Properties

Label 8036.2.a.f.1.1
Level 8036
Weight 2
Character 8036.1
Self dual Yes
Analytic conductor 64.168
Analytic rank 1
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8036 = 2^{2} \cdot 7^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8036.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(64.1677830643\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0\)
Character \(\chi\) = 8036.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.00000 q^{5} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} +1.00000 q^{5} -2.00000 q^{9} +3.00000 q^{11} -2.00000 q^{13} +1.00000 q^{15} -1.00000 q^{17} +3.00000 q^{19} -5.00000 q^{23} -4.00000 q^{25} -5.00000 q^{27} -2.00000 q^{29} -5.00000 q^{31} +3.00000 q^{33} +7.00000 q^{37} -2.00000 q^{39} -1.00000 q^{41} +4.00000 q^{43} -2.00000 q^{45} +3.00000 q^{47} -1.00000 q^{51} -3.00000 q^{53} +3.00000 q^{55} +3.00000 q^{57} -5.00000 q^{59} -3.00000 q^{61} -2.00000 q^{65} -13.0000 q^{67} -5.00000 q^{69} +1.00000 q^{73} -4.00000 q^{75} -11.0000 q^{79} +1.00000 q^{81} -4.00000 q^{83} -1.00000 q^{85} -2.00000 q^{87} -5.00000 q^{89} -5.00000 q^{93} +3.00000 q^{95} -2.00000 q^{97} -6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −1.00000 −0.242536 −0.121268 0.992620i \(-0.538696\pi\)
−0.121268 + 0.992620i \(0.538696\pi\)
\(18\) 0 0
\(19\) 3.00000 0.688247 0.344124 0.938924i \(-0.388176\pi\)
0.344124 + 0.938924i \(0.388176\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.00000 −1.04257 −0.521286 0.853382i \(-0.674548\pi\)
−0.521286 + 0.853382i \(0.674548\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −5.00000 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(32\) 0 0
\(33\) 3.00000 0.522233
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.00000 1.15079 0.575396 0.817875i \(-0.304848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −1.00000 −0.156174
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) −3.00000 −0.412082 −0.206041 0.978543i \(-0.566058\pi\)
−0.206041 + 0.978543i \(0.566058\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) −5.00000 −0.650945 −0.325472 0.945552i \(-0.605523\pi\)
−0.325472 + 0.945552i \(0.605523\pi\)
\(60\) 0 0
\(61\) −3.00000 −0.384111 −0.192055 0.981384i \(-0.561515\pi\)
−0.192055 + 0.981384i \(0.561515\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) −13.0000 −1.58820 −0.794101 0.607785i \(-0.792058\pi\)
−0.794101 + 0.607785i \(0.792058\pi\)
\(68\) 0 0
\(69\) −5.00000 −0.601929
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 1.00000 0.117041 0.0585206 0.998286i \(-0.481362\pi\)
0.0585206 + 0.998286i \(0.481362\pi\)
\(74\) 0 0
\(75\) −4.00000 −0.461880
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −11.0000 −1.23760 −0.618798 0.785550i \(-0.712380\pi\)
−0.618798 + 0.785550i \(0.712380\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) −1.00000 −0.108465
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) −5.00000 −0.529999 −0.264999 0.964249i \(-0.585372\pi\)
−0.264999 + 0.964249i \(0.585372\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −5.00000 −0.518476
\(94\) 0 0
\(95\) 3.00000 0.307794
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) −7.00000 −0.689730 −0.344865 0.938652i \(-0.612075\pi\)
−0.344865 + 0.938652i \(0.612075\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.00000 −0.0966736 −0.0483368 0.998831i \(-0.515392\pi\)
−0.0483368 + 0.998831i \(0.515392\pi\)
