Properties

Label 804.2.c.b.671.17
Level 804
Weight 2
Character 804.671
Analytic conductor 6.420
Analytic rank 0
Dimension 128
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(128\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 671.17
Character \(\chi\) = 804.671
Dual form 804.2.c.b.671.18

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.27950 - 0.602386i) q^{2} +(-1.48757 + 0.887204i) q^{3} +(1.27426 + 1.54151i) q^{4} +3.40681i q^{5} +(2.43779 - 0.239089i) q^{6} -4.07118i q^{7} +(-0.701842 - 2.73997i) q^{8} +(1.42574 - 2.63956i) q^{9} +O(q^{10})\) \(q+(-1.27950 - 0.602386i) q^{2} +(-1.48757 + 0.887204i) q^{3} +(1.27426 + 1.54151i) q^{4} +3.40681i q^{5} +(2.43779 - 0.239089i) q^{6} -4.07118i q^{7} +(-0.701842 - 2.73997i) q^{8} +(1.42574 - 2.63956i) q^{9} +(2.05221 - 4.35902i) q^{10} +0.0181814 q^{11} +(-3.26319 - 1.16258i) q^{12} -1.41338 q^{13} +(-2.45242 + 5.20909i) q^{14} +(-3.02253 - 5.06787i) q^{15} +(-0.752507 + 3.92858i) q^{16} +2.82742i q^{17} +(-3.41427 + 2.51848i) q^{18} +4.54353i q^{19} +(-5.25163 + 4.34117i) q^{20} +(3.61196 + 6.05617i) q^{21} +(-0.0232632 - 0.0109522i) q^{22} -8.65504 q^{23} +(3.47495 + 3.45322i) q^{24} -6.60634 q^{25} +(1.80843 + 0.851403i) q^{26} +(0.220938 + 5.19145i) q^{27} +(6.27576 - 5.18775i) q^{28} -9.67218i q^{29} +(0.814532 + 8.30509i) q^{30} -6.54513i q^{31} +(3.32936 - 4.57333i) q^{32} +(-0.0270462 + 0.0161306i) q^{33} +(1.70320 - 3.61770i) q^{34} +13.8697 q^{35} +(5.88567 - 1.16570i) q^{36} -5.85711 q^{37} +(2.73696 - 5.81347i) q^{38} +(2.10251 - 1.25396i) q^{39} +(9.33454 - 2.39104i) q^{40} +1.44243i q^{41} +(-0.973375 - 9.92469i) q^{42} -7.62307i q^{43} +(0.0231679 + 0.0280268i) q^{44} +(8.99247 + 4.85722i) q^{45} +(11.0742 + 5.21367i) q^{46} +0.189335 q^{47} +(-2.36604 - 6.51167i) q^{48} -9.57448 q^{49} +(8.45284 + 3.97956i) q^{50} +(-2.50850 - 4.20599i) q^{51} +(-1.80102 - 2.17875i) q^{52} -13.6369i q^{53} +(2.84457 - 6.77558i) q^{54} +0.0619406i q^{55} +(-11.1549 + 2.85732i) q^{56} +(-4.03104 - 6.75883i) q^{57} +(-5.82638 + 12.3756i) q^{58} +11.1206 q^{59} +(3.96067 - 11.1171i) q^{60} +2.47299 q^{61} +(-3.94269 + 8.37452i) q^{62} +(-10.7461 - 5.80443i) q^{63} +(-7.01484 + 3.84605i) q^{64} -4.81513i q^{65} +(0.0443225 - 0.00434698i) q^{66} +1.00000i q^{67} +(-4.35850 + 3.60288i) q^{68} +(12.8750 - 7.67878i) q^{69} +(-17.7464 - 8.35492i) q^{70} +4.72490 q^{71} +(-8.23295 - 2.05392i) q^{72} -9.72698 q^{73} +(7.49420 + 3.52824i) q^{74} +(9.82740 - 5.86117i) q^{75} +(-7.00390 + 5.78965i) q^{76} -0.0740198i q^{77} +(-3.44554 + 0.337925i) q^{78} +4.33713i q^{79} +(-13.3839 - 2.56365i) q^{80} +(-4.93454 - 7.52664i) q^{81} +(0.868901 - 1.84560i) q^{82} +10.6111 q^{83} +(-4.73305 + 13.2850i) q^{84} -9.63249 q^{85} +(-4.59203 + 9.75375i) q^{86} +(8.58120 + 14.3881i) q^{87} +(-0.0127605 - 0.0498165i) q^{88} -13.7685i q^{89} +(-8.57998 - 11.6318i) q^{90} +5.75414i q^{91} +(-11.0288 - 13.3418i) q^{92} +(5.80686 + 9.73635i) q^{93} +(-0.242255 - 0.114053i) q^{94} -15.4789 q^{95} +(-0.895176 + 9.75698i) q^{96} +3.81023 q^{97} +(12.2506 + 5.76753i) q^{98} +(0.0259220 - 0.0479909i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128q + 4q^{4} - 6q^{6} - 4q^{9} + O(q^{10}) \) \( 128q + 4q^{4} - 6q^{6} - 4q^{9} - 4q^{10} + 4q^{12} - 8q^{13} - 4q^{16} + 18q^{18} - 8q^{21} - 8q^{22} - 24q^{24} - 136q^{25} + 14q^{30} - 32q^{33} + 34q^{36} - 48q^{37} + 16q^{40} - 28q^{42} - 16q^{45} - 28q^{46} - 22q^{48} - 152q^{49} + 8q^{52} - 16q^{54} - 32q^{57} - 20q^{58} - 14q^{60} + 8q^{61} + 16q^{64} + 14q^{66} + 56q^{69} - 4q^{70} - 8q^{72} - 48q^{73} - 36q^{76} + 40q^{78} + 44q^{81} + 60q^{82} + 46q^{84} + 64q^{85} - 28q^{88} - 14q^{90} + 32q^{93} - 8q^{96} + 64q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.27950 0.602386i −0.904746 0.425951i
\(3\) −1.48757 + 0.887204i −0.858850 + 0.512227i
\(4\) 1.27426 + 1.54151i 0.637132 + 0.770755i
\(5\) 3.40681i 1.52357i 0.647830 + 0.761785i \(0.275677\pi\)
−0.647830 + 0.761785i \(0.724323\pi\)
\(6\) 2.43779 0.239089i 0.995225 0.0976078i
\(7\) 4.07118i 1.53876i −0.638791 0.769380i \(-0.720565\pi\)
0.638791 0.769380i \(-0.279435\pi\)
\(8\) −0.701842 2.73997i −0.248138 0.968725i
\(9\) 1.42574 2.63956i 0.475246 0.879853i
\(10\) 2.05221 4.35902i 0.648966 1.37844i
\(11\) 0.0181814 0.00548190 0.00274095 0.999996i \(-0.499128\pi\)
0.00274095 + 0.999996i \(0.499128\pi\)
\(12\) −3.26319 1.16258i −0.942002 0.335607i
\(13\) −1.41338 −0.392002 −0.196001 0.980604i \(-0.562796\pi\)
−0.196001 + 0.980604i \(0.562796\pi\)
\(14\) −2.45242 + 5.20909i −0.655436 + 1.39219i
\(15\) −3.02253 5.06787i −0.780415 1.30852i
\(16\) −0.752507 + 3.92858i −0.188127 + 0.982145i
\(17\) 2.82742i 0.685751i 0.939381 + 0.342875i \(0.111401\pi\)
−0.939381 + 0.342875i \(0.888599\pi\)
\(18\) −3.41427 + 2.51848i −0.804751 + 0.593612i
\(19\) 4.54353i 1.04236i 0.853448 + 0.521179i \(0.174507\pi\)
−0.853448 + 0.521179i \(0.825493\pi\)
\(20\) −5.25163 + 4.34117i −1.17430 + 0.970715i
\(21\) 3.61196 + 6.05617i 0.788195 + 1.32156i
\(22\) −0.0232632 0.0109522i −0.00495973 0.00233502i
\(23\) −8.65504 −1.80470 −0.902350 0.431004i \(-0.858159\pi\)
−0.902350 + 0.431004i \(0.858159\pi\)
\(24\) 3.47495 + 3.45322i 0.709321 + 0.704886i
\(25\) −6.60634 −1.32127
\(26\) 1.80843 + 0.851403i 0.354663 + 0.166974i
\(27\) 0.220938 + 5.19145i 0.0425195 + 0.999096i
\(28\) 6.27576 5.18775i 1.18601 0.980393i
\(29\) 9.67218i 1.79608i −0.439914 0.898040i \(-0.644991\pi\)
0.439914 0.898040i \(-0.355009\pi\)
\(30\) 0.814532 + 8.30509i 0.148712 + 1.51630i
\(31\) 6.54513i 1.17554i −0.809028 0.587770i \(-0.800006\pi\)
