.302979 + 0.260428i
\(31\) −8.11655 −1.45777 −0.728887 0.684634i \(-0.759962\pi\)
−0.728887 + 0.684634i \(0.759962\pi\)
\(32\) 2.24704 5.19142i 0.397223 0.917722i
\(33\) −3.05580 −0.531946
\(34\) 4.13168 4.80676i 0.708578 0.824352i
\(35\) 7.39986i 1.25080i
\(36\) −0.300386 1.97731i −0.0500643 0.329552i
\(37\) 2.86229 0.470558 0.235279 0.971928i \(-0.424400\pi\)
0.235279 + 0.971928i \(0.424400\pi\)
\(38\) 6.94127 + 5.96642i 1.12602 + 0.967881i
\(39\) 3.50455i 0.561178i
\(40\) −2.32200 + 3.70980i −0.367140 + 0.586571i
\(41\) 5.82224i 0.909282i 0.890675 + 0.454641i \(0.150232\pi\)
−0.890675 + 0.454641i \(0.849768\pi\)
\(42\) 4.40854 5.12886i 0.680253 0.791400i
\(43\) 8.69388 1.32580 0.662902 0.748706i \(-0.269324\pi\)
0.662902 + 0.748706i \(0.269324\pi\)
\(44\) −0.917918 6.04227i −0.138381 0.910906i
\(45\) 1.54735i 0.230665i
\(46\) 6.32781 + 5.43911i 0.932984 + 0.801953i
\(47\) 3.02486i 0.441221i 0.975362 + 0.220611i \(0.0708050\pi\)
−0.975362 + 0.220611i \(0.929195\pi\)
\(48\) 3.81954 1.18791i 0.551303 0.171461i
\(49\) 15.8702 2.26717
\(50\) −2.40207 + 2.79455i −0.339705 + 0.395209i
\(51\) 4.48195 0.627598
\(52\) −6.92960 + 1.05272i −0.960962 + 0.145986i
\(53\) 5.29439i 0.727241i 0.931547 + 0.363620i \(0.118459\pi\)
−0.931547 + 0.363620i \(0.881541\pi\)
\(54\) 0.921850 1.07247i 0.125448 0.145945i
\(55\) 4.72838i 0.637575i
\(56\) 11.4656 + 7.17644i 1.53216 + 0.958992i
\(57\) 6.47223i 0.857267i
\(58\) −5.12946 + 5.96756i −0.673531 + 0.783580i
\(59\) 14.0544i 1.82973i −0.403760 0.914865i \(-0.632297\pi\)
0.403760 0.914865i \(-0.367703\pi\)
\(60\) −3.05959 + 0.464802i −0.394992 + 0.0600057i
\(61\) 0.366956i 0.0469839i 0.999724 + 0.0234919i \(0.00747840\pi\)
−0.999724 + 0.0234919i \(0.992522\pi\)
\(62\) 7.48224 8.70476i 0.950245 1.10551i
\(63\) 4.78228 0.602511
\(64\) 3.49622 + 7.19559i 0.437027 + 0.899448i
\(65\) 5.42277 0.672611
\(66\) 2.81698 3.27725i 0.346747 0.403402i
\(67\) −2.49611 7.79547i −0.304949 0.952369i
\(68\) 1.34631 + 8.86222i 0.163265 + 1.07470i
\(69\) 5.90022i 0.710303i
\(70\) −7.93613 6.82156i −0.948549 0.815332i
\(71\) 4.06493i 0.482418i 0.970473 + 0.241209i \(0.0775440\pi\)
−0.970473 + 0.241209i \(0.922456\pi\)
\(72\) 2.39752 + 1.50063i 0.282551 + 0.176851i
\(73\) −14.7237 −1.72328 −0.861638 0.507523i \(-0.830561\pi\)
−0.861638 + 0.507523i \(0.830561\pi\)
\(74\) −2.63860 + 3.06973i −0.306732 + 0.356848i
\(75\) −2.60571 −0.300882
\(76\) −12.7976 + 1.94417i −1.46799 + 0.223011i
\(77\) 14.6137 1.66538
\(78\) −3.75853 3.23067i −0.425570 0.365801i
\(79\) 12.4188 1.39722 0.698611 0.715502i \(-0.253802\pi\)
0.698611 + 0.715502i \(0.253802\pi\)
\(80\) −1.83812 5.91016i −0.205508 0.660775i
\(81\) 1.00000 0.111111
\(82\) −6.24418 5.36723i −0.689555 0.592712i
\(83\) 7.10690i 0.780084i 0.920797 + 0.390042i \(0.127540\pi\)
−0.920797 + 0.390042i \(0.872460\pi\)
\(84\) 1.43653 + 9.45607i 0.156738 + 1.03174i
\(85\) 6.93514i 0.752221i
\(86\) −8.01445 + 9.32393i −0.864221 + 1.00543i
\(87\) −5.56432 −0.596557
\(88\) 7.32633 + 4.58562i 0.780990 + 0.488829i
\(89\) 4.89866 0.519257 0.259628 0.965709i \(-0.416400\pi\)
0.259628 + 0.965709i \(0.416400\pi\)
\(90\) −1.65949 1.42642i −0.174925 0.150358i
\(91\) 16.7598i 1.75690i
\(92\) −11.6666 + 1.77234i −1.21632 + 0.184779i
\(93\) 8.11655 0.841647
\(94\) −3.24407 2.78847i −0.334601 0.287608i
\(95\) 10.0148 1.02750
\(96\) −2.24704 + 5.19142i −0.229337 + 0.529847i
\(97\) 5.71259i 0.580026i 0.957023 + 0.290013i \(0.0936596\pi\)
−0.957023 + 0.290013i \(0.906340\pi\)
\(98\) −14.6299 + 17.0203i −1.47785 + 1.71931i
\(99\) 3.05580 0.307119
\(100\) −0.782719 5.15231i −0.0782719 0.515231i
\(101\) 0.0467073i 0.00464755i −0.999997 0.00232378i \(-0.999260\pi\)
0.999997 0.00232378i \(-0.000739682\pi\)
\(102\) −4.13168 + 4.80676i −0.409098 + 0.475940i
\(103\) 18.4162i 1.81460i 0.420482 + 0.907301i \(0.361861\pi\)
−0.420482 + 0.907301i \(0.638139\pi\)
\(104\) 5.25904 8.40224i 0.515691 0.823907i
\(105\) 7.39986i 0.722152i
\(106\) −5.67808 4.88063i −0.551504 0.474049i
\(107\) 11.8686i 1.14738i −0.819072 0.573691i \(-0.805511\pi\)
0.819072 0.573691i \(-0.194489\pi\)
\(108\) 0.300386 + 1.97731i 0.0289047 + 0.190267i
\(109\) 7.02149i 0.672536i −0.941766 0.336268i \(-0.890835\pi\)
0.941766 0.336268i \(-0.109165\pi\)
\(110\) −5.07105 4.35886i −0.483506 0.415601i
\(111\) −2.86229 −0.271677
\(112\) −18.2661 + 5.68094i −1.72598 + 0.536799i
\(113\) 3.48144i 0.327506i −0.986501 0.163753i \(-0.947640\pi\)
0.986501 0.163753i \(-0.0523600\pi\)
\(114\) −6.94127 5.96642i −0.650110 0.558806i
\(115\) 9.12969 0.851348
\(116\) −1.67144 11.0024i −0.155190 1.02155i
\(117\) 3.50455i 0.323996i