\(108\) 0 0
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) 0 0
\(111\) 7.00000 0.664411
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) −5.00000 −0.466252
\(116\) 0 0
\(117\) 4.00000 0.369800
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) −1.00000 −0.0901670
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) −7.00000 −0.611593 −0.305796 0.952097i \(-0.598923\pi\)
−0.305796 + 0.952097i \(0.598923\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) 5.00000 0.427179 0.213589 0.976924i \(-0.431485\pi\)
0.213589 + 0.976924i \(0.431485\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 3.00000 0.252646
\(142\) 0 0
\(143\) −6.00000 −0.501745
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 21.0000 1.72039 0.860194 0.509968i \(-0.170343\pi\)
0.860194 + 0.509968i \(0.170343\pi\)
\(150\) 0 0
\(151\) 3.00000 0.244137 0.122068 0.992522i \(-0.461047\pi\)
0.122068 + 0.992522i \(0.461047\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) −5.00000 −0.401610
\(156\) 0 0
\(157\) 3.00000 0.239426 0.119713 0.992809i \(-0.461803\pi\)
0.119713 + 0.992809i \(0.461803\pi\)
\(158\) 0 0
\(159\) −3.00000 −0.237915
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.00000 −0.0783260 −0.0391630 0.999233i \(-0.512469\pi\)
−0.0391630 + 0.999233i \(0.512469\pi\)
\(164\) 0 0
\(165\) 3.00000 0.233550
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) −11.0000 −0.836315 −0.418157 0.908375i \(-0.637324\pi\)
−0.418157 + 0.908375i \(0.637324\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −5.00000 −0.375823
\(178\) 0 0
\(179\) 3.00000 0.224231 0.112115 0.993695i \(-0.464237\pi\)
0.112115 + 0.993695i \(0.464237\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) −3.00000 −0.221766
\(184\) 0 0
\(185\) 7.00000 0.514650
\(186\) 0 0
\(187\) −3.00000 −0.219382
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.00000 −0.506502 −0.253251 0.967401i \(-0.581500\pi\)
−0.253251 + 0.967401i \(0.581500\pi\)
\(192\) 0 0
\(193\) −7.00000 −0.503871 −0.251936 0.967744i \(-0.581067\pi\)
−0.251936 + 0.967744i \(0.581067\pi\)
\(194\) 0 0
\(195\) −2.00000 −0.143223
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −19.0000 −1.34687 −0.673437 0.739244i \(-0.735183\pi\)
−0.673437 + 0.739244i \(0.735183\pi\)
\(200\) 0 0
\(201\) −13.0000 −0.916949
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.00000 −0.0698430
\(206\) 0 0
\(207\) 10.0000 0.695048
\(208\) 0 0
\(209\) 9.00000 0.622543
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1.00000 0.0675737
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) 12.0000 0.803579 0.401790 0.915732i \(-0.368388\pi\)
0.401790 + 0.915732i \(0.368388\pi\)
\(224\) 0 0
\(225\) 8.00000 0.533333
\(226\) 0 0
\(227\) −27.0000 −1.79205 −0.896026 0.444001i \(-0.853559\pi\)
−0.896026 + 0.444001i \(0.853559\pi\)
\(228\) 0 0
\(229\) −1.00000 −0.0660819 −0.0330409 0.999454i \(-0.510519\pi\)
−0.0330409 + 0.999454i \(0.510519\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −27.0000 −1.76883 −0.884414 0.466702i \(-0.845442\pi\)
−0.884414 + 0.466702i \(0.845442\pi\)
\(234\) 0 0
\(235\) 3.00000 0.195698
\(236\) 0 0
\(237\) −11.0000 −0.714527
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) −3.00000 −0.193247 −0.0966235 0.995321i \(-0.530804\pi\)
−0.0966235 + 0.995321i \(0.530804\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.00000 −0.381771