0.809028 0.587770i \(-0.199994\pi\)
\(32\) 3.32936 4.57333i 0.588553 0.808459i
\(33\) −0.0270462 + 0.0161306i −0.00470813 + 0.00280798i
\(34\) 1.70320 3.61770i 0.292096 0.620431i
\(35\) 13.8697 2.34441
\(36\) 5.88567 1.16570i 0.980945 0.194284i
\(37\) −5.85711 −0.962903 −0.481451 0.876473i \(-0.659890\pi\)
−0.481451 + 0.876473i \(0.659890\pi\)
\(38\) 2.73696 5.81347i 0.443993 0.943069i
\(39\) 2.10251 1.25396i 0.336671 0.200794i
\(40\) 9.33454 2.39104i 1.47592 0.378056i
\(41\) 1.44243i 0.225270i 0.993636 + 0.112635i \(0.0359291\pi\)
−0.993636 + 0.112635i \(0.964071\pi\)
\(42\) −0.973375 9.92469i −0.150195 1.53141i
\(43\) 7.62307i 1.16251i −0.813723 0.581253i \(-0.802562\pi\)
0.813723 0.581253i \(-0.197438\pi\)
\(44\) 0.0231679 + 0.0280268i 0.00349269 + 0.00422521i
\(45\) 8.99247 + 4.85722i 1.34052 + 0.724071i
\(46\) 11.0742 + 5.21367i 1.63280 + 0.768714i
\(47\) 0.189335 0.0276174 0.0138087 0.999905i \(-0.495604\pi\)
0.0138087 + 0.999905i \(0.495604\pi\)
\(48\) −2.36604 6.51167i −0.341509 0.939879i
\(49\) −9.57448 −1.36778
\(50\) 8.45284 + 3.97956i 1.19541 + 0.562795i
\(51\) −2.50850 4.20599i −0.351260 0.588957i
\(52\) −1.80102 2.17875i −0.249757 0.302138i
\(53\) 13.6369i 1.87318i −0.350432 0.936588i \(-0.613965\pi\)
0.350432 0.936588i \(-0.386035\pi\)
\(54\) 2.84457 6.77558i 0.387096 0.922039i
\(55\) 0.0619406i 0.00835207i
\(56\) −11.1549 + 2.85732i −1.49063 + 0.381826i
\(57\) −4.03104 6.75883i −0.533924 0.895228i
\(58\) −5.82638 + 12.3756i −0.765042 + 1.62500i
\(59\) 11.1206 1.44778 0.723889 0.689916i \(-0.242353\pi\)
0.723889 + 0.689916i \(0.242353\pi\)
\(60\) 3.96067 11.1171i 0.511321 1.43521i
\(61\) 2.47299 0.316634 0.158317 0.987388i \(-0.449393\pi\)
0.158317 + 0.987388i \(0.449393\pi\)
\(62\) −3.94269 + 8.37452i −0.500722 + 1.06357i
\(63\) −10.7461 5.80443i −1.35388 0.731290i
\(64\) −7.01484 + 3.84605i −0.876855 + 0.480756i
\(65\) 4.81513i 0.597243i
\(66\) 0.0443225 0.00434698i 0.00545573 0.000535077i
\(67\) 1.00000i 0.122169i
\(68\) −4.35850 + 3.60288i −0.528546 + 0.436913i
\(69\) 12.8750 7.67878i 1.54997 0.924417i
\(70\) −17.7464 8.35492i −2.12110 0.998603i
\(71\) 4.72490 0.560743 0.280371 0.959892i \(-0.409542\pi\)
0.280371 + 0.959892i \(0.409542\pi\)
\(72\) −8.23295 2.05392i −0.970262 0.242057i
\(73\) −9.72698 −1.13846 −0.569228 0.822179i \(-0.692758\pi\)
−0.569228 + 0.822179i \(0.692758\pi\)
\(74\) 7.49420 + 3.52824i 0.871182 + 0.410149i
\(75\) 9.82740 5.86117i 1.13477 0.676789i
\(76\) −7.00390 + 5.78965i −0.803402 + 0.664119i
\(77\) 0.0740198i 0.00843533i
\(78\) −3.44554 + 0.337925i −0.390131 + 0.0382625i
\(79\) 4.33713i 0.487965i 0.969780 + 0.243982i \(0.0784539\pi\)
−0.969780 + 0.243982i \(0.921546\pi\)
\(80\) −13.3839 2.56365i −1.49637 0.286624i
\(81\) −4.93454 7.52664i −0.548282 0.836294i
\(82\) 0.868901 1.84560i 0.0959541 0.203812i
\(83\) 10.6111 1.16472 0.582362 0.812929i \(-0.302129\pi\)
0.582362 + 0.812929i \(0.302129\pi\)
\(84\) −4.73305 + 13.2850i −0.516418 + 1.44952i
\(85\) −9.63249 −1.04479
\(86\) −4.59203 + 9.75375i −0.495171 + 1.05177i
\(87\) 8.58120 + 14.3881i 0.920001 + 1.54256i
\(88\) −0.0127605 0.0498165i −0.00136027 0.00531046i
\(89\) 13.7685i 1.45946i −0.683734 0.729731i \(-0.739645\pi\)
0.683734 0.729731i \(-0.260355\pi\)
\(90\) −8.57998 11.6318i −0.904410 1.22610i
\(91\) 5.75414i 0.603198i
\(92\) −11.0288 13.3418i −1.14983 1.39098i
\(93\) 5.80686 + 9.73635i 0.602144 + 1.00961i
\(94\) −0.242255 0.114053i −0.0249867 0.0117637i
\(95\) −15.4789 −1.58810
\(96\) −0.895176 + 9.75698i −0.0913635 + 0.995818i
\(97\) 3.81023 0.386870 0.193435 0.981113i \(-0.438037\pi\)
0.193435 + 0.981113i \(0.438037\pi\)
\(98\) 12.2506 + 5.76753i 1.23750 + 0.582608i
\(99\) 0.0259220 0.0479909i 0.00260525 0.00482327i
\(100\) −8.41821 10.1837i −0.841821 1.01837i
\(101\) 1.93609i 0.192648i −0.995350 0.0963241i \(-0.969291\pi\)
0.995350 0.0963241i \(-0.0307085\pi\)
\(102\) 0.676007 + 6.89267i 0.0669347 + 0.682476i
\(103\) 10.0576i 0.991009i −0.868605 0.495504i \(-0.834983\pi\)
0.868605 0.495504i \(-0.165017\pi\)
\(104\) 0.991972 + 3.87263i 0.0972709 + 0.379742i
\(105\) −20.6322 + 12.3053i −2.01350 + 1.20087i
\(106\) −8.21469 + 17.4485i −0.797881 + 1.69475i
\(107\) −11.3519 −1.09743 −0.548715 0.836010i \(-0.684883\pi\)
−0.548715 + 0.836010i \(0.684883\pi\)
\(108\) −7.72115 + 6.95586i −0.742968 + 0.669327i
\(109\) 10.0851 0.965980 0.482990 0.875626i \(-0.339551\pi\)
0.482990 + 0.875626i \(0.339551\pi\)
\(110\) 0.0373121 0.0792533i 0.00355757 0.00755650i
\(111\) 8.71287 5.19645i 0.826989 0.493225i
\(112\) 15.9939 + 3.06359i 1.51129 + 0.289482i
\(113\) 9.05540i 0.851860i 0.904756 + 0.425930i \(0.140053\pi\)
−0.904756 + 0.425930i \(0.859947\pi\)
\(114\) 1.08631 + 11.0762i 0.101742 + 1.03738i
\(115\) 29.4860i 2.74959i
\(116\) 14.9098 12.3249i 1.38434 1.14434i
\(117\) −2.01512 + 3.73071i −0.186298 + 0.344904i
\(118\) −14.2288 6.69889i −1.30987 0.616682i
\(119\) 11.5109 1.05521
\(120\) −11.7645 + 11.8385i −1.07394 + 1.08070i
\(121\) −10.9997 −0.999970
\(122\) −3.16420 1.48969i −0.286473 0.134870i
\(123\) −1.27973 2.14572i −0.115390 0.193473i
\(124\) 10.0894 8.34022i 0.906053 0.748974i
\(125\) 5.47248i 0.489473i
\(126\) 10.2532 + 13.9001i 0.913426 + 1.23832i
\(127\) 2.98850i 0.265186i −0.991171 0.132593i \(-0.957670\pi\)
0.991171 0.132593i \(-0.0423304\pi\)
\(128\) 11.2923 0.695395i 0.998109 0.0614648i
\(129\) 6.76321 + 11.3399i 0.595468 + 0.998419i
\(130\) −2.90056 + 6.16098i −0.254396 + 0.540354i
\(131\) −19.7930 −1.72932 −0.864662 0.502354i \(-0.832467\pi\)
−0.864662 + 0.502354i \(0.832467\pi\)
\(132\) −0.0593294 0.0211373i −0.00516397 0.00183976i
