Properties

Label 804.2.a.c
Level 804
Weight 2
Character orbit 804.a
Self dual yes
Analytic conductor 6.420
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} + 4q^{5} + q^{9} + O(q^{10}) \) \( q - q^{3} + 4q^{5} + q^{9} + 2q^{13} - 4q^{15} + 2q^{17} + 4q^{19} - 6q^{23} + 11q^{25} - q^{27} - 6q^{29} - 6q^{37} - 2q^{39} + 12q^{41} - 4q^{43} + 4q^{45} + 10q^{47} - 7q^{49} - 2q^{51} + 12q^{53} - 4q^{57} + 6q^{59} + 6q^{61} + 8q^{65} - q^{67} + 6q^{69} - 2q^{71} + 2q^{73} - 11q^{75} + q^{81} - 6q^{83} + 8q^{85} + 6q^{87} + 10q^{89} + 16q^{95} - 18q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 4.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 804.2.a.c 1
3.b odd 2 1 2412.2.a.a 1
4.b odd 2 1 3216.2.a.m 1
12.b even 2 1 9648.2.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
804.2.a.c 1 1.a even 1 1 trivial
2412.2.a.a 1 3.b odd 2 1
3216.2.a.m 1 4.b odd 2 1
9648.2.a.a 1 12.b even 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(67\) \(1\)

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 4 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(804))\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + T \)
$5$ \( 1 - 4 T + 5 T^{2} \)
$7$ \( 1 + 7 T^{2} \)
$11$ \( 1 + 11 T^{2} \)
$13$ \( 1 - 2 T + 13 T^{2} \)
$17$ \( 1 - 2 T + 17 T^{2} \)
$19$ \( 1 - 4 T + 19 T^{2} \)
$23$ \( 1 + 6 T + 23 T^{2} \)
$29$ \( 1 + 6 T + 29 T^{2} \)
$31$ \( 1 + 31 T^{2} \)
$37$ \( 1 + 6 T + 37 T^{2} \)
$41$ \( 1 - 12 T + 41 T^{2} \)
$43$ \( 1 + 4 T + 43 T^{2} \)
$47$ \( 1 - 10 T + 47 T^{2} \)
$53$ \( 1 - 12 T + 53 T^{2} \)
$59$ \( 1 - 6 T + 59 T^{2} \)
$61$ \( 1 - 6 T + 61 T^{2} \)
$67$ \( 1 + T \)
$71$ \( 1 + 2 T + 71 T^{2} \)
$73$ \( 1 - 2 T + 73 T^{2} \)
$79$ \( 1 + 79 T^{2} \)
$83$ \( 1 + 6 T + 83 T^{2} \)
$89$ \( 1 - 10 T + 89 T^{2} \)
$97$ \( 1 + 18 T + 97 T^{2} \)
show more
show less