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) 8.00000 0.504956 0.252478 0.967603i \(-0.418755\pi\)
0.252478 + 0.967603i \(0.418755\pi\)
\(252\) 0 0
\(253\) −15.0000 −0.943042
\(254\) 0 0
\(255\) −1.00000 −0.0626224
\(256\) 0 0
\(257\) −1.00000 −0.0623783 −0.0311891 0.999514i \(-0.509929\pi\)
−0.0311891 + 0.999514i \(0.509929\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 4.00000 0.247594
\(262\) 0 0
\(263\) −25.0000 −1.54157 −0.770783 0.637098i \(-0.780135\pi\)
−0.770783 + 0.637098i \(0.780135\pi\)
\(264\) 0 0
\(265\) −3.00000 −0.184289
\(266\) 0 0
\(267\) −5.00000 −0.305995
\(268\) 0 0
\(269\) 9.00000 0.548740 0.274370 0.961624i \(-0.411531\pi\)
0.274370 + 0.961624i \(0.411531\pi\)
\(270\) 0 0
\(271\) −27.0000 −1.64013 −0.820067 0.572268i \(-0.806064\pi\)
−0.820067 + 0.572268i \(0.806064\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.0000 −0.723627
\(276\) 0 0
\(277\) −17.0000 −1.02143 −0.510716 0.859750i \(-0.670619\pi\)
−0.510716 + 0.859750i \(0.670619\pi\)
\(278\) 0 0
\(279\) 10.0000 0.598684
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) −9.00000 −0.534994 −0.267497 0.963559i \(-0.586197\pi\)
−0.267497 + 0.963559i \(0.586197\pi\)
\(284\) 0 0
\(285\) 3.00000 0.177705
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) −2.00000 −0.117242
\(292\) 0 0
\(293\) 26.0000 1.51894 0.759468 0.650545i \(-0.225459\pi\)
0.759468 + 0.650545i \(0.225459\pi\)
\(294\) 0 0
\(295\) −5.00000 −0.291111
\(296\) 0 0
\(297\) −15.0000 −0.870388
\(298\) 0 0
\(299\) 10.0000 0.578315
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 3.00000 0.172345
\(304\) 0 0
\(305\) −3.00000 −0.171780
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) −7.00000 −0.398216
\(310\) 0 0
\(311\) 13.0000 0.737162 0.368581 0.929596i \(-0.379844\pi\)
0.368581 + 0.929596i \(0.379844\pi\)
\(312\) 0 0
\(313\) −1.00000 −0.0565233 −0.0282617 0.999601i \(-0.508997\pi\)
−0.0282617 + 0.999601i \(0.508997\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.00000 0.280828 0.140414 0.990093i \(-0.455157\pi\)
0.140414 + 0.990093i \(0.455157\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) 0 0
\(321\) −1.00000 −0.0558146
\(322\) 0 0
\(323\) −3.00000 −0.166924
\(324\) 0 0
\(325\) 8.00000 0.443760
\(326\) 0 0
\(327\) −7.00000 −0.387101
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 21.0000 1.15426 0.577132 0.816651i \(-0.304172\pi\)
0.577132 + 0.816651i \(0.304172\pi\)
\(332\) 0 0
\(333\) −14.0000 −0.767195
\(334\) 0 0
\(335\) −13.0000 −0.710266
\(336\) 0 0
\(337\) −18.0000 −0.980522 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 0 0
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) −15.0000 −0.812296
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −5.00000 −0.269191
\(346\) 0 0
\(347\) 7.00000 0.375780 0.187890 0.982190i \(-0.439835\pi\)
0.187890 + 0.982190i \(0.439835\pi\)
\(348\) 0 0
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) 0 0
\(351\) 10.0000 0.533761
\(352\) 0 0
\(353\) 13.0000 0.691920 0.345960 0.938249i \(-0.387553\pi\)
0.345960 + 0.938249i \(0.387553\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −25.0000 −1.31945 −0.659725 0.751507i \(-0.729327\pi\)
−0.659725 + 0.751507i \(0.729327\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 0 0
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) 1.00000 0.0523424
\(366\) 0 0
\(367\) 27.0000 1.40939 0.704694 0.709511i \(-0.251084\pi\)