\(133\) 18.4975 1.60394
\(134\) 0.602386 1.27950i 0.0520382 0.110532i
\(135\) −17.6863 + 0.752693i −1.52219 + 0.0647815i
\(136\) 7.74705 1.98440i 0.664304 0.170161i
\(137\) 10.7460i 0.918094i −0.888412 0.459047i \(-0.848191\pi\)
0.888412 0.459047i \(-0.151809\pi\)
\(138\) −21.0992 + 2.06933i −1.79608 + 0.176153i
\(139\) 1.90591i 0.161657i 0.996728 + 0.0808286i \(0.0257567\pi\)
−0.996728 + 0.0808286i \(0.974243\pi\)
\(140\) 17.6737 + 21.3803i 1.49370 + 1.80697i
\(141\) −0.281650 + 0.167979i −0.0237192 + 0.0141464i
\(142\) −6.04553 2.84621i −0.507330 0.238849i
\(143\) −0.0256973 −0.00214892
\(144\) 9.29684 + 7.58741i 0.774736 + 0.632285i
\(145\) 32.9513 2.73645
\(146\) 12.4457 + 5.85939i 1.03001 + 0.484927i
\(147\) 14.2427 8.49451i 1.17472 0.700616i
\(148\) −7.46350 9.02879i −0.613496 0.742162i
\(149\) 0.596193i 0.0488421i −0.999702 0.0244210i \(-0.992226\pi\)
0.999702 0.0244210i \(-0.00777423\pi\)
\(150\) −16.1049 + 1.57950i −1.31496 + 0.128966i
\(151\) 6.13669i 0.499397i −0.968324 0.249699i \(-0.919668\pi\)
0.968324 0.249699i \(-0.0803315\pi\)
\(152\) 12.4491 3.18884i 1.00976 0.258649i
\(153\) 7.46315 + 4.03117i 0.603360 + 0.325901i
\(154\) −0.0445884 + 0.0947086i −0.00359304 + 0.00763184i
\(155\) 22.2980 1.79102
\(156\) 4.61214 + 1.64317i 0.369267 + 0.131559i
\(157\) 0.104333 0.00832670 0.00416335 0.999991i \(-0.498675\pi\)
0.00416335 + 0.999991i \(0.498675\pi\)
\(158\) 2.61262 5.54937i 0.207849 0.441484i
\(159\) 12.0987 + 20.2859i 0.959492 + 1.60878i
\(160\) 15.5805 + 11.3425i 1.23174 + 0.896701i
\(161\) 35.2362i 2.77700i
\(162\) 1.77982 + 12.6029i 0.139836 + 0.990175i
\(163\) 16.4115i 1.28545i −0.766099 0.642723i \(-0.777805\pi\)
0.766099 0.642723i \(-0.222195\pi\)
\(164\) −2.22353 + 1.83804i −0.173628 + 0.143527i
\(165\) −0.0549539 0.0921411i −0.00427816 0.00717317i
\(166\) −13.5770 6.39200i −1.05378 0.496115i
\(167\) −18.8504 −1.45868 −0.729342 0.684149i \(-0.760174\pi\)
−0.729342 + 0.684149i \(0.760174\pi\)
\(168\) 14.0587 14.1471i 1.08465 1.09147i
\(169\) −11.0023 −0.846334
\(170\) 12.3248 + 5.80247i 0.945270 + 0.445029i
\(171\) 11.9929 + 6.47789i 0.917121 + 0.495376i
\(172\) 11.7510 9.71379i 0.896008 0.740670i
\(173\) 14.6759i 1.11579i 0.829912 + 0.557894i \(0.188390\pi\)
−0.829912 + 0.557894i \(0.811610\pi\)
\(174\) −2.31252 23.5788i −0.175311 1.78750i
\(175\) 26.8956i 2.03311i
\(176\) −0.0136816 + 0.0714271i −0.00103129 + 0.00538402i
\(177\) −16.5427 + 9.86623i −1.24342 + 0.741592i
\(178\) −8.29397 + 17.6169i −0.621659 + 1.32044i
\(179\) −0.933244 −0.0697539 −0.0348770 0.999392i \(-0.511104\pi\)
−0.0348770 + 0.999392i \(0.511104\pi\)
\(180\) 3.97132 + 20.0514i 0.296005 + 1.49454i
\(181\) −9.61458 −0.714646 −0.357323 0.933981i \(-0.616310\pi\)
−0.357323 + 0.933981i \(0.616310\pi\)
\(182\) 3.46621 7.36245i 0.256933 0.545741i
\(183\) −3.67875 + 2.19404i −0.271941 + 0.162188i
\(184\) 6.07446 + 23.7145i 0.447815 + 1.74826i
\(185\) 19.9540i 1.46705i
\(186\) −1.56487 15.9557i −0.114742 1.16993i
\(187\) 0.0514066i 0.00375922i
\(188\) 0.241263 + 0.291862i 0.0175959 + 0.0212863i
\(189\) 21.1353 0.899477i 1.53737 0.0654273i
\(190\) 19.8054 + 9.32429i 1.43683 + 0.676455i
\(191\) −1.97688 −0.143042 −0.0715211 0.997439i \(-0.522785\pi\)
−0.0715211 + 0.997439i \(0.522785\pi\)
\(192\) 7.02285 11.9449i 0.506830 0.862046i
\(193\) 6.76831 0.487193 0.243597 0.969877i \(-0.421673\pi\)
0.243597 + 0.969877i \(0.421673\pi\)
\(194\) −4.87520 2.29523i −0.350019 0.164788i
\(195\) 4.27200 + 7.16285i 0.305924 + 0.512942i
\(196\) −12.2004 14.7592i −0.871457 1.05423i
\(197\) 5.67128i 0.404062i 0.979379 + 0.202031i \(0.0647542\pi\)
−0.979379 + 0.202031i \(0.935246\pi\)
\(198\) −0.0620763 + 0.0457896i −0.00441157 + 0.00325412i
\(199\) 6.40961i 0.454365i −0.973852 0.227183i \(-0.927049\pi\)
0.973852 0.227183i \(-0.0729514\pi\)
\(200\) 4.63660 + 18.1011i 0.327857 + 1.27994i
\(201\) −0.887204 1.48757i −0.0625785 0.104925i
\(202\) −1.16627 + 2.47724i −0.0820587 + 0.174298i
\(203\) −39.3772 −2.76374
\(204\) 3.28709 9.22642i 0.230143 0.645979i
\(205\) −4.91409 −0.343215
\(206\) −6.05858 + 12.8688i −0.422121 + 0.896611i
\(207\) −12.3398 + 22.8455i −0.857677 + 1.58787i
\(208\) 1.06358 5.55259i 0.0737462 0.385003i
\(209\) 0.0826078i 0.00571410i
\(210\) 33.8115 3.31610i 2.33321 0.228833i
\(211\) 26.7538i 1.84181i 0.389788 + 0.920904i \(0.372548\pi\)
−0.389788 + 0.920904i \(0.627452\pi\)
\(212\) 21.0215 17.3770i 1.44376 1.19346i
\(213\) −7.02863 + 4.19195i −0.481594 + 0.287228i
\(214\) 14.5248 + 6.83822i 0.992895 + 0.467451i
\(215\) 25.9703 1.77116
\(216\) 14.0693 4.24894i 0.957298 0.289104i
\(217\) −26.6464 −1.80887
\(218\) −12.9040 6.07514i −0.873967 0.411460i
\(219\) 14.4696 8.62981i 0.977764 0.583149i
\(220\) −0.0954821 + 0.0789286i −0.00643740 + 0.00532137i
\(221\) 3.99624i 0.268816i
\(222\) −14.2784 + 1.40037i −0.958305 + 0.0939868i
\(223\) 18.5206i 1.24023i −0.784510 0.620117i \(-0.787085\pi\)
0.784510 0.620117i \(-0.212915\pi\)
\(224\) −18.6189 13.5544i −1.24402 0.905641i
\(225\) −9.41891 + 17.4378i −0.627927 + 1.16252i
\(226\) 5.45484 11.5864i 0.362851 0.770717i
\(227\) −15.9032 −1.05554 −0.527768 0.849389i \(-0.676971\pi\)
−0.527768 + 0.849389i \(0.676971\pi\)
\(228\) 5.28220 14.8264i 0.349822 0.981903i
\(229\) −5.52938 −0.365392 −0.182696 0.983169i \(-0.558482\pi\)
−0.182696 + 0.983169i \(0.558482\pi\)
\(230\) −17.7620 + 37.7275i −1.17119 + 2.48768i
\(231\) 0.0656706 + 0.110110i 0.00432081 + 0.00724469i
\(232\) −26.5015 + 6.78834i −1.73991 + 0.445676i
\(233\) 17.5986i 1.15292i −0.817125 0.576460i \(-0.804434\pi\)
0.817125 0.576460i \(-0.195566\pi\)
