Properties

Label 8036.2.a.e.1.1
Level 8036
Weight 2
Character 8036.1
Self dual Yes
Analytic conductor 64.168
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8036 = 2^{2} \cdot 7^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8036.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(64.1677830643\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0\)
Character \(\chi\) = 8036.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+1.00000 q^{3}\) \(+1.00000 q^{5}\) \(-2.00000 q^{9}\) \(+O(q^{10})\) \(q\)\(+1.00000 q^{3}\) \(+1.00000 q^{5}\) \(-2.00000 q^{9}\) \(-5.00000 q^{11}\) \(+2.00000 q^{13}\) \(+1.00000 q^{15}\) \(+3.00000 q^{17}\) \(+3.00000 q^{19}\) \(-1.00000 q^{23}\) \(-4.00000 q^{25}\) \(-5.00000 q^{27}\) \(-10.0000 q^{29}\) \(+11.0000 q^{31}\) \(-5.00000 q^{33}\) \(+7.00000 q^{37}\) \(+2.00000 q^{39}\) \(+1.00000 q^{41}\) \(+8.00000 q^{43}\) \(-2.00000 q^{45}\) \(+7.00000 q^{47}\) \(+3.00000 q^{51}\) \(-11.0000 q^{53}\) \(-5.00000 q^{55}\) \(+3.00000 q^{57}\) \(+7.00000 q^{59}\) \(+1.00000 q^{61}\) \(+2.00000 q^{65}\) \(+7.00000 q^{67}\) \(-1.00000 q^{69}\) \(-12.0000 q^{71}\) \(+5.00000 q^{73}\) \(-4.00000 q^{75}\) \(+9.00000 q^{79}\) \(+1.00000 q^{81}\) \(+3.00000 q^{85}\) \(-10.0000 q^{87}\) \(+3.00000 q^{89}\) \(+11.0000 q^{93}\) \(+3.00000 q^{95}\) \(-2.00000 q^{97}\) \(+10.0000 q^{99}\) \(+O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −5.00000 −1.50756 −0.753778 0.657129i \(-0.771771\pi\)
−0.753778 + 0.657129i \(0.771771\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) 3.00000 0.688247 0.344124 0.938924i \(-0.388176\pi\)
0.344124 + 0.938924i \(0.388176\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −0.208514 −0.104257 0.994550i \(-0.533247\pi\)
−0.104257 + 0.994550i \(0.533247\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −10.0000 −1.85695 −0.928477 0.371391i \(-0.878881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) 11.0000 1.97566 0.987829 0.155543i \(-0.0497126\pi\)
0.987829 + 0.155543i \(0.0497126\pi\)
\(32\) 0 0
\(33\) −5.00000 −0.870388
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.00000 1.15079 0.575396 0.817875i \(-0.304848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 0 0
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) 1.00000 0.156174
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) 7.00000 1.02105 0.510527 0.859861i \(-0.329450\pi\)
0.510527 + 0.859861i \(0.329450\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 0 0
\(53\) −11.0000 −1.51097 −0.755483 0.655168i \(-0.772598\pi\)
−0.755483 + 0.655168i \(0.772598\pi\)
\(54\) 0 0
\(55\) −5.00000 −0.674200
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) 7.00000 0.911322 0.455661 0.890153i \(-0.349403\pi\)
0.455661 + 0.890153i \(0.349403\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) 7.00000 0.855186 0.427593 0.903971i \(-0.359362\pi\)
0.427593 + 0.903971i \(0.359362\pi\)
\(68\) 0 0
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 5.00000 0.585206 0.292603 0.956234i \(-0.405479\pi\)
0.292603 + 0.956234i \(0.405479\pi\)
\(74\) 0 0
\(75\) −4.00000 −0.461880
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 9.00000 1.01258 0.506290 0.862364i \(-0.331017\pi\)
0.506290 + 0.862364i \(0.331017\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) 0 0
\(87\) −10.0000 −1.07211
\(88\) 0 0
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 11.0000 1.14065
\(94\) 0 0
\(95\) 3.00000 0.307794
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 10.0000 1.00504
\(100\) 0 0
\(101\) 11.0000 1.09454 0.547270 0.836956i \(-0.315667\pi\)
0.547270 + 0.836956i \(0.315667\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.0000 −1.25676 −0.628379 0.777908i \(-0.716281\pi\)
−0.628379 + 0.777908i \(0.716281\pi\)
\(108\) 0 0
\(109\) 17.0000 1.62830 0.814152 0.580651i \(-0.197202\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) 0 0
\(111\) 7.00000 0.664411
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) −1.00000 −0.0932505
\(116\) 0 0
\(117\) −4.00000 −0.369800
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) 1.00000 0.0901670
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) −3.00000 −0.262111 −0.131056 0.991375i \(-0.541837\pi\)
−0.131056 + 0.991375i \(0.541837\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) 9.00000 0.768922 0.384461 0.923141i \(-0.374387\pi\)
0.384461 + 0.923141i \(0.374387\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 7.00000 0.589506