0.704694 + 0.709511i \(0.251084\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 19.0000 0.983783 0.491891 0.870657i \(-0.336306\pi\)
0.491891 + 0.870657i \(0.336306\pi\)
\(374\) 0 0
\(375\) −9.00000 −0.464758
\(376\) 0 0
\(377\) 4.00000 0.206010
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.00000 −0.459879 −0.229939 0.973205i \(-0.573853\pi\)
−0.229939 + 0.973205i \(0.573853\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.00000 −0.406663
\(388\) 0 0
\(389\) −25.0000 −1.26755 −0.633775 0.773517i \(-0.718496\pi\)
−0.633775 + 0.773517i \(0.718496\pi\)
\(390\) 0 0
\(391\) 5.00000 0.252861
\(392\) 0 0
\(393\) −7.00000 −0.353103
\(394\) 0 0
\(395\) −11.0000 −0.553470
\(396\) 0 0
\(397\) 15.0000 0.752828 0.376414 0.926451i \(-0.377157\pi\)
0.376414 + 0.926451i \(0.377157\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.0000 −0.649189 −0.324595 0.945853i \(-0.605228\pi\)
−0.324595 + 0.945853i \(0.605228\pi\)
\(402\) 0 0
\(403\) 10.0000 0.498135
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 21.0000 1.04093
\(408\) 0 0
\(409\) 9.00000 0.445021 0.222511 0.974930i \(-0.428575\pi\)
0.222511 + 0.974930i \(0.428575\pi\)
\(410\) 0 0
\(411\) 5.00000 0.246632
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −4.00000 −0.196352
\(416\) 0 0
\(417\) 12.0000 0.587643
\(418\) 0 0
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 0 0
\(423\) −6.00000 −0.291730
\(424\) 0 0
\(425\) 4.00000 0.194029
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −6.00000 −0.289683
\(430\) 0 0
\(431\) −19.0000 −0.915198 −0.457599 0.889159i \(-0.651290\pi\)
−0.457599 + 0.889159i \(0.651290\pi\)
\(432\) 0 0
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) −2.00000 −0.0958927
\(436\) 0 0
\(437\) −15.0000 −0.717547
\(438\) 0 0
\(439\) 35.0000 1.67046 0.835229 0.549902i \(-0.185335\pi\)
0.835229 + 0.549902i \(0.185335\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.00000 −0.427603 −0.213801 0.976877i \(-0.568585\pi\)
−0.213801 + 0.976877i \(0.568585\pi\)
\(444\) 0 0
\(445\) −5.00000 −0.237023
\(446\) 0 0
\(447\) 21.0000 0.993266
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −3.00000 −0.141264
\(452\) 0 0
\(453\) 3.00000 0.140952
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.00000 −0.140334 −0.0701670 0.997535i \(-0.522353\pi\)
−0.0701670 + 0.997535i \(0.522353\pi\)
\(458\) 0 0
\(459\) 5.00000 0.233380
\(460\) 0 0
\(461\) −26.0000 −1.21094 −0.605470 0.795868i \(-0.707015\pi\)
−0.605470 + 0.795868i \(0.707015\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 0 0
\(465\) −5.00000 −0.231869
\(466\) 0 0
\(467\) 33.0000 1.52706 0.763529 0.645774i \(-0.223465\pi\)
0.763529 + 0.645774i \(0.223465\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.00000 0.138233
\(472\) 0 0
\(473\) 12.0000 0.551761
\(474\) 0 0
\(475\) −12.0000 −0.550598
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) −19.0000 −0.868132 −0.434066 0.900881i \(-0.642922\pi\)
−0.434066 + 0.900881i \(0.642922\pi\)
\(480\) 0 0
\(481\) −14.0000 −0.638345
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) −11.0000 −0.498458 −0.249229 0.968445i \(-0.580177\pi\)
−0.249229 + 0.968445i \(0.580177\pi\)
\(488\) 0 0
\(489\) −1.00000 −0.0452216
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 0 0
\(493\) 2.00000 0.0900755
\(494\) 0 0
\(495\) −6.00000 −0.269680
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −7.00000 −0.313363 −0.156682 0.987649i \(-0.550080\pi\)
