Properties

Label 8036.2.a.g
Level 8036
Weight 2
Character orbit 8036.a
Self dual Yes
Analytic conductor 64.168
Analytic rank 0
Dimension 2
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8036 = 2^{2} \cdot 7^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8036.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(64.1677830643\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 + \beta ) q^{3} + ( 1 + \beta ) q^{5} + ( 1 + 3 \beta ) q^{9} +O(q^{10})\) \( q + ( 1 + \beta ) q^{3} + ( 1 + \beta ) q^{5} + ( 1 + 3 \beta ) q^{9} + q^{11} + 5 q^{13} + ( 4 + 3 \beta ) q^{15} + ( 3 - 4 \beta ) q^{17} + ( 3 - 3 \beta ) q^{19} + ( -1 - \beta ) q^{23} + ( -1 + 3 \beta ) q^{25} + ( 7 + 4 \beta ) q^{27} + ( 8 + \beta ) q^{29} + ( -7 + 3 \beta ) q^{31} + ( 1 + \beta ) q^{33} + ( 4 - 2 \beta ) q^{37} + ( 5 + 5 \beta ) q^{39} + q^{41} + ( -7 - 2 \beta ) q^{43} + ( 10 + 7 \beta ) q^{45} + ( 10 - 2 \beta ) q^{47} + ( -9 - 5 \beta ) q^{51} + ( -5 + \beta ) q^{53} + ( 1 + \beta ) q^{55} + ( -6 - 3 \beta ) q^{57} + ( 1 - 3 \beta ) q^{59} + ( 1 + 4 \beta ) q^{61} + ( 5 + 5 \beta ) q^{65} + ( -5 + 3 \beta ) q^{67} + ( -4 - 3 \beta ) q^{69} + ( -3 - 4 \beta ) q^{71} -7 q^{73} + ( 8 + 5 \beta ) q^{75} + ( -12 - 2 \beta ) q^{79} + ( 16 + 6 \beta ) q^{81} + ( -3 + 6 \beta ) q^{83} + ( -9 - 5 \beta ) q^{85} + ( 11 + 10 \beta ) q^{87} + ( -3 + 5 \beta ) q^{89} + ( 2 - \beta ) q^{93} + ( -6 - 3 \beta ) q^{95} + ( 7 - 7 \beta ) q^{97} + ( 1 + 3 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 3q^{3} + 3q^{5} + 5q^{9} + O(q^{10}) \) \( 2q + 3q^{3} + 3q^{5} + 5q^{9} + 2q^{11} + 10q^{13} + 11q^{15} + 2q^{17} + 3q^{19} - 3q^{23} + q^{25} + 18q^{27} + 17q^{29} - 11q^{31} + 3q^{33} + 6q^{37} + 15q^{39} + 2q^{41} - 16q^{43} + 27q^{45} + 18q^{47} - 23q^{51} - 9q^{53} + 3q^{55} - 15q^{57} - q^{59} + 6q^{61} + 15q^{65} - 7q^{67} - 11q^{69} - 10q^{71} - 14q^{73} + 21q^{75} - 26q^{79} + 38q^{81} - 23q^{85} + 32q^{87} - q^{89} + 3q^{93} - 15q^{95} + 7q^{97} + 5q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.30278
2.30278
0 −0.302776 0 −0.302776 0 0 0 −2.90833 0
1.2 0 3.30278 0 3.30278 0 0 0 7.90833 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(-1\)
\(41\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8036))\):

\( T_{3}^{2} - 3 T_{3} - 1 \)
\( T_{5}^{2} - 3 T_{5} - 1 \)
\( T_{11} - 1 \)