\(118\) 15.0730 + 12.9561i 1.38758 + 1.19270i
\(119\) −21.4339 −1.96485
\(120\) 2.32200 3.70980i 0.211969 0.338657i
\(121\) −1.66211 −0.151101
\(122\) −0.393549 0.338278i −0.0356303 0.0306263i
\(123\) 5.82224i 0.524974i
\(124\) 2.43810 + 16.0490i 0.218948 + 1.44124i
\(125\) 11.7687i 1.05262i
\(126\) −4.40854 + 5.12886i −0.392744 + 0.456915i
\(127\) 16.7166i 1.48336i 0.670756 + 0.741678i \(0.265970\pi\)
−0.670756 + 0.741678i \(0.734030\pi\)
\(128\) −10.9400 2.88366i −0.966972 0.254882i
\(129\) −8.69388 −0.765454
\(130\) −4.99897 + 5.81576i −0.438439 + 0.510076i
\(131\) 13.6516i 1.19274i 0.802708 + 0.596372i \(0.203392\pi\)
−0.802708 + 0.596372i \(0.796608\pi\)
\(132\) 0.917918 + 6.04227i 0.0798945 + 0.525912i
\(133\) 30.9520i 2.68388i
\(134\) 10.6615 + 4.50925i 0.921010 + 0.389540i
\(135\) 1.54735i 0.133175i
\(136\) −10.7456 6.72575i −0.921425 0.576728i
\(137\) 18.2998i 1.56346i 0.623616 + 0.781731i \(0.285663\pi\)
−0.623616 + 0.781731i \(0.714337\pi\)
\(138\) −6.32781 5.43911i −0.538659 0.463008i
\(139\) −0.810802 −0.0687713 −0.0343857 0.999409i \(-0.510947\pi\)
−0.0343857 + 0.999409i \(0.510947\pi\)
\(140\) 14.6318 2.22281i 1.23662 0.187862i
\(141\) 3.02486i 0.254739i
\(142\) −4.35952 3.74725i −0.365843 0.314463i
\(143\) 10.7092i 0.895548i
\(144\) −3.81954 + 1.18791i −0.318295 + 0.0989929i
\(145\) 8.60994i 0.715016i
\(146\) 13.5730 15.7907i 1.12331 1.30685i
\(147\) −15.8702 −1.30895
\(148\) −0.859793 5.65965i −0.0706746 0.465220i
\(149\) 5.89971 0.483323 0.241662 0.970361i \(-0.422308\pi\)
0.241662 + 0.970361i \(0.422308\pi\)
\(150\) 2.40207 2.79455i 0.196129 0.228174i
\(151\) 14.6810i 1.19473i −0.801971 0.597363i \(-0.796215\pi\)
0.801971 0.597363i \(-0.203785\pi\)
\(152\) 9.71242 15.5173i 0.787781 1.25862i
\(153\) −4.48195 −0.362344
\(154\) −13.4716 + 15.6727i −1.08557 + 1.26294i
\(155\) 12.5591i 1.00877i
\(156\) 6.92960 1.05272i 0.554812 0.0842850i
\(157\) −3.07058 −0.245059 −0.122529 0.992465i \(-0.539101\pi\)
−0.122529 + 0.992465i \(0.539101\pi\)
\(158\) −11.4482 + 13.3188i −0.910773 + 1.05958i
\(159\) 5.29439i 0.419873i
\(160\) 8.03294 + 3.47695i 0.635059 + 0.274877i
\(161\) 28.2165i 2.22377i
\(162\) −0.921850 + 1.07247i −0.0724274 + 0.0842612i
\(163\) 23.3234i 1.82683i 0.407033 + 0.913414i \(0.366564\pi\)
−0.407033 + 0.913414i \(0.633436\pi\)
\(164\) 11.5124 1.74892i 0.898967 0.136568i
\(165\) 4.72838i 0.368104i
\(166\) −7.62194 6.55150i −0.591578 0.508495i
\(167\) 10.8381i 0.838675i −0.907830 0.419337i \(-0.862262\pi\)
0.907830 0.419337i \(-0.137738\pi\)
\(168\) −11.4656 7.17644i −0.884592 0.553674i
\(169\) 0.718110 0.0552392
\(170\) 7.43773 + 6.39316i 0.570448 + 0.490333i
\(171\) 6.47223i 0.494943i
\(172\) −2.61152 17.1905i −0.199127 1.31077i
\(173\) 14.4691 1.10006 0.550031 0.835144i \(-0.314616\pi\)
0.550031 + 0.835144i \(0.314616\pi\)
\(174\) 5.12946 5.96756i 0.388864 0.452400i
\(175\) 12.4612 0.941982
\(176\) −11.6717 + 3.63002i −0.879789 + 0.273623i
\(177\) 14.0544i 1.05640i
\(178\) −4.51583 + 5.25367i −0.338476 + 0.393779i
\(179\) −8.10870 −0.606073 −0.303036 0.952979i \(-0.598000\pi\)
−0.303036 + 0.952979i \(0.598000\pi\)
\(180\) 3.05959 0.464802i 0.228049 0.0346443i
\(181\) 6.85919 0.509840 0.254920 0.966962i \(-0.417951\pi\)
0.254920 + 0.966962i \(0.417951\pi\)
\(182\) 17.9743 + 15.4500i 1.33235 + 1.14523i
\(183\) 0.366956i 0.0271262i
\(184\) 8.85405 14.1459i 0.652729 1.04285i
\(185\) 4.42897i 0.325624i
\(186\) −7.48224 + 8.70476i −0.548624 + 0.638264i
\(187\) −13.6959 −1.00154
\(188\) 5.98110 0.908626i 0.436216 0.0662684i
\(189\) −4.78228 −0.347860
\(190\) −9.23213 + 10.7406i −0.669769 + 0.779203i
\(191\) −23.6446 −1.71086 −0.855432 0.517916i \(-0.826708\pi\)
−0.855432 + 0.517916i \(0.826708\pi\)
\(192\) −3.49622 7.19559i −0.252318 0.519297i
\(193\) 4.17460 0.300494 0.150247 0.988648i \(-0.451993\pi\)
0.150247 + 0.988648i \(0.451993\pi\)
\(194\) −6.12658 5.26615i −0.439863 0.378087i
\(195\) −5.42277 −0.388332
\(196\) −4.76719 31.3804i −0.340514 2.24146i
\(197\) 0.313467i 0.0223336i 0.999938 + 0.0111668i \(0.00355458\pi\)
−0.999938 + 0.0111668i \(0.996445\pi\)
\(198\) −2.81698 + 3.27725i −0.200194 + 0.232904i
\(199\) 12.6145i 0.894220i 0.894479 + 0.447110i \(0.147547\pi\)
−0.894479 + 0.447110i \(0.852453\pi\)
\(200\) 6.24725 + 3.91021i 0.441747 + 0.276494i
\(201\) 2.49611 + 7.79547i 0.176062 + 0.549850i
\(202\) 0.0500922 + 0.0430571i 0.00352448 + 0.00302949i
\(203\) 26.6101 1.86766
\(204\) −1.34631 8.86222i −0.0942609 0.620479i
\(205\) −9.00904 −0.629219
\(206\) −19.7508 16.9770i −1.37611 1.18284i
\(207\) 5.90022i 0.410093i
\(208\) 4.16311 + 13.3858i 0.288660 + 0.928136i
\(209\) 19.7778i 1.36806i