−0.156682 + 0.987649i \(0.550080\pi\)
\(500\) 0 0
\(501\) 8.00000 0.357414
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 3.00000 0.133498
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 0 0
\(509\) 11.0000 0.487566 0.243783 0.969830i \(-0.421611\pi\)
0.243783 + 0.969830i \(0.421611\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −15.0000 −0.662266
\(514\) 0 0
\(515\) −7.00000 −0.308457
\(516\) 0 0
\(517\) 9.00000 0.395820
\(518\) 0 0
\(519\) −11.0000 −0.482846
\(520\) 0 0
\(521\) −13.0000 −0.569540 −0.284770 0.958596i \(-0.591917\pi\)
−0.284770 + 0.958596i \(0.591917\pi\)
\(522\) 0 0
\(523\) −11.0000 −0.480996 −0.240498 0.970650i \(-0.577311\pi\)
−0.240498 + 0.970650i \(0.577311\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.00000 0.217803
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 0 0
\(533\) 2.00000 0.0866296
\(534\) 0 0
\(535\) −1.00000 −0.0432338
\(536\) 0 0
\(537\) 3.00000 0.129460
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.00000 −0.0429934 −0.0214967 0.999769i \(-0.506843\pi\)
−0.0214967 + 0.999769i \(0.506843\pi\)
\(542\) 0 0
\(543\) 22.0000 0.944110
\(544\) 0 0
\(545\) −7.00000 −0.299847
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) 0 0
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) −6.00000 −0.255609
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 7.00000 0.297133
\(556\) 0 0
\(557\) −3.00000 −0.127114 −0.0635570 0.997978i \(-0.520244\pi\)
−0.0635570 + 0.997978i \(0.520244\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) −3.00000 −0.126660
\(562\) 0 0
\(563\) 21.0000 0.885044 0.442522 0.896758i \(-0.354084\pi\)
0.442522 + 0.896758i \(0.354084\pi\)
\(564\) 0 0
\(565\) −2.00000 −0.0841406
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −45.0000 −1.88650 −0.943249 0.332086i \(-0.892248\pi\)
−0.943249 + 0.332086i \(0.892248\pi\)
\(570\) 0 0
\(571\) −5.00000 −0.209243 −0.104622 0.994512i \(-0.533363\pi\)
−0.104622 + 0.994512i \(0.533363\pi\)
\(572\) 0 0
\(573\) −7.00000 −0.292429
\(574\) 0 0
\(575\) 20.0000 0.834058
\(576\) 0 0
\(577\) −17.0000 −0.707719 −0.353860 0.935299i \(-0.615131\pi\)
−0.353860 + 0.935299i \(0.615131\pi\)
\(578\) 0 0
\(579\) −7.00000 −0.290910
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −9.00000 −0.372742
\(584\) 0 0
\(585\) 4.00000 0.165380
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) −15.0000 −0.618064
\(590\) 0 0
\(591\) 6.00000 0.246807
\(592\) 0 0
\(593\) −9.00000 −0.369586 −0.184793 0.982777i \(-0.559161\pi\)
−0.184793 + 0.982777i \(0.559161\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −19.0000 −0.777618
\(598\) 0 0
\(599\) 17.0000 0.694601 0.347301 0.937754i \(-0.387098\pi\)
0.347301 + 0.937754i \(0.387098\pi\)
\(600\) 0 0
\(601\) −42.0000 −1.71322 −0.856608 0.515968i \(-0.827432\pi\)
−0.856608 + 0.515968i \(0.827432\pi\)
\(602\) 0 0
\(603\) 26.0000 1.05880
\(604\) 0 0
\(605\) −2.00000 −0.0813116
\(606\) 0 0
\(607\) −23.0000 −0.933541 −0.466771 0.884378i \(-0.654583\pi\)
−0.466771 + 0.884378i \(0.654583\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.00000 −0.242734
\(612\) 0 0
\(613\) −29.0000 −1.17130 −0.585649 0.810564i \(-0.699160\pi\)
−0.585649 + 0.810564i \(0.699160\pi\)
\(614\) 0 0
\(615\) −1.00000 −0.0403239
\(616\) 0 0
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) 0 0
\(619\) −1.00000 −0.0401934 −0.0200967 0.999798i \(-0.506397\pi\)
−0.0200967 + 0.999798i \(0.506397\pi\)
