Properties

Label 8036.2.a.k
Level 8036
Weight 2
Character orbit 8036.a
Self dual Yes
Analytic conductor 64.168
Analytic rank 0
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8036 = 2^{2} \cdot 7^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8036.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(64.1677830643\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.287349.1
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{2} q^{3} + ( 1 - \beta_{2} + \beta_{3} ) q^{5} + ( \beta_{2} + \beta_{4} ) q^{9} +O(q^{10})\) \( q -\beta_{2} q^{3} + ( 1 - \beta_{2} + \beta_{3} ) q^{5} + ( \beta_{2} + \beta_{4} ) q^{9} + ( 1 - \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} ) q^{11} + ( -1 - \beta_{1} - \beta_{2} - \beta_{3} ) q^{13} + ( 2 - \beta_{1} + \beta_{4} ) q^{15} + ( \beta_{3} + \beta_{4} ) q^{17} + ( -3 \beta_{1} - \beta_{3} + 2 \beta_{4} ) q^{19} + ( -2 \beta_{1} + \beta_{2} - 2 \beta_{3} - 2 \beta_{4} ) q^{23} + ( 1 - \beta_{1} - 2 \beta_{2} + 2 \beta_{3} - \beta_{4} ) q^{25} + ( -2 - \beta_{1} + \beta_{2} ) q^{27} + ( 2 - 3 \beta_{1} - \beta_{4} ) q^{29} + ( -3 - 4 \beta_{1} + \beta_{2} - \beta_{3} ) q^{31} + ( -1 + 2 \beta_{1} - 3 \beta_{2} + \beta_{3} ) q^{33} + ( 2 + 2 \beta_{1} - 2 \beta_{2} + \beta_{4} ) q^{37} + ( 4 + 3 \beta_{1} + 2 \beta_{2} + \beta_{3} + \beta_{4} ) q^{39} + q^{41} + ( 6 - 2 \beta_{1} - \beta_{3} + \beta_{4} ) q^{43} + ( -2 + \beta_{1} - 2 \beta_{3} + \beta_{4} ) q^{45} + ( -2 - 3 \beta_{4} ) q^{47} + ( -2 \beta_{1} - \beta_{2} + \beta_{4} ) q^{51} + ( 5 + 2 \beta_{1} - \beta_{2} + \beta_{3} + 2 \beta_{4} ) q^{53} + ( -3 + 2 \beta_{1} - \beta_{2} - \beta_{3} + 2 \beta_{4} ) q^{55} + ( 3 + 5 \beta_{1} - 2 \beta_{2} + 3 \beta_{3} + 2 \beta_{4} ) q^{57} + ( -1 + 2 \beta_{1} + \beta_{2} + 5 \beta_{3} ) q^{59} + ( 3 + 3 \beta_{1} - 3 \beta_{2} - \beta_{3} + \beta_{4} ) q^{61} + ( -1 + \beta_{2} - \beta_{3} + 2 \beta_{4} ) q^{65} + ( 3 - 4 \beta_{1} - 5 \beta_{2} + 3 \beta_{3} + 2 \beta_{4} ) q^{67} + ( -3 + 8 \beta_{1} + \beta_{2} + 2 \beta_{3} - 3 \beta_{4} ) q^{69} + ( 3 + 7 \beta_{1} + \beta_{2} + \beta_{3} - 5 \beta_{4} ) q^{71} + ( 3 - 5 \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} ) q^{73} + ( 3 + \beta_{1} + 2 \beta_{2} + \beta_{3} + \beta_{4} ) q^{75} + ( 2 - 4 \beta_{1} - 2 \beta_{2} - 4 \beta_{3} + 2 \beta_{4} ) q^{79} + ( -3 + 2 \beta_{1} - 2 \beta_{2} + \beta_{3} - 4 \beta_{4} ) q^{81} + ( 1 - 3 \beta_{1} + \beta_{2} - 3 \beta_{3} + \beta_{4} ) q^{83} + ( 3 - \beta_{2} - \beta_{3} ) q^{85} + ( -1 + 7 \beta_{1} - \beta_{2} + 3 \beta_{3} - \beta_{4} ) q^{87} + ( 5 - 2 \beta_{1} - 3 \beta_{2} + \beta_{3} - \beta_{4} ) q^{89} + ( -2 + 9 \beta_{1} + 2 \beta_{2} + 4 \beta_{3} - \beta_{4} ) q^{93} + ( 3 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + 3 \beta_{4} ) q^{95} + ( 6 - 4 \beta_{1} - \beta_{2} + 4 \beta_{3} + 4 \beta_{4} ) q^{97} + ( 5 - 2 \beta_{1} + \beta_{2} + \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5q - 2q^{3} + 3q^{5} + q^{9} + O(q^{10}) \) \( 5q - 2q^{3} + 3q^{5} + q^{9} + 6q^{11} - 7q^{13} + 9q^{15} - q^{17} - 2q^{19} + 4q^{23} + 2q^{25} - 8q^{27} + 11q^{29} - 13q^{31} - 11q^{33} + 5q^{37} + 23q^{39} + 5q^{41} + 29q^{43} - 11q^{45} - 7q^{47} - 3q^{51} + 21q^{53} - 19q^{55} + 9q^{57} - 3q^{59} + 8q^{61} - 5q^{65} + 3q^{67} - 10q^{69} + 22q^{71} + 16q^{73} + 18q^{75} + 4q^{79} - 15q^{81} + 6q^{83} + 13q^{85} - 6q^{87} + 20q^{89} - 5q^{93} - 7q^{95} + 24q^{97} + 27q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{5} - 6 x^{3} + 7 x - 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 2 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - 4 \nu \)
\(\beta_{4}\)\(=\)\( \nu^{4} - 5 \nu^{2} + 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 2\)
\(\nu^{3}\)\(=\)\(\beta_{3} + 4 \beta_{1}\)
\(\nu^{4}\)\(=\)\(\beta_{4} + 5 \beta_{2} + 7\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.13797
−2.05679
−1.36870
1.14203
0.145487
0 −2.57090 0 −0.350332 0 0 0 3.60954 0
1.2 0 −2.23037 0 −1.70418 0 0 0 1.97454 0
1.3 0 0.126667 0 4.03743 0 0 0 −2.98396 0
1.4 0 0.695770 0 −1.38288 0 0 0 −2.51590 0
1.5 0 1.97883 0 2.39996 0 0 0 0.915782 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(-1\)
\(41\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8036))\):

\( T_{3}^{5} + 2 T_{3}^{4} - 6 T_{3}^{3} - 8 T_{3}^{2} + 9 T_{3} - 1 \)
\( T_{5}^{5} - 3 T_{5}^{4} - 9 T_{5}^{3} + 12 T_{5}^{2} + 28 T_{5} + 8 \)
\( T_{11}^{5} - 6 T_{11}^{4} - 7 T_{11}^{3} + 68 T_{11}^{2} - 84 T_{11} + 24 \)