\(210\) 7.93613 + 6.82156i 0.547645 + 0.470732i
\(211\) 20.0804i 1.38239i −0.722667 0.691196i \(-0.757084\pi\)
0.722667 0.691196i \(-0.242916\pi\)
\(212\) 10.4687 1.59036i 0.718991 0.109226i
\(213\) 4.06493i 0.278524i
\(214\) 12.7287 + 10.9411i 0.870119 + 0.747917i
\(215\) 13.4525i 0.917451i
\(216\) −2.39752 1.50063i −0.163131 0.102105i
\(217\) −38.8156 −2.63498
\(218\) 7.53034 + 6.47276i 0.510019 + 0.438390i
\(219\) 14.7237 0.994934
\(220\) 9.34949 1.42034i 0.630343 0.0957593i
\(221\) 15.7072i 1.05658i
\(222\) 2.63860 3.06973i 0.177092 0.206026i
\(223\) 9.08725i 0.608528i −0.952588 0.304264i \(-0.901590\pi\)
0.952588 0.304264i \(-0.0984104\pi\)
\(224\) 10.7460 24.8268i 0.717994 1.65881i
\(225\) 2.60571 0.173714
\(226\) 3.73374 + 3.20936i 0.248364 + 0.213483i
\(227\) 6.05853i 0.402119i −0.979579 0.201059i \(-0.935562\pi\)
0.979579 0.201059i \(-0.0644385\pi\)
\(228\) 12.7976 1.94417i 0.847543 0.128756i
\(229\) 0.968935i 0.0640290i −0.999487 0.0320145i \(-0.989808\pi\)
0.999487 0.0320145i \(-0.0101923\pi\)
\(230\) −8.41620 + 9.79133i −0.554948 + 0.645621i
\(231\) −14.6137 −0.961509
\(232\) 13.3406 + 8.34998i 0.875851 + 0.548203i
\(233\) 10.3828i 0.680202i 0.940389 + 0.340101i \(0.110461\pi\)
−0.940389 + 0.340101i \(0.889539\pi\)
\(234\) 3.75853 + 3.23067i 0.245703 + 0.211196i
\(235\) −4.68052 −0.305323
\(236\) −27.7900 + 4.22175i −1.80897 + 0.274813i
\(237\) −12.4188 −0.806686
\(238\) 19.7589 22.9873i 1.28078 1.49004i
\(239\) −14.1843 −0.917509 −0.458754 0.888563i \(-0.651704\pi\)
−0.458754 + 0.888563i \(0.651704\pi\)
\(240\) 1.83812 + 5.91016i 0.118650 + 0.381499i
\(241\) −1.62279 −0.104533 −0.0522664 0.998633i \(-0.516645\pi\)
−0.0522664 + 0.998633i \(0.516645\pi\)
\(242\) 1.53222 1.78257i 0.0984948 0.114588i
\(243\) −1.00000 −0.0641500
\(244\) 0.725587 0.110228i 0.0464509 0.00705665i
\(245\) 24.5568i 1.56887i
\(246\) 6.24418 + 5.36723i 0.398115 + 0.342202i
\(247\) −22.6823 −1.44324
\(248\) −19.4596 12.1799i −1.23569 0.773427i
\(249\) 7.10690i 0.450382i
\(250\) −12.6216 10.8490i −0.798258 0.686149i
\(251\) −13.1758 −0.831648 −0.415824 0.909445i \(-0.636507\pi\)
−0.415824 + 0.909445i \(0.636507\pi\)
\(252\) −1.43653 9.45607i −0.0904929 0.595676i
\(253\) 18.0299i 1.13353i
\(254\) −17.9280 15.4102i −1.12490 0.966920i
\(255\) 6.93514i 0.434295i
\(256\) 13.1777 9.07457i 0.823607 0.567160i
\(257\) −0.163214 −0.0101810 −0.00509052 0.999987i \(-0.501620\pi\)
−0.00509052 + 0.999987i \(0.501620\pi\)
\(258\) 8.01445 9.32393i 0.498958 0.580483i
\(259\) 13.6883 0.850549
\(260\) −1.62892 10.7225i −0.101022 0.664982i
\(261\) 5.56432 0.344422
\(262\) −14.6409 12.5847i −0.904519 0.777486i
\(263\) 8.85763i 0.546185i −0.961988 0.273092i \(-0.911954\pi\)
0.961988 0.273092i \(-0.0880465\pi\)
\(264\) −7.32633 4.58562i −0.450905 0.282225i
\(265\) −8.19227 −0.503247
\(266\) 33.1951 + 28.5331i 2.03532 + 1.74948i
\(267\) −4.89866 −0.299793
\(268\) −14.6643 + 7.27725i −0.895764 + 0.444529i
\(269\) −14.9333 −0.910497 −0.455248 0.890364i \(-0.650450\pi\)
−0.455248 + 0.890364i \(0.650450\pi\)
\(270\) 1.65949 + 1.42642i 0.100993 + 0.0868093i
\(271\) −0.559494 −0.0339869 −0.0169934 0.999856i \(-0.505409\pi\)
−0.0169934 + 0.999856i \(0.505409\pi\)
\(272\) 17.1190 5.32417i 1.03799 0.322825i
\(273\) 16.7598i 1.01435i
\(274\) −19.6260 16.8697i −1.18565 1.01914i
\(275\) 7.96252 0.480158
\(276\) 11.6666 1.77234i 0.702245 0.106682i
\(277\) 2.73938 0.164593 0.0822966 0.996608i \(-0.473775\pi\)
0.0822966 + 0.996608i \(0.473775\pi\)
\(278\) 0.747437 0.869561i 0.0448283 0.0521528i
\(279\) −8.11655 −0.485925
\(280\) −11.1045 + 17.7413i −0.663618 + 1.06025i
\(281\) 18.4418i 1.10014i −0.835118 0.550071i \(-0.814601\pi\)
0.835118 0.550071i \(-0.185399\pi\)
\(282\) 3.24407 + 2.78847i 0.193182 + 0.166051i
\(283\) 5.42691i 0.322596i 0.986906 + 0.161298i \(0.0515681\pi\)
−0.986906 + 0.161298i \(0.948432\pi\)
\(284\) 8.03764 1.22105i 0.476946 0.0724559i
\(285\) −10.0148 −0.593225
\(286\) 11.4853 + 9.87227i 0.679140 + 0.583760i
\(287\) 27.8436i 1.64356i
\(288\) 2.24704 5.19142i 0.132408 0.305907i
\(289\) 3.08787 0.181639
\(290\) −9.23390 7.93707i −0.542233 0.466081i
\(291\) 5.71259i 0.334878i
\(292\) 4.42279 + 29.1133i 0.258824 + 1.70373i
\(293\) −13.8229 −0.807540 −0.403770 0.914860i \(-0.632300\pi\)
−0.403770 + 0.914860i \(0.632300\pi\)
\(294\) 14.6299 17.0203i 0.853236 0.992646i
\(295\) 21.7471 1.26616
\(296\) 6.86241 + 4.29525i 0.398869 + 0.249656i
\(297\) −3.05580 −0.177315
\(298\) −5.43865 + 6.32726i −0.315052 + 0.366529i
\(299\) −20.6776 −1.19582
\(300\) 0.782719 + 5.15231i 0.0451903 + 0.297469i
\(301\) 41.5766 2.39644