\(234\) 4.82568 3.55958i 0.315464 0.232697i
\(235\) 0.645029i 0.0420771i
\(236\) 14.1706 + 17.1425i 0.922425 + 1.11588i
\(237\) −3.84792 6.45179i −0.249949 0.419089i
\(238\) −14.7283 6.93402i −0.954694 0.449466i
\(239\) −9.65934 −0.624811 −0.312405 0.949949i \(-0.601135\pi\)
−0.312405 + 0.949949i \(0.601135\pi\)
\(240\) 22.1840 8.06065i 1.43197 0.520313i
\(241\) −7.56300 −0.487175 −0.243588 0.969879i \(-0.578324\pi\)
−0.243588 + 0.969879i \(0.578324\pi\)
\(242\) 14.0741 + 6.62604i 0.904719 + 0.425938i
\(243\) 14.0181 + 6.81848i 0.899264 + 0.437406i
\(244\) 3.15124 + 3.81213i 0.201737 + 0.244047i
\(245\) 32.6184i 2.08391i
\(246\) 0.344871 + 3.51635i 0.0219881 + 0.224195i
\(247\) 6.42176i 0.408607i
\(248\) −17.9334 + 4.59364i −1.13877 + 0.291697i
\(249\) −15.7848 + 9.41425i −1.00032 + 0.596604i
\(250\) −3.29654 + 7.00206i −0.208492 + 0.442849i
\(251\) −1.10166 −0.0695363 −0.0347681 0.999395i \(-0.511069\pi\)
−0.0347681 + 0.999395i \(0.511069\pi\)
\(252\) −4.74577 23.9616i −0.298956 1.50944i
\(253\) −0.157361 −0.00989319
\(254\) −1.80023 + 3.82380i −0.112956 + 0.239926i
\(255\) 14.3290 8.54598i 0.897318 0.535170i
\(256\) −14.8675 5.91257i −0.929217 0.369536i
\(257\) 13.2014i 0.823480i 0.911301 + 0.411740i \(0.135079\pi\)
−0.911301 + 0.411740i \(0.864921\pi\)
\(258\) −1.82259 18.5835i −0.113470 1.15696i
\(259\) 23.8453i 1.48168i
\(260\) 7.42257 6.13574i 0.460328 0.380523i
\(261\) −25.5303 13.7900i −1.58029 0.853580i
\(262\) 25.3253 + 11.9230i 1.56460 + 0.736607i
\(263\) 2.17844 0.134328 0.0671642 0.997742i \(-0.478605\pi\)
0.0671642 + 0.997742i \(0.478605\pi\)
\(264\) 0.0631795 + 0.0627844i 0.00388843 + 0.00386412i
\(265\) 46.4584 2.85392
\(266\) −23.6676 11.1426i −1.45116 0.683199i
\(267\) 12.2155 + 20.4817i 0.747576 + 1.25346i
\(268\) −1.54151 + 1.27426i −0.0941627 + 0.0778380i
\(269\) 4.89929i 0.298715i 0.988783 + 0.149358i \(0.0477206\pi\)
−0.988783 + 0.149358i \(0.952279\pi\)
\(270\) 23.0831 + 9.69089i 1.40479 + 0.589769i
\(271\) 8.79177i 0.534062i 0.963688 + 0.267031i \(0.0860426\pi\)
−0.963688 + 0.267031i \(0.913957\pi\)
\(272\) −11.1078 2.12766i −0.673507 0.129008i
\(273\) −5.10509 8.55969i −0.308974 0.518056i
\(274\) −6.47325 + 13.7496i −0.391063 + 0.830642i
\(275\) −0.120113 −0.00724306
\(276\) 28.2430 + 10.0621i 1.70003 + 0.605669i
\(277\) 12.7809 0.767930 0.383965 0.923348i \(-0.374558\pi\)
0.383965 + 0.923348i \(0.374558\pi\)
\(278\) 1.14809 2.43862i 0.0688581 0.146259i
\(279\) −17.2763 9.33165i −1.03430 0.558671i
\(280\) −9.73434 38.0026i −0.581738 2.27109i
\(281\) 10.1526i 0.605651i −0.953046 0.302826i \(-0.902070\pi\)
0.953046 0.302826i \(-0.0979299\pi\)
\(282\) 0.461561 0.0452681i 0.0274855 0.00269568i
\(283\) 0.978626i 0.0581733i 0.999577 + 0.0290866i \(0.00925987\pi\)
−0.999577 + 0.0290866i \(0.990740\pi\)
\(284\) 6.02077 + 7.28349i 0.357267 + 0.432195i
\(285\) 23.0260 13.7330i 1.36394 0.813471i
\(286\) 0.0328799 + 0.0154797i 0.00194423 + 0.000915334i
\(287\) 5.87240 0.346637
\(288\) −7.32479 15.3084i −0.431618 0.902057i
\(289\) 9.00568 0.529746
\(290\) −42.1613 19.8494i −2.47580 1.16560i
\(291\) −5.66799 + 3.38045i −0.332263 + 0.198165i
\(292\) −12.3947 14.9942i −0.725347 0.877471i
\(293\) 20.6788i 1.20807i 0.796959 + 0.604034i \(0.206441\pi\)
−0.796959 + 0.604034i \(0.793559\pi\)
\(294\) −23.3406 + 2.28916i −1.36125 + 0.133506i
\(295\) 37.8857i 2.20579i
\(296\) 4.11076 + 16.0483i 0.238933 + 0.932787i
\(297\) 0.00401696 + 0.0943880i 0.000233088 + 0.00547695i
\(298\) −0.359138 + 0.762832i −0.0208043 + 0.0441897i
\(299\) 12.2329 0.707447
\(300\) 21.5577 + 7.68037i 1.24464 + 0.443426i
\(301\) −31.0349 −1.78882
\(302\) −3.69666 + 7.85193i −0.212719 + 0.451828i
\(303\) 1.71771 + 2.88007i 0.0986797 + 0.165456i
\(304\) −17.8496 3.41904i −1.02375 0.196095i
\(305\) 8.42499i 0.482414i
\(306\) −7.12081 9.65359i −0.407070 0.551859i
\(307\) 3.57872i 0.204248i 0.994772 + 0.102124i \(0.0325639\pi\)
−0.994772 + 0.102124i \(0.967436\pi\)
\(308\) 0.114102 0.0943206i 0.00650158 0.00537442i
\(309\) 8.92318 + 14.9615i 0.507622 + 0.851128i
\(310\) −28.5304 13.4320i −1.62042 0.762886i
\(311\) 9.55945 0.542066 0.271033 0.962570i \(-0.412635\pi\)
0.271033 + 0.962570i \(0.412635\pi\)
\(312\) −4.91144 4.88073i −0.278055 0.276317i
\(313\) −10.9429 −0.618529 −0.309264 0.950976i \(-0.600083\pi\)
−0.309264 + 0.950976i \(0.600083\pi\)
\(314\) −0.133495 0.0628488i −0.00753355 0.00354676i
\(315\) 19.7746 36.6099i 1.11417 2.06274i
\(316\) −6.68573 + 5.52664i −0.376102 + 0.310898i
\(317\) 23.1283i 1.29901i 0.760356 + 0.649506i \(0.225024\pi\)
−0.760356 + 0.649506i \(0.774976\pi\)
\(318\) −3.26044 33.2440i −0.182837 1.86423i
\(319\) 0.175854i 0.00984594i
\(320\) −13.1027 23.8982i −0.732465 1.33595i
\(321\) 16.8868 10.0714i 0.942527 0.562133i
\(322\) 21.2258 45.0848i 1.18287 2.51248i
\(323\) −12.8465 −0.714797
\(324\) 5.31450 17.1976i 0.295250 0.955420i
\(325\) 9.33729 0.517940
\(326\) −9.88603 + 20.9985i −0.547537 + 1.16300i
\(327\) −15.0024 + 8.94756i −0.829632 + 0.494801i
\(328\) 3.95222 1.01236i 0.218225 0.0558982i
\(329\) 0.770818i 0.0424966i
\(330\) 0.0148093 + 0.150998i 0.000815227 + 0.00831219i
\(331\) 21.2638i 1.16876i 0.811479 + 0.584381i \(0.198663\pi\)
−0.811479 + 0.584381i \(0.801337\pi\)
\(332\) 13.5214 + 16.3572i 0.742083 + 0.897717i
\(333\) −8.35071 + 15.4602i −0.457616 + 0.847213i
\(334\) 24.1191 + 11.3552i 1.31974 + 0.621328i
\(335\) −3.40681 −0.186134
\(336\) −26.5102 + 9.63257i −1.44625 + 0.525500i
\(337\) 19.4857 1.06145 0.530726 0.847543i \(-0.321919\pi\)
0.530726 + 0.847543i \(0.321919\pi\)
\(338\) 14.0775 + 6.62765i 0.765718 + 0.360497i