\(620\) 0 0
\(621\) 25.0000 1.00322
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 9.00000 0.359425
\(628\) 0 0
\(629\) −7.00000 −0.279108
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) 0 0
\(633\) 4.00000 0.158986
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −35.0000 −1.38242 −0.691208 0.722655i \(-0.742921\pi\)
−0.691208 + 0.722655i \(0.742921\pi\)
\(642\) 0 0
\(643\) 20.0000 0.788723 0.394362 0.918955i \(-0.370966\pi\)
0.394362 + 0.918955i \(0.370966\pi\)
\(644\) 0 0
\(645\) 4.00000 0.157500
\(646\) 0 0
\(647\) −9.00000 −0.353827 −0.176913 0.984226i \(-0.556611\pi\)
−0.176913 + 0.984226i \(0.556611\pi\)
\(648\) 0 0
\(649\) −15.0000 −0.588802
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −43.0000 −1.68272 −0.841360 0.540475i \(-0.818245\pi\)
−0.841360 + 0.540475i \(0.818245\pi\)
\(654\) 0 0
\(655\) −7.00000 −0.273513
\(656\) 0 0
\(657\) −2.00000 −0.0780274
\(658\) 0 0
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) 0 0
\(661\) 45.0000 1.75030 0.875149 0.483854i \(-0.160764\pi\)
0.875149 + 0.483854i \(0.160764\pi\)
\(662\) 0 0
\(663\) 2.00000 0.0776736
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.0000 0.387202
\(668\) 0 0
\(669\) 12.0000 0.463947
\(670\) 0 0
\(671\) −9.00000 −0.347441
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) 0 0
\(675\) 20.0000 0.769800
\(676\) 0 0
\(677\) −27.0000 −1.03769 −0.518847 0.854867i \(-0.673639\pi\)
−0.518847 + 0.854867i \(0.673639\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −27.0000 −1.03464
\(682\) 0 0
\(683\) −5.00000 −0.191320 −0.0956598 0.995414i \(-0.530496\pi\)
−0.0956598 + 0.995414i \(0.530496\pi\)
\(684\) 0 0
\(685\) 5.00000 0.191040
\(686\) 0 0
\(687\) −1.00000 −0.0381524
\(688\) 0 0
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) 11.0000 0.418460 0.209230 0.977866i \(-0.432904\pi\)
0.209230 + 0.977866i \(0.432904\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.0000 0.455186
\(696\) 0 0
\(697\) 1.00000 0.0378777
\(698\) 0 0
\(699\) −27.0000 −1.02123
\(700\) 0 0
\(701\) −14.0000 −0.528773 −0.264386 0.964417i \(-0.585169\pi\)
−0.264386 + 0.964417i \(0.585169\pi\)
\(702\) 0 0
\(703\) 21.0000 0.792030
\(704\) 0 0
\(705\) 3.00000 0.112987
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 5.00000 0.187779 0.0938895 0.995583i \(-0.470070\pi\)
0.0938895 + 0.995583i \(0.470070\pi\)
\(710\) 0 0
\(711\) 22.0000 0.825064
\(712\) 0 0
\(713\) 25.0000 0.936257
\(714\) 0 0
\(715\) −6.00000 −0.224387
\(716\) 0 0
\(717\) −16.0000 −0.597531
\(718\) 0 0
\(719\) −45.0000 −1.67822 −0.839108 0.543964i \(-0.816923\pi\)
−0.839108 + 0.543964i \(0.816923\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −3.00000 −0.111571
\(724\) 0 0
\(725\) 8.00000 0.297113
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −4.00000 −0.147945
\(732\) 0 0
\(733\) −7.00000 −0.258551 −0.129275 0.991609i \(-0.541265\pi\)
−0.129275 + 0.991609i \(0.541265\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −39.0000 −1.43658
\(738\) 0 0
\(739\) −23.0000 −0.846069 −0.423034 0.906114i \(-0.639035\pi\)
−0.423034 + 0.906114i \(0.639035\pi\)
\(740\) 0 0
\(741\) −6.00000 −0.220416
\(742\) 0 0
\(743\) 36.0000 1.32071 0.660356 0.750953i \(-0.270405\pi\)
0.660356 + 0.750953i \(0.270405\pi\)
\(744\) 0 0
\(745\) 21.0000 0.769380
\(746\) 0 0
\(747\) 8.00000 0.292705
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −23.0000 −0.839282 −0.419641 0.907690i \(-0.637844\pi\)