\(302\) 15.7450 + 13.5337i 0.906022 + 0.778777i
\(303\) 0.0467073i 0.00268327i
\(304\) 7.68845 + 24.7209i 0.440963 + 1.41784i
\(305\) −0.567809 −0.0325126
\(306\) 4.13168 4.80676i 0.236193 0.274784i
\(307\) 1.98977i 0.113562i 0.998387 + 0.0567811i \(0.0180837\pi\)
−0.998387 + 0.0567811i \(0.981916\pi\)
\(308\) −4.38974 28.8958i −0.250129 1.64649i
\(309\) 18.4162i 1.04766i
\(310\) 13.4693 + 11.5776i 0.765005 + 0.657565i
\(311\) 11.1604 0.632850 0.316425 0.948618i \(-0.397518\pi\)
0.316425 + 0.948618i \(0.397518\pi\)
\(312\) −5.25904 + 8.40224i −0.297734 + 0.475683i
\(313\) 13.7215i 0.775582i 0.921747 + 0.387791i \(0.126762\pi\)
−0.921747 + 0.387791i \(0.873238\pi\)
\(314\) 2.83061 3.29310i 0.159741 0.185841i
\(315\) 7.39986i 0.416935i
\(316\) −3.73043 24.5558i −0.209853 1.38137i
\(317\) −6.57889 −0.369507 −0.184754 0.982785i \(-0.559149\pi\)
−0.184754 + 0.982785i \(0.559149\pi\)
\(318\) 5.67808 + 4.88063i 0.318411 + 0.273692i
\(319\) 17.0034 0.952008
\(320\) −11.1341 + 5.40986i −0.622414 + 0.302421i
\(321\) 11.8686i 0.662442i
\(322\) 30.2614 + 26.0114i 1.68640 + 1.44956i
\(323\) 29.0082i 1.61406i
\(324\) −0.300386 1.97731i −0.0166881 0.109851i
\(325\) 9.13185i 0.506544i
\(326\) −25.0136 21.5006i −1.38538 1.19081i
\(327\) 7.02149i 0.388289i
\(328\) −8.73704 + 13.9590i −0.482422 + 0.770754i
\(329\) 14.4657i 0.797522i
\(330\) 5.07105 + 4.35886i 0.279152 + 0.239947i
\(331\) 5.83274 0.320596 0.160298 0.987069i \(-0.448754\pi\)
0.160298 + 0.987069i \(0.448754\pi\)
\(332\) 14.0526 2.13481i 0.771235 0.117163i
\(333\) 2.86229 0.156853
\(334\) 11.6235 + 9.99107i 0.636010 + 0.546687i
\(335\) 12.0623 3.86236i 0.659035 0.211023i
\(336\) 18.2661 5.68094i 0.996497 0.309921i
\(337\) 32.0283i 1.74469i 0.488889 + 0.872346i \(0.337402\pi\)
−0.488889 + 0.872346i \(0.662598\pi\)
\(338\) −0.661990 + 0.770152i −0.0360075 + 0.0418907i
\(339\) 3.48144i 0.189086i
\(340\) −13.7129 + 2.08322i −0.743689 + 0.112978i
\(341\) −24.8025 −1.34313
\(342\) 6.94127 + 5.96642i 0.375341 + 0.322627i
\(343\) 42.4198 2.29046
\(344\) 20.8438 + 13.0463i 1.12382 + 0.703410i
\(345\) −9.12969 −0.491526
\(346\) −13.3383 + 15.5176i −0.717071 + 0.834233i
\(347\) −30.8069 −1.65380 −0.826900 0.562349i \(-0.809898\pi\)
−0.826900 + 0.562349i \(0.809898\pi\)
\(348\) 1.67144 + 11.0024i 0.0895987 + 0.589790i
\(349\) 20.4980 1.09723 0.548617 0.836074i \(-0.315154\pi\)
0.548617 + 0.836074i \(0.315154\pi\)
\(350\) −11.4874 + 13.3643i −0.614027 + 0.714353i
\(351\) 3.50455i 0.187059i
\(352\) 6.86648 15.8639i 0.365985 0.845549i
\(353\) 3.46688i 0.184523i 0.995735 + 0.0922616i \(0.0294096\pi\)
−0.995735 + 0.0922616i \(0.970590\pi\)
\(354\) −15.0730 12.9561i −0.801118 0.688607i
\(355\) −6.28986 −0.333831
\(356\) −1.47149 9.68619i −0.0779888 0.513367i
\(357\) 21.4339 1.13440
\(358\) 7.47501 8.69634i 0.395066 0.459616i
\(359\) 10.6674i 0.563005i 0.959560 + 0.281503i \(0.0908328\pi\)
−0.959560 + 0.281503i \(0.909167\pi\)
\(360\) −2.32200 + 3.70980i −0.122380 + 0.195524i
\(361\) −22.8897 −1.20472
\(362\) −6.32314 + 7.35628i −0.332337 + 0.386637i
\(363\) 1.66211 0.0872384
\(364\) −33.1393 + 5.03440i −1.73697 + 0.263874i
\(365\) 22.7827i 1.19250i
\(366\) 0.393549 + 0.338278i 0.0205711 + 0.0176821i
\(367\) 8.98002 0.468753 0.234377 0.972146i \(-0.424695\pi\)
0.234377 + 0.972146i \(0.424695\pi\)
\(368\) 7.00895 + 22.5361i 0.365367 + 1.17477i
\(369\) 5.82224i 0.303094i
\(370\) −4.74994 4.08284i −0.246937 0.212257i
\(371\) 25.3193i 1.31451i
\(372\) −2.43810 16.0490i −0.126409 0.832100i
\(373\) 3.14024i 0.162595i 0.996690 + 0.0812977i \(0.0259065\pi\)
−0.996690 + 0.0812977i \(0.974094\pi\)
\(374\) 12.6256 14.6885i 0.652853 0.759523i
\(375\) 11.7687i 0.607732i
\(376\) −4.53920 + 7.25217i −0.234091 + 0.374002i
\(377\) 19.5004i 1.00432i
\(378\) 4.40854 5.12886i 0.226751 0.263800i
\(379\) 16.5187 0.848510 0.424255 0.905543i \(-0.360536\pi\)
0.424255 + 0.905543i \(0.360536\pi\)
\(380\) −3.00830 19.8024i −0.154323 1.01584i
\(381\) 16.7166i 0.856416i
\(382\) 21.7968 25.3581i 1.11522 1.29744i
\(383\) −18.5644 −0.948597 −0.474298 0.880364i \(-0.657298\pi\)
−0.474298 + 0.880364i \(0.657298\pi\)
\(384\) 10.9400 + 2.88366i 0.558282 + 0.147156i
\(385\) 22.6124i 1.15244i
\(386\) −3.84835 + 4.47713i −0.195876 + 0.227880i
\(387\) 8.69388 0.441935
\(388\) 11.2956 1.71598i 0.573446 0.0871158i
\(389\) −30.0217 −1.52216 −0.761081 0.648657i \(-0.775331\pi\)
−0.761081 + 0.648657i \(0.775331\pi\)
\(390\) 4.99897 5.81576i 0.253133 0.294492i
\(391\) 26.4445i 1.33735i
\(392\) 38.0492 + 23.8153i 1.92177 + 1.20286i
\(393\) 13.6516i 0.688631i
\(394\) −0.336184 0.288970i −0.0169367 0.0145581i
\(395\) 19.2162i 0.966871i