\(339\) −8.03398 13.4705i −0.436346 0.731620i
\(340\) −12.2743 14.8486i −0.665669 0.805277i
\(341\) 0.119000i 0.00644420i
\(342\) −11.4428 15.5128i −0.618756 0.838839i
\(343\) 10.4811i 0.565929i
\(344\) −20.8870 + 5.35019i −1.12615 + 0.288463i
\(345\) 26.1601 + 43.8626i 1.40841 + 2.36148i
\(346\) 8.84055 18.7779i 0.475271 1.00950i
\(347\) 21.1791 1.13695 0.568476 0.822700i \(-0.307533\pi\)
0.568476 + 0.822700i \(0.307533\pi\)
\(348\) −11.2446 + 31.5622i −0.602776 + 1.69191i
\(349\) 6.71345 0.359363 0.179681 0.983725i \(-0.442493\pi\)
0.179681 + 0.983725i \(0.442493\pi\)
\(350\) 16.2015 34.4130i 0.866007 1.83945i
\(351\) −0.312270 7.33752i −0.0166677 0.391648i
\(352\) 0.0605324 0.0831497i 0.00322639 0.00443189i
\(353\) 15.8425i 0.843212i −0.906779 0.421606i \(-0.861467\pi\)
0.906779 0.421606i \(-0.138533\pi\)
\(354\) 27.1097 2.65882i 1.44086 0.141314i
\(355\) 16.0968i 0.854331i
\(356\) 21.2243 17.5447i 1.12489 0.929869i
\(357\) −17.1233 + 10.2125i −0.906264 + 0.540505i
\(358\) 1.19409 + 0.562173i 0.0631096 + 0.0297118i
\(359\) −7.16273 −0.378034 −0.189017 0.981974i \(-0.560530\pi\)
−0.189017 + 0.981974i \(0.560530\pi\)
\(360\) 6.99733 28.0481i 0.368791 1.47826i
\(361\) −1.64367 −0.0865088
\(362\) 12.3019 + 5.79168i 0.646573 + 0.304404i
\(363\) 16.3628 9.75895i 0.858824 0.512212i
\(364\) −8.87006 + 7.33229i −0.464918 + 0.384316i
\(365\) 33.1379i 1.73452i
\(366\) 6.02863 0.591265i 0.315122 0.0309059i
\(367\) 27.6682i 1.44427i −0.691753 0.722134i \(-0.743161\pi\)
0.691753 0.722134i \(-0.256839\pi\)
\(368\) 6.51298 34.0020i 0.339512 1.77248i
\(369\) 3.80739 + 2.05653i 0.198205 + 0.107059i
\(370\) −12.0200 + 25.5313i −0.624891 + 1.32731i
\(371\) −55.5183 −2.88237
\(372\) −7.60921 + 21.3580i −0.394519 + 1.10736i
\(373\) 26.6731 1.38108 0.690540 0.723295i \(-0.257373\pi\)
0.690540 + 0.723295i \(0.257373\pi\)
\(374\) 0.0309666 0.0657749i 0.00160124 0.00340114i
\(375\) 4.85520 + 8.14070i 0.250722 + 0.420384i
\(376\) −0.132883 0.518773i −0.00685294 0.0267537i
\(377\) 13.6705i 0.704067i
\(378\) −27.5846 11.5807i −1.41880 0.595648i
\(379\) 27.6728i 1.42146i −0.703466 0.710729i \(-0.748365\pi\)
0.703466 0.710729i \(-0.251635\pi\)
\(380\) −19.7242 23.8609i −1.01183 1.22404i
\(381\) 2.65141 + 4.44561i 0.135836 + 0.227755i
\(382\) 2.52943 + 1.19085i 0.129417 + 0.0609289i
\(383\) 12.2190 0.624364 0.312182 0.950022i \(-0.398940\pi\)
0.312182 + 0.950022i \(0.398940\pi\)
\(384\) −16.1812 + 11.0530i −0.825742 + 0.564048i
\(385\) 0.252171 0.0128518
\(386\) −8.66008 4.07713i −0.440786 0.207520i
\(387\) −20.1215 10.8685i −1.02283 0.552477i
\(388\) 4.85523 + 5.87350i 0.246487 + 0.298182i
\(389\) 15.3668i 0.779129i −0.920999 0.389565i \(-0.872626\pi\)
0.920999 0.389565i \(-0.127374\pi\)
\(390\) −1.15125 11.7383i −0.0582956 0.594391i
\(391\) 24.4714i 1.23757i
\(392\) 6.71977 + 26.2337i 0.339399 + 1.32500i
\(393\) 29.4435 17.5604i 1.48523 0.885807i
\(394\) 3.41630 7.25643i 0.172111 0.365574i
\(395\) −14.7758 −0.743449
\(396\) 0.107010 0.0211941i 0.00537745 0.00106504i
\(397\) −27.5307 −1.38173 −0.690863 0.722986i \(-0.742769\pi\)
−0.690863 + 0.722986i \(0.742769\pi\)
\(398\) −3.86106 + 8.20113i −0.193537 + 0.411085i
\(399\) −27.5164 + 16.4111i −1.37754 + 0.821581i
\(400\) 4.97132 25.9535i 0.248566 1.29768i
\(401\) 8.72712i 0.435811i −0.975970 0.217906i \(-0.930077\pi\)
0.975970 0.217906i \(-0.0699225\pi\)
\(402\) 0.239089 + 2.43779i 0.0119247 + 0.121586i
\(403\) 9.25079i 0.460815i
\(404\) 2.98450 2.46709i 0.148485 0.122742i
\(405\) 25.6418 16.8110i 1.27415 0.835346i
\(406\) 50.3833 + 23.7202i 2.50048 + 1.17722i
\(407\) −0.106491 −0.00527854
\(408\) −9.76372 + 9.82515i −0.483376 + 0.486417i
\(409\) −30.1236 −1.48952 −0.744758 0.667335i \(-0.767435\pi\)
−0.744758 + 0.667335i \(0.767435\pi\)
\(410\) 6.28760 + 2.96018i 0.310523 + 0.146193i
\(411\) 9.53391 + 15.9855i 0.470273 + 0.788505i
\(412\) 15.5040 12.8161i 0.763825 0.631403i
\(413\) 45.2739i 2.22778i
\(414\) 29.5506 21.7976i 1.45233 1.07129i
\(415\) 36.1501i 1.77454i
\(416\) −4.70566 + 6.46388i −0.230714 + 0.316918i
\(417\) −1.69093 2.83518i −0.0828053 0.138839i
\(418\) 0.0497618 0.105697i 0.00243393 0.00516981i
\(419\) −6.30793 −0.308163 −0.154081 0.988058i \(-0.549242\pi\)
−0.154081 + 0.988058i \(0.549242\pi\)
\(420\) −45.2595 16.1246i −2.20844 0.786800i
\(421\) −19.6623 −0.958280 −0.479140 0.877739i \(-0.659051\pi\)
−0.479140 + 0.877739i \(0.659051\pi\)
\(422\) 16.1161 34.2316i 0.784520 1.66637i
\(423\) 0.269943 0.499762i 0.0131251 0.0242993i
\(424\) −37.3647 + 9.57096i −1.81459 + 0.464807i
\(425\) 18.6789i 0.906060i
\(426\) 11.5183 1.12967i 0.558065 0.0547329i
\(427\) 10.0680i 0.487223i
\(428\) −14.4653 17.4991i −0.699207 0.845849i
\(429\) 0.0382266 0.0227988i 0.00184560 0.00110074i
\(430\) −33.2291 15.6441i −1.60245 0.754428i
\(431\) 2.96785 0.142956 0.0714782 0.997442i \(-0.477228\pi\)
0.0714782 + 0.997442i \(0.477228\pi\)
\(432\) −20.5613 3.03863i −0.989256 0.146196i
\(433\) −18.3023 −0.879551 −0.439776 0.898108i \(-0.644942\pi\)
−0.439776 + 0.898108i \(0.644942\pi\)
\(434\) 34.0942 + 16.0514i 1.63657 + 0.770492i
\(435\) −49.0174 + 29.2345i −2.35020 + 1.40169i
\(436\) 12.8511 + 15.5463i 0.615456 + 0.744534i
\(437\) 39.3244i 1.88114i
\(438\) −23.7124 + 2.32562i −1.13302 + 0.111122i
\(439\) 1.90946i 0.0911336i −0.998961 0.0455668i \(-0.985491\pi\)
0.998961 0.0455668i \(-0.0145094\pi\)
\(440\) 0.169715 0.0434725i 0.00809085 0.00207247i
\(441\) −13.6507 + 25.2724i −0.650033 + 1.20345i
\(442\) −2.40728 + 5.11320i −0.114502 + 0.243210i
\(443\) 0.762163 0.0362115 0.0181057 0.999836i \(-0.494236\pi\)