−0.419641 + 0.907690i \(0.637844\pi\)
\(752\) 0 0
\(753\) 8.00000 0.291536
\(754\) 0 0
\(755\) 3.00000 0.109181
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) 0 0
\(759\) −15.0000 −0.544466
\(760\) 0 0
\(761\) 13.0000 0.471250 0.235625 0.971844i \(-0.424286\pi\)
0.235625 + 0.971844i \(0.424286\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.00000 0.0723102
\(766\) 0 0
\(767\) 10.0000 0.361079
\(768\) 0 0
\(769\) −2.00000 −0.0721218 −0.0360609 0.999350i \(-0.511481\pi\)
−0.0360609 + 0.999350i \(0.511481\pi\)
\(770\) 0 0
\(771\) −1.00000 −0.0360141
\(772\) 0 0
\(773\) 3.00000 0.107903 0.0539513 0.998544i \(-0.482818\pi\)
0.0539513 + 0.998544i \(0.482818\pi\)
\(774\) 0 0
\(775\) 20.0000 0.718421
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.00000 −0.107486
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 10.0000 0.357371
\(784\) 0 0
\(785\) 3.00000 0.107075
\(786\) 0 0
\(787\) 11.0000 0.392108 0.196054 0.980593i \(-0.437187\pi\)
0.196054 + 0.980593i \(0.437187\pi\)
\(788\) 0 0
\(789\) −25.0000 −0.890024
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.00000 0.213066
\(794\) 0 0
\(795\) −3.00000 −0.106399
\(796\) 0 0
\(797\) 34.0000 1.20434 0.602171 0.798367i \(-0.294303\pi\)
0.602171 + 0.798367i \(0.294303\pi\)
\(798\) 0 0
\(799\) −3.00000 −0.106132
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) 0 0
\(803\) 3.00000 0.105868
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 9.00000 0.316815
\(808\) 0 0
\(809\) 41.0000 1.44148 0.720742 0.693204i \(-0.243801\pi\)
0.720742 + 0.693204i \(0.243801\pi\)
\(810\) 0 0
\(811\) −36.0000 −1.26413 −0.632065 0.774915i \(-0.717793\pi\)
−0.632065 + 0.774915i \(0.717793\pi\)
\(812\) 0 0
\(813\) −27.0000 −0.946931
\(814\) 0 0
\(815\) −1.00000 −0.0350285
\(816\) 0 0
\(817\) 12.0000 0.419827
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31.0000 1.08191 0.540954 0.841052i \(-0.318063\pi\)
0.540954 + 0.841052i \(0.318063\pi\)
\(822\) 0 0
\(823\) −13.0000 −0.453152 −0.226576 0.973994i \(-0.572753\pi\)
−0.226576 + 0.973994i \(0.572753\pi\)
\(824\) 0 0
\(825\) −12.0000 −0.417786
\(826\) 0 0
\(827\) 40.0000 1.39094 0.695468 0.718557i \(-0.255197\pi\)
0.695468 + 0.718557i \(0.255197\pi\)
\(828\) 0 0
\(829\) −7.00000 −0.243120 −0.121560 0.992584i \(-0.538790\pi\)
−0.121560 + 0.992584i \(0.538790\pi\)
\(830\) 0 0
\(831\) −17.0000 −0.589723
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) 0 0
\(837\) 25.0000 0.864126
\(838\) 0 0
\(839\) 28.0000 0.966667 0.483334 0.875436i \(-0.339426\pi\)
0.483334 + 0.875436i \(0.339426\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −22.0000 −0.757720
\(844\) 0 0
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −9.00000 −0.308879
\(850\) 0 0
\(851\) −35.0000 −1.19978
\(852\) 0 0
\(853\) 46.0000 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(854\) 0 0
\(855\) −6.00000 −0.205196
\(856\) 0 0
\(857\) 9.00000 0.307434 0.153717 0.988115i \(-0.450876\pi\)
0.153717 + 0.988115i \(0.450876\pi\)
\(858\) 0 0
\(859\) 25.0000 0.852989 0.426494 0.904490i \(-0.359748\pi\)
0.426494 + 0.904490i \(0.359748\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27.0000 0.919091 0.459545 0.888154i \(-0.348012\pi\)
0.459545 + 0.888154i \(0.348012\pi\)
\(864\) 0 0
\(865\) −11.0000 −0.374011
\(866\) 0 0
\(867\) −16.0000 −0.543388
\(868\) 0 0
\(869\) −33.0000 −1.11945
\(870\) 0 0