\(396\) −0.917918 6.04227i −0.0461271 0.303635i
\(397\) 3.19630 0.160418 0.0802088 0.996778i \(-0.474441\pi\)
0.0802088 + 0.996778i \(0.474441\pi\)
\(398\) −13.5287 11.6287i −0.678133 0.582894i
\(399\) 30.9520i 1.54954i
\(400\) −9.95261 + 3.09536i −0.497631 + 0.154768i
\(401\) 35.3660i 1.76609i 0.469284 + 0.883047i \(0.344512\pi\)
−0.469284 + 0.883047i \(0.655488\pi\)
\(402\) −10.6615 4.50925i −0.531745 0.224901i
\(403\) 28.4449i 1.41694i
\(404\) −0.0923550 + 0.0140302i −0.00459483 + 0.000698030i
\(405\) 1.54735i 0.0768884i
\(406\) −24.5305 + 28.5386i −1.21743 + 1.41635i
\(407\) 8.74658 0.433552
\(408\) 10.7456 + 6.72575i 0.531985 + 0.332974i
\(409\) 18.5775i 0.918598i −0.888282 0.459299i \(-0.848101\pi\)
0.888282 0.459299i \(-0.151899\pi\)
\(410\) 8.30498 9.66193i 0.410154 0.477169i
\(411\) 18.2998i 0.902665i
\(412\) 36.4146 5.53197i 1.79402 0.272540i
\(413\) 67.2122i 3.30730i
\(414\) 6.32781 + 5.43911i 0.310995 + 0.267318i
\(415\) −10.9969 −0.539815
\(416\) −18.1936 7.87485i −0.892015 0.386096i
\(417\) 0.810802 0.0397051
\(418\) 21.2111 + 18.2322i 1.03747 + 0.891764i
\(419\) 7.83168i 0.382603i 0.981531 + 0.191301i \(0.0612708\pi\)
−0.981531 + 0.191301i \(0.938729\pi\)
\(420\) −14.6318 + 2.22281i −0.713960 + 0.108462i
\(421\) −2.30475 −0.112327 −0.0561633 0.998422i \(-0.517887\pi\)
−0.0561633 + 0.998422i \(0.517887\pi\)
\(422\) 21.5357 + 18.5111i 1.04834 + 0.901108i
\(423\) 3.02486i 0.147074i
\(424\) −7.94493 + 12.6934i −0.385840 + 0.616447i
\(425\) −11.6787 −0.566499
\(426\) 4.35952 + 3.74725i 0.211219 + 0.181555i
\(427\) 1.75489i 0.0849249i
\(428\) −23.4680 + 3.56517i −1.13437 + 0.172329i
\(429\) 10.7092i 0.517045i
\(430\) −14.4274 12.4012i −0.695750 0.598037i
\(431\) 20.9734i 1.01025i −0.863045 0.505127i \(-0.831446\pi\)
0.863045 0.505127i \(-0.168554\pi\)
\(432\) 3.81954 1.18791i 0.183768 0.0571536i
\(433\) 20.8670i 1.00280i −0.865214 0.501402i \(-0.832818\pi\)
0.865214 0.501402i \(-0.167182\pi\)
\(434\) 35.7822 41.6286i 1.71760 1.99824i
\(435\) 8.60994i 0.412815i
\(436\) −13.8837 + 2.10916i −0.664908 + 0.101010i
\(437\) −38.1875 −1.82676
\(438\) −13.5730 + 15.7907i −0.648544 + 0.754510i
\(439\) 31.6980i 1.51286i −0.654074 0.756431i \(-0.726941\pi\)
0.654074 0.756431i \(-0.273059\pi\)
\(440\) −7.09555 + 11.3364i −0.338267 + 0.540441i
\(441\) 15.8702 0.755724
\(442\) −16.8455 14.4797i −0.801260 0.688729i
\(443\) 21.5765 1.02513 0.512565 0.858648i \(-0.328695\pi\)
0.512565 + 0.858648i \(0.328695\pi\)
\(444\) 0.859793 + 5.65965i 0.0408040 + 0.268595i
\(445\) 7.57994i 0.359323i
\(446\) 9.74581 + 8.37708i 0.461478 + 0.396666i
\(447\) −5.89971 −0.279047
\(448\) 16.7199 + 34.4113i 0.789940 + 1.62578i
\(449\) −22.2551 −1.05028 −0.525142 0.851014i \(-0.675988\pi\)
−0.525142 + 0.851014i \(0.675988\pi\)
\(450\) −2.40207 + 2.79455i −0.113235 + 0.131736i
\(451\) 17.7916i 0.837773i
\(452\) −6.88389 + 1.04577i −0.323791 + 0.0491891i
\(453\) 14.6810i 0.689775i
\(454\) 6.49760 + 5.58506i 0.304947 + 0.262120i
\(455\) 25.9332 1.21577
\(456\) −9.71242 + 15.5173i −0.454826 + 0.726664i
\(457\) 30.8118 1.44131 0.720657 0.693291i \(-0.243840\pi\)
0.720657 + 0.693291i \(0.243840\pi\)
\(458\) 1.03915 + 0.893213i 0.0485565 + 0.0417371i
\(459\) 4.48195 0.209199
\(460\) −2.74243 18.0523i −0.127867 0.841691i
\(461\) −2.05285 −0.0956107 −0.0478053 0.998857i \(-0.515223\pi\)
−0.0478053 + 0.998857i \(0.515223\pi\)
\(462\) 13.4716 15.6727i 0.626756 0.729162i
\(463\) 36.3808 1.69076 0.845379 0.534167i \(-0.179375\pi\)
0.845379 + 0.534167i \(0.179375\pi\)
\(464\) −21.2531 + 6.60993i −0.986651 + 0.306858i
\(465\) 12.5591i 0.582416i
\(466\) −11.1353 9.57142i −0.515832 0.443387i
\(467\) 3.74702i 0.173392i 0.996235 + 0.0866958i \(0.0276308\pi\)
−0.996235 + 0.0866958i \(0.972369\pi\)
\(468\) −6.92960 + 1.05272i −0.320321 + 0.0486619i
\(469\) −11.9371 37.2801i −0.551205 1.72144i
\(470\) 4.31473 5.01971i 0.199024 0.231542i
\(471\) 3.07058 0.141485
\(472\) 21.0905 33.6958i 0.970769 1.55097i
\(473\) 26.5667 1.22154
\(474\) 11.4482 13.3188i 0.525835 0.611751i
\(475\) 16.8648i 0.773808i
\(476\) 6.43846 + 42.3816i 0.295106 + 1.94256i
\(477\) 5.29439i 0.242414i
\(478\) 13.0758 15.2123i 0.598075 0.695794i
\(479\) 40.6636i 1.85797i −0.370122 0.928983i \(-0.620684\pi\)
0.370122 0.928983i \(-0.379316\pi\)
\(480\) −8.03294 3.47695i −0.366652 0.158700i
\(481\) 10.0311i 0.457377i
\(482\) 1.49597 1.74039i 0.0681394 0.0792726i
\(483\) 28.2165i 1.28389i
\(484\) 0.499276 + 3.28652i 0.0226944 + 0.149387i
\(485\) −8.83937 −0.401375
\(486\) 0.921850 1.07247i 0.0418160 0.0486483i
\(487\) −23.9829 −1.08677 −0.543384 0.839484i \(-0.682857\pi\)