0.0181057 + 0.999836i \(0.494236\pi\)
\(444\) 19.1129 + 6.80933i 0.907056 + 0.323157i
\(445\) 46.9067 2.22359
\(446\) −11.1566 + 23.6972i −0.528279 + 1.12210i
\(447\) 0.528945 + 0.886880i 0.0250182 + 0.0419480i
\(448\) 15.6579 + 28.5586i 0.739768 + 1.34927i
\(449\) 30.9058i 1.45854i 0.684228 + 0.729268i \(0.260139\pi\)
−0.684228 + 0.729268i \(0.739861\pi\)
\(450\) 22.5558 16.6379i 1.06329 0.784320i
\(451\) 0.0262255i 0.00123491i
\(452\) −13.9590 + 11.5390i −0.656575 + 0.542747i
\(453\) 5.44450 + 9.12877i 0.255805 + 0.428907i
\(454\) 20.3483 + 9.57988i 0.954991 + 0.449606i
\(455\) −19.6032 −0.919014
\(456\) −15.6898 + 15.7885i −0.734743 + 0.739366i
\(457\) −8.33955 −0.390108 −0.195054 0.980793i \(-0.562488\pi\)
−0.195054 + 0.980793i \(0.562488\pi\)
\(458\) 7.07487 + 3.33082i 0.330587 + 0.155639i
\(459\) −14.6784 + 0.624685i −0.685131 + 0.0291578i
\(460\) 45.4530 37.5730i 2.11926 1.75185i
\(461\) 27.8020i 1.29487i 0.762121 + 0.647434i \(0.224158\pi\)
−0.762121 + 0.647434i \(0.775842\pi\)
\(462\) −0.0176973 0.180445i −0.000823355 0.00839506i
\(463\) 27.2797i 1.26779i 0.773417 + 0.633897i \(0.218546\pi\)
−0.773417 + 0.633897i \(0.781454\pi\)
\(464\) 37.9979 + 7.27839i 1.76401 + 0.337891i
\(465\) −33.1699 + 19.7829i −1.53822 + 0.917409i
\(466\) −10.6011 + 22.5174i −0.491087 + 1.04310i
\(467\) −3.41179 −0.157879 −0.0789394 0.996879i \(-0.525153\pi\)
−0.0789394 + 0.996879i \(0.525153\pi\)
\(468\) −8.31872 + 1.64758i −0.384533 + 0.0761596i
\(469\) 4.07118 0.187989
\(470\) 0.388556 0.825318i 0.0179228 0.0380691i
\(471\) −0.155203 + 0.0925648i −0.00715138 + 0.00426516i
\(472\) −7.80490 30.4701i −0.359249 1.40250i
\(473\) 0.138598i 0.00637275i
\(474\) 1.03696 + 10.5730i 0.0476292 + 0.485635i
\(475\) 30.0161i 1.37723i
\(476\) 14.6680 + 17.7442i 0.672305 + 0.813305i
\(477\) −35.9955 19.4427i −1.64812 0.890220i
\(478\) 12.3592 + 5.81865i 0.565295 + 0.266139i
\(479\) −29.9047 −1.36638 −0.683190 0.730241i \(-0.739408\pi\)
−0.683190 + 0.730241i \(0.739408\pi\)
\(480\) −33.2402 3.04969i −1.51720 0.139199i
\(481\) 8.27835 0.377460
\(482\) 9.67689 + 4.55584i 0.440770 + 0.207513i
\(483\) −31.2617 52.4163i −1.42246 2.38503i
\(484\) −14.0165 16.9561i −0.637112 0.770732i
\(485\) 12.9807i 0.589424i
\(486\) −13.8289 17.1686i −0.627293 0.778784i
\(487\) 26.3630i 1.19462i −0.802010 0.597311i \(-0.796236\pi\)
0.802010 0.597311i \(-0.203764\pi\)
\(488\) −1.73565 6.77590i −0.0785690 0.306731i
\(489\) 14.5603 + 24.4132i 0.658440 + 1.10400i
\(490\) −19.6489 + 41.7354i −0.887645 + 1.88541i
\(491\) −11.9512 −0.539348 −0.269674 0.962952i \(-0.586916\pi\)
−0.269674 + 0.962952i \(0.586916\pi\)
\(492\) 1.67694 4.70694i 0.0756022 0.212205i
\(493\) 27.3474 1.23166
\(494\) −3.86837 + 8.21667i −0.174046 + 0.369685i
\(495\) 0.163496 + 0.0883111i 0.00734859 + 0.00396929i
\(496\) 25.7131 + 4.92526i 1.15455 + 0.221151i
\(497\) 19.2359i 0.862849i
\(498\) 25.8678 2.53701i 1.15916 0.113686i
\(499\) 24.3489i 1.09000i 0.838435 + 0.545002i \(0.183471\pi\)
−0.838435 + 0.545002i \(0.816529\pi\)
\(500\) 8.43588 6.97338i 0.377264 0.311859i
\(501\) 28.0413 16.7241i 1.25279 0.747178i
\(502\) 1.40958 + 0.663625i 0.0629127 + 0.0296190i
\(503\) 15.0087 0.669205 0.334603 0.942359i \(-0.391398\pi\)
0.334603 + 0.942359i \(0.391398\pi\)
\(504\) −8.36189 + 33.5178i −0.372468 + 1.49300i
\(505\) 6.59589 0.293513
\(506\) 0.201344 + 0.0947919i 0.00895083 + 0.00421401i
\(507\) 16.3668 9.76132i 0.726874 0.433516i
\(508\) 4.60680 3.80813i 0.204394 0.168959i
\(509\) 16.2190i 0.718893i −0.933166 0.359446i \(-0.882966\pi\)
0.933166 0.359446i \(-0.117034\pi\)
\(510\) −23.4820 + 2.30303i −1.03980 + 0.101980i
\(511\) 39.6003i 1.75181i
\(512\) 15.4613 + 16.5211i 0.683301 + 0.730137i
\(513\) −23.5875 + 1.00384i −1.04141 + 0.0443205i
\(514\) 7.95233 16.8912i 0.350762 0.745041i
\(515\) 34.2644 1.50987
\(516\) −8.86239 + 24.8755i −0.390145 + 1.09508i
\(517\) 0.00344239 0.000151396
\(518\) 14.3641 30.5102i 0.631121 1.34054i
\(519\) −13.0205 21.8315i −0.571537 0.958294i
\(520\) −13.1933 + 3.37946i −0.578564 + 0.148199i
\(521\) 33.7767i 1.47978i 0.672726 + 0.739892i \(0.265123\pi\)
−0.672726 + 0.739892i \(0.734877\pi\)
\(522\) 24.3592 + 33.0235i 1.06617 + 1.44540i
\(523\) 39.1189i 1.71055i 0.518173 + 0.855276i \(0.326612\pi\)
−0.518173 + 0.855276i \(0.673388\pi\)
\(524\) −25.2215 30.5111i −1.10181 1.33289i
\(525\) −23.8618 40.0091i −1.04142 1.74614i
\(526\) −2.78733 1.31226i −0.121533 0.0572173i
\(527\) 18.5059 0.806128
\(528\) −0.0430180 0.118391i −0.00187212 0.00515232i
\(529\) 51.9096 2.25694
\(530\) −59.4437 27.9859i −2.58207 1.21563i
\(531\) 15.8551 29.3535i 0.688051 1.27383i
\(532\) 23.5707 + 28.5141i 1.02192 + 1.23624i
\(533\) 2.03871i 0.0883065i
\(534\) −3.29191 33.5648i −0.142455 1.45249i
\(535\) 38.6737i 1.67201i
\(536\) 2.73997 0.701842i 0.118349 0.0303149i
\(537\) 1.38827 0.827978i 0.0599082 0.0357299i
\(538\) 2.95126 6.26867i 0.127238 0.270261i
\(539\) −0.174078 −0.00749805
\(540\) −23.6973 26.3045i −1.01977 1.13196i
\(541\) −24.9934 −1.07455 −0.537276 0.843407i \(-0.680547\pi\)
−0.537276 + 0.843407i \(0.680547\pi\)
\(542\) 5.29604 11.2491i 0.227484 0.483191i
\(543\) 14.3024 8.53009i 0.613774 0.366061i
\(544\) 12.9308 + 9.41350i 0.554401 + 0.403600i
\(545\) 34.3581i 1.47174i
\(546\) 1.37575 + 14.0274i 0.0588768 + 0.600317i
\(547\) 2.92293i 0.124975i 0.998046 + 0.0624877i \(0.0199034\pi\)
−0.998046 + 0.0624877i \(0.980097\pi\)
\(548\) 16.5651 13.6933i 0.707626 0.584947i
\(549\) 3.52583 6.52759i 0.150479 0.278591i
\(550\) 0.153685 + 0.0723541i 0.00655313 + 0.00308519i
\(551\) 43.9459 1.87216
\(552\) −30.0758 29.8877i −1.28011 1.27211i