\(871\) 26.0000 0.880976
\(872\) 0 0
\(873\) 4.00000 0.135379
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −5.00000 −0.168838 −0.0844190 0.996430i \(-0.526903\pi\)
−0.0844190 + 0.996430i \(0.526903\pi\)
\(878\) 0 0
\(879\) 26.0000 0.876958
\(880\) 0 0
\(881\) −38.0000 −1.28025 −0.640126 0.768270i \(-0.721118\pi\)
−0.640126 + 0.768270i \(0.721118\pi\)
\(882\) 0 0
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) 0 0
\(885\) −5.00000 −0.168073
\(886\) 0 0
\(887\) 15.0000 0.503651 0.251825 0.967773i \(-0.418969\pi\)
0.251825 + 0.967773i \(0.418969\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) 0 0
\(893\) 9.00000 0.301174
\(894\) 0 0
\(895\) 3.00000 0.100279
\(896\) 0 0
\(897\) 10.0000 0.333890
\(898\) 0 0
\(899\) 10.0000 0.333519
\(900\) 0 0
\(901\) 3.00000 0.0999445
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 22.0000 0.731305
\(906\) 0 0
\(907\) 13.0000 0.431658 0.215829 0.976431i \(-0.430755\pi\)
0.215829 + 0.976431i \(0.430755\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) −12.0000 −0.397142
\(914\) 0 0
\(915\) −3.00000 −0.0991769
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −11.0000 −0.362857 −0.181428 0.983404i \(-0.558072\pi\)
−0.181428 + 0.983404i \(0.558072\pi\)
\(920\) 0 0
\(921\) 16.0000 0.527218
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −28.0000 −0.920634
\(926\) 0 0
\(927\) 14.0000 0.459820
\(928\) 0 0
\(929\) 39.0000 1.27955 0.639774 0.768563i \(-0.279028\pi\)
0.639774 + 0.768563i \(0.279028\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 13.0000 0.425601
\(934\) 0 0
\(935\) −3.00000 −0.0981105
\(936\) 0 0
\(937\) 58.0000 1.89478 0.947389 0.320085i \(-0.103712\pi\)
0.947389 + 0.320085i \(0.103712\pi\)
\(938\) 0 0
\(939\) −1.00000 −0.0326338
\(940\) 0 0
\(941\) 49.0000 1.59735 0.798677 0.601760i \(-0.205534\pi\)
0.798677 + 0.601760i \(0.205534\pi\)
\(942\) 0 0
\(943\) 5.00000 0.162822
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 35.0000 1.13735 0.568674 0.822563i \(-0.307457\pi\)
0.568674 + 0.822563i \(0.307457\pi\)
\(948\) 0 0
\(949\) −2.00000 −0.0649227
\(950\) 0 0
\(951\) 5.00000 0.162136
\(952\) 0 0
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 0 0
\(955\) −7.00000 −0.226515
\(956\) 0 0
\(957\) −6.00000 −0.193952
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) 2.00000 0.0644491
\(964\) 0 0
\(965\) −7.00000 −0.225338
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) 0 0
\(969\) −3.00000 −0.0963739
\(970\) 0 0
\(971\) −57.0000 −1.82922 −0.914609 0.404341i \(-0.867501\pi\)
−0.914609 + 0.404341i \(0.867501\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 8.00000 0.256205
\(976\) 0 0
\(977\) 57.0000 1.82359 0.911796 0.410644i \(-0.134696\pi\)
0.911796 + 0.410644i \(0.134696\pi\)
\(978\) 0 0
\(979\) −15.0000 −0.479402
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) 0 0
\(983\) −45.0000 −1.43528 −0.717639 0.696416i \(-0.754777\pi\)
−0.717639 + 0.696416i \(0.754777\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −20.0000 −0.635963
\(990\) 0 0
\(991\) −57.0000 −1.81066 −0.905332 0.424704i \(-0.860378\pi\)
−0.905332 + 0.424704i \(0.860378\pi\)
\(992\) 0 0
\(993\) 21.0000 0.666415
\(994\) 0 0
\(995\) −19.0000 −0.602340
\(996\) 0 0
\(997\) −13.0000 −0.411714 −0.205857 0.978582i \(-0.565998\pi\)
−0.205857 + 0.978582i \(0.565998\pi\)
\(998\) 0 0
\(999\) −35.0000 −1.10735
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))