−0.543384 + 0.839484i \(0.682857\pi\)
\(488\) −0.550665 + 0.879784i −0.0249274 + 0.0398260i
\(489\) 23.3234i 1.05472i
\(490\) −26.3364 22.6376i −1.18976 1.02266i
\(491\) 7.18064i 0.324058i −0.986786 0.162029i \(-0.948196\pi\)
0.986786 0.162029i \(-0.0518037\pi\)
\(492\) −11.5124 + 1.74892i −0.519019 + 0.0788474i
\(493\) −24.9390 −1.12320
\(494\) 20.9096 24.3261i 0.940769 1.09448i
\(495\) 4.72838i 0.212525i
\(496\) 31.0014 9.64177i 1.39201 0.432928i
\(497\) 19.4396i 0.871987i
\(498\) 7.62194 + 6.55150i 0.341548 + 0.293580i
\(499\) −6.49435 −0.290727 −0.145364 0.989378i \(-0.546435\pi\)
−0.145364 + 0.989378i \(0.546435\pi\)
\(500\) 23.2704 3.53515i 1.04068 0.158097i
\(501\) 10.8381i 0.484209i
\(502\) 12.1461 14.1306i 0.542107 0.630681i
\(503\) −9.35791 −0.417248 −0.208624 0.977996i \(-0.566899\pi\)
−0.208624 + 0.977996i \(0.566899\pi\)
\(504\) 11.4656 + 7.17644i 0.510719 + 0.319664i
\(505\) 0.0722725 0.00321609
\(506\) 19.3365 + 16.6208i 0.859612 + 0.738885i
\(507\) −0.718110 −0.0318924
\(508\) 33.0539 5.02143i 1.46653 0.222790i
\(509\) 14.8534 0.658367 0.329184 0.944266i \(-0.393226\pi\)
0.329184 + 0.944266i \(0.393226\pi\)
\(510\) −7.43773 6.39316i −0.329348 0.283094i
\(511\) −70.4128 −3.11488
\(512\) −2.41567 + 22.4981i −0.106759 + 0.994285i
\(513\) 6.47223i 0.285756i
\(514\) 0.150459 0.175043i 0.00663647 0.00772080i
\(515\) −28.4963 −1.25570
\(516\) 2.61152 + 17.1905i 0.114966 + 0.756771i
\(517\) 9.24336i 0.406522i
\(518\) −12.6185 + 14.6803i −0.554427 + 0.645015i
\(519\) −14.4691 −0.635121
\(520\) 13.0012 + 8.13757i 0.570140 + 0.356856i
\(521\) 16.2467i 0.711782i −0.934527 0.355891i \(-0.884177\pi\)
0.934527 0.355891i \(-0.115823\pi\)
\(522\) −5.12946 + 5.96756i −0.224510 + 0.261193i
\(523\) 20.8966i 0.913744i 0.889532 + 0.456872i \(0.151030\pi\)
−0.889532 + 0.456872i \(0.848970\pi\)
\(524\) 26.9935 4.10074i 1.17921 0.179142i
\(525\) −12.4612 −0.543853
\(526\) 9.49954 + 8.16540i 0.414200 + 0.356028i
\(527\) 36.3780 1.58465
\(528\) 11.6717 3.63002i 0.507946 0.157977i
\(529\) −11.8126 −0.513589
\(530\) 7.55204 8.78597i 0.328040 0.381638i
\(531\) 14.0544i 0.609910i
\(532\) −61.2018 + 9.29755i −2.65343 + 0.403100i
\(533\) 20.4044 0.883811
\(534\) 4.51583 5.25367i 0.195419 0.227348i
\(535\) 18.3649 0.793984
\(536\) 5.71364 22.4356i 0.246792 0.969069i
\(537\) 8.10870 0.349916
\(538\) 13.7662 16.0155i 0.593504 0.690476i
\(539\) 48.4961 2.08888
\(540\) −3.05959 + 0.464802i −0.131664 + 0.0200019i
\(541\) 0.771147i 0.0331542i 0.999863 + 0.0165771i \(0.00527690\pi\)
−0.999863 + 0.0165771i \(0.994723\pi\)
\(542\) 0.515770 0.600041i 0.0221542 0.0257740i
\(543\) −6.85919 −0.294356
\(544\) −10.0711 + 23.2677i −0.431795 + 0.997593i
\(545\) 10.8647 0.465392
\(546\) −17.9743 15.4500i −0.769231 0.661198i
\(547\) −40.4316 −1.72873 −0.864366 0.502864i \(-0.832280\pi\)
−0.864366 + 0.502864i \(0.832280\pi\)
\(548\) 36.1845 5.49702i 1.54573 0.234821i
\(549\) 0.366956i 0.0156613i
\(550\) −7.34025 + 8.53957i −0.312989 + 0.364128i
\(551\) 36.0135i 1.53423i
\(552\) −8.85405 + 14.1459i −0.376853 + 0.602089i
\(553\) 59.3901 2.52552
\(554\) −2.52529 + 2.93790i −0.107289 + 0.124819i
\(555\) 4.42897i 0.187999i
\(556\) 0.243554 + 1.60321i 0.0103290 + 0.0679912i
\(557\) 5.15579 0.218458 0.109229 0.994017i \(-0.465162\pi\)
0.109229 + 0.994017i \(0.465162\pi\)
\(558\) 7.48224 8.70476i 0.316748 0.368502i
\(559\) 30.4682i 1.28867i
\(560\) −8.79040 28.2640i −0.371462 1.19437i
\(561\) 13.6959 0.578242
\(562\) 19.7782 + 17.0005i 0.834295 + 0.717124i
\(563\) 11.8933 0.501244 0.250622 0.968085i \(-0.419365\pi\)
0.250622 + 0.968085i \(0.419365\pi\)
\(564\) −5.98110 + 0.908626i −0.251850 + 0.0382601i
\(565\) 5.38700 0.226633
\(566\) −5.82020 5.00280i −0.244641 0.210283i
\(567\) 4.78228 0.200837
\(568\) −6.09996 + 9.74575i −0.255949 + 0.408923i
\(569\) −28.8824 −1.21081 −0.605407 0.795916i \(-0.706990\pi\)
−0.605407 + 0.795916i \(0.706990\pi\)
\(570\) 9.23213 10.7406i 0.386691 0.449873i
\(571\) 29.5258i 1.23561i 0.786330 + 0.617807i \(0.211979\pi\)
−0.786330 + 0.617807i \(0.788021\pi\)
\(572\) −21.1754 + 3.21689i −0.885389 + 0.134505i
\(573\) 23.6446 0.987767
\(574\) −29.8614 25.6676i −1.24639 1.07135i
\(575\) 15.3743i 0.641151i
\(576\) 3.49622 + 7.19559i 0.145676 + 0.299816i
\(577\) 11.3610i 0.472967i 0.971636 + 0.236483i \(0.0759949\pi\)
−0.971636 + 0.236483i \(0.924005\pi\)
\(578\) −2.84655 + 3.31165i −0.118401 + 0.137746i
\(579\) −4.17460 −0.173490
\(580\) 17.0245 2.58630i 0.706906 0.107390i
\(581\) 33.9872i 1.41003i
\(582\) 6.12658 + 5.26615i 0.253955 + 0.218289i
\(583\) 16.1786i 0.670048i
\(584\) −35.3003 22.0948i −1.46074 0.914290i