\(553\) 17.6572 0.750861
\(554\) −16.3532 7.69903i −0.694782 0.327100i
\(555\) 17.7033 + 29.6831i 0.751463 + 1.25998i
\(556\) −2.93798 + 2.42863i −0.124598 + 0.102997i
\(557\) 20.8125i 0.881852i 0.897543 + 0.440926i \(0.145350\pi\)
−0.897543 + 0.440926i \(0.854650\pi\)
\(558\) 16.4838 + 22.3468i 0.697815 + 0.946018i
\(559\) 10.7743i 0.455705i
\(560\) −10.4371 + 54.4883i −0.441046 + 2.30255i
\(561\) −0.0456081 0.0764709i −0.00192558 0.00322861i
\(562\) −6.11576 + 12.9902i −0.257978 + 0.547961i
\(563\) −18.7695 −0.791040 −0.395520 0.918457i \(-0.629436\pi\)
−0.395520 + 0.918457i \(0.629436\pi\)
\(564\) −0.617838 0.220117i −0.0260157 0.00926859i
\(565\) −30.8500 −1.29787
\(566\) 0.589510 1.25216i 0.0247790 0.0526320i
\(567\) −30.6423 + 20.0894i −1.28686 + 0.843674i
\(568\) −3.31613 12.9461i −0.139142 0.543205i
\(569\) 8.28124i 0.347167i 0.984819 + 0.173584i \(0.0555347\pi\)
−0.984819 + 0.173584i \(0.944465\pi\)
\(570\) −37.7344 + 3.70085i −1.58052 + 0.155011i
\(571\) 31.2373i 1.30724i −0.756822 0.653621i \(-0.773249\pi\)
0.756822 0.653621i \(-0.226751\pi\)
\(572\) −0.0327452 0.0396127i −0.00136914 0.00165629i
\(573\) 2.94075 1.75390i 0.122852 0.0732701i
\(574\) −7.51376 3.53745i −0.313618 0.147650i
\(575\) 57.1781 2.38449
\(576\) 0.150537 + 23.9995i 0.00627239 + 0.999980i
\(577\) 6.88535 0.286641 0.143320 0.989676i \(-0.454222\pi\)
0.143320 + 0.989676i \(0.454222\pi\)
\(578\) −11.5228 5.42489i −0.479285 0.225646i
\(579\) −10.0683 + 6.00487i −0.418426 + 0.249554i
\(580\) 41.9886 + 50.7947i 1.74348 + 2.10914i
\(581\) 43.1998i 1.79223i
\(582\) 9.28855 0.910985i 0.385023 0.0377615i
\(583\) 0.247939i 0.0102686i
\(584\) 6.82680 + 26.6516i 0.282495 + 1.10285i
\(585\) −12.7098 6.86512i −0.525486 0.283838i
\(586\) 12.4566 26.4586i 0.514578 1.09299i
\(587\) −14.9053 −0.615206 −0.307603 0.951515i \(-0.599527\pi\)
−0.307603 + 0.951515i \(0.599527\pi\)
\(588\) 31.2433 + 11.1311i 1.28845 + 0.459037i
\(589\) 29.7380 1.22533
\(590\) 22.8218 48.4749i 0.939559 1.99568i
\(591\) −5.03158 8.43644i −0.206972 0.347029i
\(592\) 4.40752 23.0101i 0.181148 0.945710i
\(593\) 4.72889i 0.194192i −0.995275 0.0970961i \(-0.969045\pi\)
0.995275 0.0970961i \(-0.0309554\pi\)
\(594\) 0.0517182 0.123190i 0.00212203 0.00505453i
\(595\) 39.2155i 1.60768i
\(596\) 0.919038 0.759707i 0.0376453 0.0311188i
\(597\) 5.68663 + 9.53476i 0.232738 + 0.390232i
\(598\) −15.6520 7.36892i −0.640060 0.301338i
\(599\) −2.24315 −0.0916528 −0.0458264 0.998949i \(-0.514592\pi\)
−0.0458264 + 0.998949i \(0.514592\pi\)
\(600\) −22.9567 22.8131i −0.937203 0.931342i
\(601\) 14.2763 0.582343 0.291171 0.956671i \(-0.405955\pi\)
0.291171 + 0.956671i \(0.405955\pi\)
\(602\) 39.7092 + 18.6949i 1.61843 + 0.761949i
\(603\) 2.63956 + 1.42574i 0.107491 + 0.0580606i
\(604\) 9.45978 7.81976i 0.384913 0.318182i
\(605\) 37.4738i 1.52352i
\(606\) −0.462899 4.71979i −0.0188040 0.191728i
\(607\) 3.24114i 0.131554i 0.997834 + 0.0657768i \(0.0209525\pi\)
−0.997834 + 0.0657768i \(0.979047\pi\)
\(608\) 20.7791 + 15.1270i 0.842703 + 0.613482i
\(609\) 58.5764 34.9356i 2.37363 1.41566i
\(610\) 5.07509 10.7798i 0.205485 0.436462i
\(611\) −0.267604 −0.0108261
\(612\) 3.29593 + 16.6413i 0.133230 + 0.672684i
\(613\) −7.83484 −0.316446 −0.158223 0.987403i \(-0.550576\pi\)
−0.158223 + 0.987403i \(0.550576\pi\)
\(614\) 2.15577 4.57899i 0.0869997 0.184793i
\(615\) 7.31006 4.35980i 0.294770 0.175804i
\(616\) −0.202812 + 0.0519501i −0.00817152 + 0.00209313i
\(617\) 29.7670i 1.19837i 0.800609 + 0.599187i \(0.204510\pi\)
−0.800609 + 0.599187i \(0.795490\pi\)
\(618\) −2.40468 24.5184i −0.0967302 0.986277i
\(619\) 21.9159i 0.880875i −0.897783 0.440437i \(-0.854823\pi\)
0.897783 0.440437i \(-0.145177\pi\)
\(620\) 28.4135 + 34.3726i 1.14111 + 1.38044i
\(621\) −1.91222 44.9322i −0.0767349 1.80307i
\(622\) −12.2314 5.75847i −0.490433 0.230894i
\(623\) −56.0541 −2.24576
\(624\) 3.34413 + 9.20349i 0.133872 + 0.368435i
\(625\) −14.3880 −0.575520
\(626\) 14.0015 + 6.59184i 0.559611 + 0.263463i
\(627\) −0.0732900 0.122885i −0.00292692 0.00490756i
\(628\) 0.132948 + 0.160831i 0.00530520 + 0.00641784i
\(629\) 16.5605i 0.660311i
\(630\) −47.3550 + 34.9306i −1.88667 + 1.39167i
\(631\) 23.4816i 0.934788i −0.884049 0.467394i \(-0.845193\pi\)
0.884049 0.467394i \(-0.154807\pi\)
\(632\) 11.8836 3.04398i 0.472704 0.121083i
\(633\) −23.7361 39.7982i −0.943425 1.58184i
\(634\) 13.9321 29.5927i 0.553316 1.17528i
\(635\) 10.1812 0.404030
\(636\) −15.8540 + 44.4999i −0.628650 + 1.76454i
\(637\) 13.5324 0.536174
\(638\) −0.105932 + 0.225006i −0.00419389 + 0.00890807i
\(639\) 6.73648 12.4717i 0.266491 0.493371i
\(640\) 2.36908 + 38.4707i 0.0936460 + 1.52069i
\(641\) 41.9504i 1.65694i 0.560033 + 0.828470i \(0.310788\pi\)
−0.560033 + 0.828470i \(0.689212\pi\)
\(642\) −27.6736 + 2.71412i −1.09219 + 0.107118i
\(643\) 4.08169i 0.160966i −0.996756 0.0804831i \(-0.974354\pi\)
0.996756 0.0804831i \(-0.0256463\pi\)
\(644\) −54.3169 + 44.9002i −2.14039 + 1.76931i
\(645\) −38.6327 + 23.0410i −1.52116 + 0.907237i
\(646\) 16.4371 + 7.73854i 0.646710 + 0.304469i
\(647\) −1.95670 −0.0769257 −0.0384628 0.999260i \(-0.512246\pi\)
−0.0384628 + 0.999260i \(0.512246\pi\)
\(648\) −17.1595 + 18.8030i −0.674088 + 0.738651i
\(649\) 0.202188 0.00793658
\(650\) −11.9471 5.62465i −0.468604 0.220617i
\(651\) 39.6384 23.6408i 1.55355 0.926555i
\(652\) 25.2984 20.9125i 0.990763 0.818998i
\(653\) 45.1364i 1.76632i −0.469069 0.883161i \(-0.655411\pi\)
0.469069 0.883161i \(-0.344589\pi\)
\(654\) 24.5855 2.41125i 0.961368 0.0942872i
\(655\) 67.4310i 2.63475i
