Properties

Label 8036.2.a.j
Level 8036
Weight 2
Character orbit 8036.a
Self dual Yes
Analytic conductor 64.168
Analytic rank 1
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8036 = 2^{2} \cdot 7^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8036.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(64.1677830643\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.1935333.1
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{1} q^{3} + ( -1 - \beta_{4} ) q^{5} + ( 1 + \beta_{1} + \beta_{2} - \beta_{3} ) q^{9} +O(q^{10})\) \( q -\beta_{1} q^{3} + ( -1 - \beta_{4} ) q^{5} + ( 1 + \beta_{1} + \beta_{2} - \beta_{3} ) q^{9} -\beta_{2} q^{11} + ( -1 - \beta_{3} ) q^{13} + ( 1 + \beta_{2} + \beta_{4} ) q^{15} + ( 1 - \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} ) q^{17} + ( -2 + \beta_{1} - \beta_{3} ) q^{19} + ( 2 + \beta_{1} ) q^{23} + ( -\beta_{2} + 2 \beta_{3} + \beta_{4} ) q^{25} + ( -4 - \beta_{1} - 2 \beta_{2} + 3 \beta_{3} - \beta_{4} ) q^{27} + ( -1 - \beta_{2} - \beta_{4} ) q^{29} + ( -1 + \beta_{4} ) q^{31} + ( 1 + 2 \beta_{1} - 2 \beta_{3} + \beta_{4} ) q^{33} + ( -1 - \beta_{2} + \beta_{3} - 2 \beta_{4} ) q^{37} + ( 1 + \beta_{1} - \beta_{2} ) q^{39} - q^{41} + ( 3 - \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} ) q^{43} + ( 1 - 2 \beta_{1} - \beta_{2} + 2 \beta_{3} + \beta_{4} ) q^{45} + ( -3 + 2 \beta_{1} + \beta_{2} + \beta_{3} ) q^{47} + ( 1 - \beta_{1} + \beta_{2} + \beta_{3} - 2 \beta_{4} ) q^{51} + ( -1 - \beta_{4} ) q^{53} + ( -3 + 2 \beta_{1} - \beta_{4} ) q^{55} + ( -3 + \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{57} + ( 1 + 2 \beta_{1} - 2 \beta_{3} + \beta_{4} ) q^{59} + ( -4 - \beta_{2} + 4 \beta_{3} + 2 \beta_{4} ) q^{61} + ( 1 + 2 \beta_{3} + 3 \beta_{4} ) q^{65} + ( 5 - 2 \beta_{1} - 2 \beta_{3} - \beta_{4} ) q^{67} + ( -4 - 3 \beta_{1} - \beta_{2} + \beta_{3} ) q^{69} + ( -2 \beta_{1} + \beta_{2} - 2 \beta_{3} + 2 \beta_{4} ) q^{71} + ( -\beta_{2} + 2 \beta_{4} ) q^{73} + ( -2 + 3 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{75} + ( 4 + 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{79} + ( 1 + 5 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + 3 \beta_{4} ) q^{81} + ( -6 + 2 \beta_{1} - \beta_{2} + 2 \beta_{3} - 2 \beta_{4} ) q^{83} + ( -1 - 2 \beta_{1} + 2 \beta_{2} - 4 \beta_{3} - \beta_{4} ) q^{85} + ( 2 + 2 \beta_{1} + \beta_{2} - 2 \beta_{3} + 2 \beta_{4} ) q^{87} + ( 4 \beta_{1} + \beta_{2} - 3 \beta_{3} + \beta_{4} ) q^{89} + ( -1 + 2 \beta_{1} - \beta_{2} - \beta_{4} ) q^{93} + ( 1 - \beta_{2} + 2 \beta_{3} + 3 \beta_{4} ) q^{95} + ( -2 + 3 \beta_{1} ) q^{97} + ( -7 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} - \beta_{4} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5q - 2q^{3} - 3q^{5} + 5q^{9} + O(q^{10}) \) \( 5q - 2q^{3} - 3q^{5} + 5q^{9} - 7q^{13} + 3q^{15} + 3q^{17} - 10q^{19} + 12q^{23} + 2q^{25} - 14q^{27} - 3q^{29} - 7q^{31} + 3q^{33} + q^{37} + 7q^{39} - 5q^{41} + 13q^{43} + 3q^{45} - 9q^{47} + 9q^{51} - 3q^{53} - 9q^{55} - 11q^{57} + 3q^{59} - 16q^{61} + 3q^{65} + 19q^{67} - 24q^{69} - 12q^{71} - 4q^{73} - 8q^{75} + 28q^{79} + 5q^{81} - 18q^{83} - 15q^{85} + 6q^{87} + q^{93} + 3q^{95} - 4q^{97} - 33q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{5} - 2 x^{4} - 8 x^{3} + 10 x^{2} + 13 x - 11\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{4} - 3 \nu^{3} - 2 \nu^{2} + 9 \nu - 8 \)\()/3\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{4} - 3 \nu^{3} - 5 \nu^{2} + 12 \nu + 4 \)\()/3\)
\(\beta_{4}\)\(=\)\((\)\( \nu^{4} - 11 \nu^{2} - 3 \nu + 16 \)\()/3\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(-\beta_{3} + \beta_{2} + \beta_{1} + 4\)
\(\nu^{3}\)\(=\)\(\beta_{4} - 3 \beta_{3} + 2 \beta_{2} + 7 \beta_{1} + 4\)
\(\nu^{4}\)\(=\)\(3 \beta_{4} - 11 \beta_{3} + 11 \beta_{2} + 14 \beta_{1} + 28\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.23378
1.60064
0.704110
−1.43444
−2.10409
0 −3.23378 0 −1.20798 0 0 0 7.45735 0
1.2 0 −1.60064 0 2.47347 0 0 0 −0.437946 0
1.3 0 −0.704110 0 −3.89333 0 0 0 −2.50423 0
1.4 0 1.43444 0 −1.63444 0 0 0 −0.942381 0
1.5 0 2.10409 0 1.26228 0 0 0 1.42721 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(-1\)
\(41\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8036))\):

\( T_{3}^{5} + 2 T_{3}^{4} - 8 T_{3}^{3} - 10 T_{3}^{2} + 13 T_{3} + 11 \)
\( T_{5}^{5} + 3 T_{5}^{4} - 9 T_{5}^{3} - 20 T_{5}^{2} + 12 T_{5} + 24 \)
\( T_{11}^{5} - 21 T_{11}^{3} + 4 T_{11}^{2} + 84 T_{11} - 72 \)