\(585\) 5.42277 0.224204
\(586\) 12.7426 14.8246i 0.526392 0.612399i
\(587\) −13.6819 −0.564711 −0.282356 0.959310i \(-0.591116\pi\)
−0.282356 + 0.959310i \(0.591116\pi\)
\(588\) 4.76719 + 31.3804i 0.196596 + 1.29411i
\(589\) 52.5321i 2.16455i
\(590\) −20.0476 + 23.3231i −0.825345 + 0.960197i
\(591\) 0.313467i 0.0128943i
\(592\) −10.9326 + 3.40016i −0.449328 + 0.139746i
\(593\) 35.0111i 1.43773i 0.695147 + 0.718867i \(0.255339\pi\)
−0.695147 + 0.718867i \(0.744661\pi\)
\(594\) 2.81698 3.27725i 0.115582 0.134467i
\(595\) 33.1658i 1.35966i
\(596\) −1.77219 11.6656i −0.0725917 0.477841i
\(597\) 12.6145i 0.516278i
\(598\) 19.0617 22.1761i 0.779489 0.906850i
\(599\) 0.821520 0.0335664 0.0167832 0.999859i \(-0.494657\pi\)
0.0167832 + 0.999859i \(0.494657\pi\)
\(600\) −6.24725 3.91021i −0.255043 0.159634i
\(601\) 2.63598 0.107524 0.0537620 0.998554i \(-0.482879\pi\)
0.0537620 + 0.998554i \(0.482879\pi\)
\(602\) −38.3274 + 44.5897i −1.56211 + 1.81734i
\(603\) −2.49611 7.79547i −0.101650 0.317456i
\(604\) −29.0290 + 4.40998i −1.18117 + 0.179439i
\(605\) 2.57187i 0.104561i
\(606\) −0.0500922 0.0430571i −0.00203486 0.00174908i
\(607\) 7.51090i 0.304858i 0.988314 + 0.152429i \(0.0487095\pi\)
−0.988314 + 0.152429i \(0.951290\pi\)
\(608\) −33.6000 14.5433i −1.36266 0.589809i
\(609\) −26.6101 −1.07830
\(610\) 0.523434 0.608958i 0.0211932 0.0246560i
\(611\) 10.6008 0.428862
\(612\) 1.34631 + 8.86222i 0.0544216 + 0.358234i
\(613\) 3.33725 0.134790 0.0673951 0.997726i \(-0.478531\pi\)
0.0673951 + 0.997726i \(0.478531\pi\)
\(614\) −2.13397 1.83427i −0.0861200 0.0740251i
\(615\) 9.00904 0.363280
\(616\) 35.0366 + 21.9297i 1.41166 + 0.883574i
\(617\) −46.5581 −1.87436 −0.937179 0.348849i \(-0.886573\pi\)
−0.937179 + 0.348849i \(0.886573\pi\)
\(618\) 19.7508 + 16.9770i 0.794495 + 0.682914i
\(619\) 9.13260i 0.367070i −0.983013 0.183535i \(-0.941246\pi\)
0.983013 0.183535i \(-0.0587541\pi\)
\(620\) −24.8333 + 3.77259i −0.997331 + 0.151511i
\(621\) 5.90022i 0.236768i
\(622\) −10.2882 + 11.9692i −0.412521 + 0.479922i
\(623\) 23.4268 0.938574
\(624\) −4.16311 13.3858i −0.166658 0.535860i
\(625\) −5.18171 −0.207268
\(626\) −14.7159 12.6491i −0.588164 0.505560i
\(627\) 19.7778i 0.789849i
\(628\) 0.922358 + 6.07149i 0.0368061 + 0.242279i
\(629\) −12.8287 −0.511512
\(630\) −7.93613 6.82156i −0.316183 0.271777i
\(631\) −11.4976 −0.457712 −0.228856 0.973460i \(-0.573498\pi\)
−0.228856 + 0.973460i \(0.573498\pi\)
\(632\) 29.7743 + 18.6360i 1.18436 + 0.741300i
\(633\) 20.0804i 0.798125i
\(634\) 6.06475 7.05567i 0.240862 0.280216i
\(635\) −25.8664 −1.02648
\(636\) −10.4687 + 1.59036i −0.415110 + 0.0630619i
\(637\) 55.6180i 2.20366i
\(638\) −15.6746 + 18.2357i −0.620563 + 0.721957i
\(639\) 4.06493i 0.160806i
\(640\) 4.46203 16.9281i 0.176377 0.669140i
\(641\) 15.6618i 0.618603i 0.950964 + 0.309301i \(0.100095\pi\)
−0.950964 + 0.309301i \(0.899905\pi\)
\(642\) −12.7287 10.9411i −0.502364 0.431810i
\(643\) 42.5747i 1.67898i 0.543372 + 0.839492i \(0.317147\pi\)
−0.543372 + 0.839492i \(0.682853\pi\)
\(644\) −55.7928 + 8.47584i −2.19855 + 0.333995i
\(645\) 13.4525i 0.529691i
\(646\) −31.1104 26.7412i −1.22402 1.05212i
\(647\) 27.1445 1.06716 0.533580 0.845750i \(-0.320846\pi\)
0.533580 + 0.845750i \(0.320846\pi\)
\(648\) 2.39752 + 1.50063i 0.0941835 + 0.0589503i
\(649\) 42.9474i 1.68583i
\(650\) 9.79364 + 8.41820i 0.384138 + 0.330189i
\(651\) 38.8156 1.52130
\(652\) 46.1176 7.00601i 1.80611 0.274377i
\(653\) 12.4622i 0.487684i −0.969815 0.243842i \(-0.921592\pi\)
0.969815 0.243842i \(-0.0784078\pi\)
\(654\) −7.53034 6.47276i −0.294459 0.253105i
\(655\) −21.1238 −0.825374
\(656\) −6.91633 22.2383i −0.270037 0.868259i
\(657\) −14.7237 −0.574426
\(658\) −15.5141 13.3352i −0.604802 0.519862i
\(659\) 14.3892i 0.560523i −0.959924 0.280261i \(-0.909579\pi\)
0.959924 0.280261i \(-0.0904212\pi\)
\(660\) −9.34949 + 1.42034i −0.363928 + 0.0552866i
\(661\) 24.3443i 0.946884i −0.880825 0.473442i \(-0.843011\pi\)
0.880825 0.473442i \(-0.156989\pi\)
\(662\) −5.37691 + 6.25544i −0.208979 + 0.243124i
\(663\) 15.7072i 0.610018i
\(664\) −10.6648 + 17.0390i −0.413876 + 0.661240i
\(665\) 47.8935 1.85723
\(666\) −2.63860 + 3.06973i −0.102244 + 0.118949i
\(667\) 32.8307i 1.27121i
\(668\) −21.4303 + 3.25560i −0.829161 + 0.125963i
\(669\) 9.08725i 0.351334i
\(670\) −6.97738 + 16.4970i −0.269560 + 0.637335i
\(671\) 1.12134i 0.0432889i
\(672\) −10.7460 + 24.8268i −0.414534 + 0.957716i
\(673\) 20.9565i 0.807816i 0.914800 + 0.403908i \(0.132348\pi\)
−0.914800 + 0.403908i \(0.867652\pi\)
\(674\) −34.3494 29.5253i −1.32309 1.13727i
\(675\) −2.60571 −0.100294