\(656\) −5.66671 1.08544i −0.221248 0.0423794i
\(657\) −13.8681 + 25.6749i −0.541047 + 1.00167i
\(658\) −0.464330 + 0.986265i −0.0181015 + 0.0384486i
\(659\) 38.5840 1.50302 0.751511 0.659721i \(-0.229326\pi\)
0.751511 + 0.659721i \(0.229326\pi\)
\(660\) 0.0720106 0.202124i 0.00280301 0.00786767i
\(661\) 27.8469 1.08312 0.541560 0.840662i \(-0.317834\pi\)
0.541560 + 0.840662i \(0.317834\pi\)
\(662\) 12.8090 27.2071i 0.497835 1.05743i
\(663\) 3.54548 + 5.94469i 0.137695 + 0.230873i
\(664\) −7.44734 29.0742i −0.289013 1.12830i
\(665\) 63.0175i 2.44371i
\(666\) 19.9978 14.7510i 0.774897 0.571590i
\(667\) 83.7131i 3.24138i
\(668\) −24.0203 29.0580i −0.929374 1.12429i
\(669\) 16.4316 + 27.5508i 0.635282 + 1.06517i
\(670\) 4.35902 + 2.05221i 0.168404 + 0.0792839i
\(671\) 0.0449624 0.00173575
\(672\) 39.7224 + 3.64442i 1.53232 + 0.140586i
\(673\) −28.4643 −1.09722 −0.548609 0.836079i \(-0.684842\pi\)
−0.548609 + 0.836079i \(0.684842\pi\)
\(674\) −24.9320 11.7379i −0.960345 0.452127i
\(675\) −1.45959 34.2965i −0.0561796 1.32007i
\(676\) −14.0199 16.9602i −0.539226 0.652316i
\(677\) 10.7995i 0.415059i 0.978229 + 0.207530i \(0.0665424\pi\)
−0.978229 + 0.207530i \(0.933458\pi\)
\(678\) 2.16505 + 22.0752i 0.0831482 + 0.847792i
\(679\) 15.5121i 0.595300i
\(680\) 6.76048 + 26.3927i 0.259253 + 1.01211i
\(681\) 23.6572 14.1094i 0.906546 0.540674i
\(682\) −0.0716837 + 0.152261i −0.00274491 + 0.00583036i
\(683\) −43.7404 −1.67368 −0.836839 0.547449i \(-0.815599\pi\)
−0.836839 + 0.547449i \(0.815599\pi\)
\(684\) 5.29640 + 26.7417i 0.202513 + 1.02250i
\(685\) 36.6096 1.39878
\(686\) 6.31369 13.4107i 0.241058 0.512022i
\(687\) 8.22535 4.90569i 0.313817 0.187164i
\(688\) 29.9478 + 5.73641i 1.14175 + 0.218699i
\(689\) 19.2742i 0.734289i
\(690\) −7.04980 71.8809i −0.268381 2.73646i
\(691\) 3.47398i 0.132156i 0.997814 + 0.0660782i \(0.0210487\pi\)
−0.997814 + 0.0660782i \(0.978951\pi\)
\(692\) −22.6230 + 18.7010i −0.859999 + 0.710904i
\(693\) −0.195379 0.105533i −0.00742185 0.00400886i
\(694\) −27.0987 12.7580i −1.02865 0.484285i
\(695\) −6.49307 −0.246296
\(696\) 33.4002 33.6103i 1.26603 1.27400i
\(697\) −4.07837 −0.154479
\(698\) −8.58989 4.04408i −0.325132 0.153071i
\(699\) 15.6135 + 26.1791i 0.590557 + 0.990185i
\(700\) −41.4598 + 34.2720i −1.56703 + 1.29536i
\(701\) 25.0833i 0.947383i 0.880691 + 0.473691i \(0.157079\pi\)
−0.880691 + 0.473691i \(0.842921\pi\)
\(702\) −4.02047 + 9.57650i −0.151743 + 0.361442i
\(703\) 26.6119i 1.00369i
\(704\) −0.127540 + 0.0699266i −0.00480683 + 0.00263546i
\(705\) −0.572272 0.959527i −0.0215530 0.0361379i
\(706\) −9.54330 + 20.2706i −0.359167 + 0.762893i
\(707\) −7.88217 −0.296439
\(708\) −36.2886 12.9285i −1.36381 0.485884i
\(709\) −49.9335 −1.87529 −0.937646 0.347590i \(-0.887000\pi\)
−0.937646 + 0.347590i \(0.887000\pi\)
\(710\) 9.69650 20.5960i 0.363903 0.772953i
\(711\) 11.4481 + 6.18361i 0.429337 + 0.231904i
\(712\) −37.7253 + 9.66333i −1.41382 + 0.362149i
\(713\) 56.6483i 2.12150i
\(714\) 28.0613 2.75214i 1.05017 0.102996i
\(715\) 0.0875459i 0.00327403i
\(716\) −1.18920 1.43861i −0.0444424 0.0537632i
\(717\) 14.3690 8.56980i 0.536619 0.320045i
\(718\) 9.16475 + 4.31473i 0.342025 + 0.161024i
\(719\) 45.0008 1.67825 0.839124 0.543940i \(-0.183068\pi\)
0.839124 + 0.543940i \(0.183068\pi\)
\(720\) −25.8489 + 31.6725i −0.963330 + 1.18037i
\(721\) −40.9464 −1.52492
\(722\) 2.10308 + 0.990122i 0.0782685 + 0.0368485i
\(723\) 11.2505 6.70992i 0.418411 0.249545i
\(724\) −12.2515 14.8210i −0.455324 0.550817i
\(725\) 63.8977i 2.37310i
\(726\) −26.8149 + 2.62990i −0.995195 + 0.0976049i
\(727\) 40.2270i 1.49194i 0.665982 + 0.745968i \(0.268013\pi\)
−0.665982 + 0.745968i \(0.731987\pi\)
\(728\) 15.7661 4.03849i 0.584332 0.149677i
\(729\) −26.9024 + 2.29398i −0.996384 + 0.0849621i
\(730\) −19.9618 + 42.4002i −0.738820 + 1.56930i
\(731\) 21.5536 0.797190
\(732\) −8.06983 2.87503i −0.298269 0.106264i
\(733\) 50.9739 1.88276 0.941382 0.337341i \(-0.109528\pi\)
0.941382 + 0.337341i \(0.109528\pi\)
\(734\) −16.6669 + 35.4016i −0.615188 + 1.30670i
\(735\) 28.9392 + 48.5222i 1.06744 + 1.78977i
\(736\) −28.8157 + 39.5824i −1.06216 + 1.45903i
\(737\) 0.0181814i 0.000669721i
\(738\) −3.63274 4.92486i −0.133723 0.181287i
\(739\) 5.00613i 0.184154i −0.995752 0.0920768i \(-0.970649\pi\)
0.995752 0.0920768i \(-0.0293505\pi\)
\(740\) 30.7594 25.4267i 1.13074 0.934704i
\(741\) 5.69741 + 9.55282i 0.209299 + 0.350932i
\(742\) 71.0360 + 33.4434i 2.60781 + 1.22775i
\(743\) 9.69596 0.355710 0.177855 0.984057i \(-0.443084\pi\)
0.177855 + 0.984057i \(0.443084\pi\)
\(744\) 22.6018 22.7440i 0.828621 0.833835i
\(745\) 2.03112 0.0744143
\(746\) −34.1283 16.0675i −1.24953 0.588272i
\(747\) 15.1287 28.0087i 0.553531 1.02479i
\(748\) −0.0792437 + 0.0655055i −0.00289744 + 0.00239512i
\(749\) 46.2156i 1.68868i
\(750\) −1.30841 13.3408i −0.0477764 0.487136i
\(751\) 16.7858i 0.612521i −0.951948 0.306260i \(-0.900922\pi\)
0.951948 0.306260i \(-0.0990778\pi\)
\(752\) −0.142476 + 0.743819i −0.00519557 + 0.0271243i
\(753\) 1.63880 0.977399i 0.0597212 0.0356184i
\(754\) 8.23492 17.4915i 0.299898 0.637002i
\(755\) 20.9065 0.760867
\(756\) 28.3185 + 31.4341i 1.02993 + 1.14325i
\(757\) −30.7776 −1.11863 −0.559316 0.828954i \(-0.688936\pi\)
−0.559316 + 0.828954i \(0.688936\pi\)
\(758\) −16.6697 + 35.4075i −0.605472 + 1.28606i
\(759\) 0.234085 0.139611i 0.00849677 0.00506756i
\(760\) 10.8638 + 42.4118i 0.394070 + 1.53844i
\(761\) 25.9132i 0.939351i −0.882839 0.469676i \(-0.844371\pi\)
0.882839 0.469676i \(-0.155629\pi\)
\(762\) −0.714518 7.28534i −0.0258843 0.263920i
\(763\) 41.0583i 1.48641i