\(676\) −0.215710 1.41993i −0.00829655 0.0546127i
\(677\) 21.6203i 0.830934i −0.909608 0.415467i \(-0.863618\pi\)
0.909608 0.415467i \(-0.136382\pi\)
\(678\) −3.73374 3.20936i −0.143393 0.123255i
\(679\) 27.3192i 1.04841i
\(680\) 10.4071 16.6271i 0.399093 0.637622i
\(681\) 6.05853i 0.232163i
\(682\) 22.8642 26.6000i 0.875515 1.01857i
\(683\) −1.26213 −0.0482940 −0.0241470 0.999708i \(-0.507687\pi\)
−0.0241470 + 0.999708i \(0.507687\pi\)
\(684\) −12.7976 + 1.94417i −0.489329 + 0.0743371i
\(685\) −28.3162 −1.08191
\(686\) −39.1047 + 45.4940i −1.49303 + 1.73697i
\(687\) 0.968935i 0.0369672i
\(688\) −33.2066 + 10.3276i −1.26599 + 0.393736i
\(689\) 18.5545 0.706869
\(690\) 8.41620 9.79133i 0.320399 0.372749i
\(691\) 0.518528i 0.0197257i −0.999951 0.00986286i \(-0.996861\pi\)
0.999951 0.00986286i \(-0.00313950\pi\)
\(692\) −4.34630 28.6099i −0.165222 1.08758i
\(693\) 14.6137 0.555127
\(694\) 28.3993 33.0395i 1.07802 1.25416i
\(695\) 1.25459i 0.0475894i
\(696\) −13.3406 8.34998i −0.505673 0.316505i
\(697\) 26.0950i 0.988419i
\(698\) −18.8961 + 21.9835i −0.715228 + 0.832089i
\(699\) 10.3828i 0.392715i
\(700\) −3.74318 24.6398i −0.141479 0.931296i
\(701\) 46.7136i 1.76435i −0.470924 0.882174i \(-0.656079\pi\)
0.470924 0.882174i \(-0.343921\pi\)
\(702\) −3.75853 3.23067i −0.141857 0.121934i
\(703\) 18.5254i 0.698699i
\(704\) 10.6837 + 21.9882i 0.402658 + 0.828713i
\(705\) 4.68052 0.176278
\(706\) −3.71812 3.19594i −0.139933 0.120281i
\(707\) 0.223368i 0.00840060i
\(708\) 27.7900 4.22175i 1.04441 0.158663i
\(709\) −44.2361 −1.66132 −0.830661 0.556778i \(-0.812037\pi\)
−0.830661 + 0.556778i \(0.812037\pi\)
\(710\) 5.79831 6.74569i 0.217607 0.253161i
\(711\) 12.4188 0.465740
\(712\) 11.7446 + 7.35108i 0.440149 + 0.275493i
\(713\) 47.8894i 1.79347i
\(714\) −19.7589 + 22.9873i −0.739457 + 0.860277i
\(715\) 16.5709 0.619715
\(716\) 2.43574 + 16.0334i 0.0910279 + 0.599198i
\(717\) 14.1843 0.529724
\(718\) −11.4405 9.83376i −0.426956 0.366993i
\(719\) 11.7106i 0.436732i −0.975867 0.218366i \(-0.929927\pi\)
0.975867 0.218366i \(-0.0700726\pi\)
\(720\) −1.83812 5.91016i −0.0685026 0.220258i
\(721\) 88.0714i 3.27995i
\(722\) 21.1009 24.5485i 0.785293 0.913602i
\(723\) 1.62279 0.0603521
\(724\) −2.06041 13.5628i −0.0765744 0.504056i
\(725\) 14.4990 0.538479
\(726\) −1.53222 + 1.78257i −0.0568660 + 0.0661573i
\(727\) 0.0298100 0.00110559 0.000552796 1.00000i \(-0.499824\pi\)
0.000552796 1.00000i \(0.499824\pi\)
\(728\) 25.1502 40.1819i 0.932129 1.48924i
\(729\) 1.00000 0.0370370
\(730\) 24.4337 + 21.0022i 0.904333 + 0.777326i
\(731\) −38.9655 −1.44119
\(732\) −0.725587 + 0.110228i −0.0268185 + 0.00407416i
\(733\) 9.73688i 0.359640i 0.983700 + 0.179820i \(0.0575515\pi\)
−0.983700 + 0.179820i \(0.942449\pi\)
\(734\) −8.27823 + 9.63081i −0.305555 + 0.355480i
\(735\) 24.5568i 0.905789i
\(736\) −30.6305 13.2580i −1.12906 0.488696i
\(737\) −7.62762 23.8214i −0.280967 0.877472i
\(738\) −6.24418 5.36723i −0.229852 0.197571i
\(739\) 40.6562 1.49556 0.747782 0.663945i \(-0.231119\pi\)
0.747782 + 0.663945i \(0.231119\pi\)
\(740\) 8.75745 1.33040i 0.321930 0.0489065i
\(741\) 22.6823 0.833253
\(742\) −27.1542 23.3406i −0.996861 0.856859i
\(743\) 32.2166i 1.18191i −0.806704 0.590956i \(-0.798751\pi\)
0.806704 0.590956i \(-0.201249\pi\)
\(744\) 19.4596 + 12.1799i 0.713423 + 0.446538i
\(745\) 9.12891i 0.334457i
\(746\) −3.36781 2.89483i −0.123304 0.105987i
\(747\) 7.10690i 0.260028i
\(748\) 4.11406 + 27.0811i 0.150425 + 0.990184i
\(749\) 56.7591i 2.07393i
\(750\) 12.6216 + 10.8490i 0.460875 + 0.396148i
\(751\) 18.4253i 0.672348i 0.941800 + 0.336174i \(0.109133\pi\)
−0.941800 + 0.336174i \(0.890867\pi\)
\(752\) −3.59328 11.5536i −0.131033 0.421315i
\(753\) 13.1758 0.480152
\(754\) 20.9136 + 17.9765i 0.761630 + 0.654665i
\(755\) 22.7167 0.826745
\(756\) 1.43653 + 9.45607i 0.0522461 + 0.343914i
\(757\) 3.11832i 0.113337i 0.998393 + 0.0566687i \(0.0180479\pi\)
−0.998393 + 0.0566687i \(0.981952\pi\)
\(758\) −15.2278 + 17.7158i −0.553098 + 0.643469i
\(759\) 18.0299i 0.654442i
\(760\) 24.0107 + 15.0285i 0.870959 + 0.545141i
\(761\) 12.0775 0.437808 0.218904 0.975746i \(-0.429752\pi\)
0.218904 + 0.975746i \(0.429752\pi\)
\(762\) 17.9280 + 15.4102i 0.649464 + 0.558252i
\(763\) 33.5787i 1.21563i
\(764\) 7.10251 + 46.7528i 0.256960 + 1.69146i
\(765\) 6.93514i 0.250740i
\(766\) 17.1136 19.9098i 0.618339 0.719370i
\(767\) −49.2545 −1.77848
\(768\) −13.1777 + 9.07457i −0.475510 + 0.327450i
\(769\) 8.75910i 0.315861i −0.987450 0.157931i \(-0.949518\pi\)
0.987450 0.157931i \(-0.0504822\pi\)
\(770\) −24.2512 20.8453i −0.873952 0.751212i
\(771\) 0.163214 0.00587802
\(772\)