\(142\) 0 0
\(143\) −10.0000 −0.836242
\(144\) 0 0
\(145\) −10.0000 −0.830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.00000 −0.573462 −0.286731 0.958011i \(-0.592569\pi\)
−0.286731 + 0.958011i \(0.592569\pi\)
\(150\) 0 0
\(151\) −5.00000 −0.406894 −0.203447 0.979086i \(-0.565214\pi\)
−0.203447 + 0.979086i \(0.565214\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 11.0000 0.883541
\(156\) 0 0
\(157\) 3.00000 0.239426 0.119713 0.992809i \(-0.461803\pi\)
0.119713 + 0.992809i \(0.461803\pi\)
\(158\) 0 0
\(159\) −11.0000 −0.872357
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −17.0000 −1.33154 −0.665771 0.746156i \(-0.731897\pi\)
−0.665771 + 0.746156i \(0.731897\pi\)
\(164\) 0 0
\(165\) −5.00000 −0.389249
\(166\) 0 0
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) 21.0000 1.59660 0.798300 0.602260i \(-0.205733\pi\)
0.798300 + 0.602260i \(0.205733\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.00000 0.526152
\(178\) 0 0
\(179\) 7.00000 0.523205 0.261602 0.965176i \(-0.415749\pi\)
0.261602 + 0.965176i \(0.415749\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 1.00000 0.0739221
\(184\) 0 0
\(185\) 7.00000 0.514650
\(186\) 0 0
\(187\) −15.0000 −1.09691
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.00000 0.0723575 0.0361787 0.999345i \(-0.488481\pi\)
0.0361787 + 0.999345i \(0.488481\pi\)
\(192\) 0 0
\(193\) 17.0000 1.22369 0.611843 0.790979i \(-0.290428\pi\)
0.611843 + 0.790979i \(0.290428\pi\)
\(194\) 0 0
\(195\) 2.00000 0.143223
\(196\) 0 0
\(197\) 26.0000 1.85242 0.926212 0.377004i \(-0.123046\pi\)
0.926212 + 0.377004i \(0.123046\pi\)
\(198\) 0 0
\(199\) 21.0000 1.48865 0.744325 0.667817i \(-0.232771\pi\)
0.744325 + 0.667817i \(0.232771\pi\)
\(200\) 0 0
\(201\) 7.00000 0.493742
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.00000 0.0698430
\(206\) 0 0
\(207\) 2.00000 0.139010
\(208\) 0 0
\(209\) −15.0000 −1.03757
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 5.00000 0.337869
\(220\) 0 0
\(221\) 6.00000 0.403604
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) 8.00000 0.533333
\(226\) 0 0
\(227\) 9.00000 0.597351 0.298675 0.954355i \(-0.403455\pi\)
0.298675 + 0.954355i \(0.403455\pi\)
\(228\) 0 0
\(229\) 27.0000 1.78421 0.892105 0.451828i \(-0.149228\pi\)
0.892105 + 0.451828i \(0.149228\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.0000 0.851658 0.425829 0.904804i \(-0.359982\pi\)
0.425829 + 0.904804i \(0.359982\pi\)
\(234\) 0 0
\(235\) 7.00000 0.456630
\(236\) 0 0
\(237\) 9.00000 0.584613
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) −19.0000 −1.22390 −0.611949 0.790897i \(-0.709614\pi\)
−0.611949 + 0.790897i \(0.709614\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.00000 0.381771
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) 5.00000 0.314347
\(254\) 0 0
\(255\) 3.00000 0.187867
\(256\) 0 0
\(257\) 7.00000 0.436648 0.218324 0.975876i \(-0.429941\pi\)
0.218324 + 0.975876i \(0.429941\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 20.0000 1.23797
\(262\) 0 0
\(263\) 19.0000 1.17159 0.585795 0.810459i \(-0.300782\pi\)
0.585795 + 0.810459i \(0.300782\pi\)
\(264\) 0 0
\(265\) −11.0000 −0.675725
\(266\) 0 0
\(267\) 3.00000 0.183597
\(268\) 0 0
\(269\) −11.0000 −0.670682 −0.335341 0.942097i \(-0.608852\pi\)
−0.335341 + 0.942097i \(0.608852\pi\)
\(270\) 0 0
\(271\) 25.0000 1.51864 0.759321 0.650716i \(-0.225531\pi\)
0.759321 + 0.650716i \(0.225531\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 20.0000 1.20605
\(276\) 0 0
\(277\) 23.0000 1.38194 0.690968 0.722885i \(-0.257185\pi\)
0.690968 + 0.722885i \(0.257185\pi\)
\(278\) 0 0
\(279\) −22.0000 −1.31711
\(280\) 0 0
\(281\) −14.0000 −0.835170 −0.417585 0.908638i \(-0.637123\pi\)
−0.417585 + 0.908638i \(0.637123\pi\)
\(282\) 0 0
\(283\) −17.0000 −1.01055 −0.505273 0.862960i \(-0.668608\pi\)
−0.505273 + 0.862960i \(0.668608\pi\)
\(284\) 0 0
\(285\) 3.00000 0.177705
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −2.00000 −0.117242
\(292\) 0 0
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) 7.00000 0.407556
\(296\) 0 0
\(297\) 25.0000 1.45065
\(298\) 0 0
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 11.0000 0.631933
\(304\) 0 0
\(305\) 1.00000 0.0572598
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 1.00000 0.0568880
\(310\) 0 0
\(311\) 1.00000 0.0567048 0.0283524 0.999598i \(-0.490974\pi\)
0.0283524 + 0.999598i \(0.490974\pi\)
\(312\) 0 0
\(313\) 11.0000 0.621757 0.310878 0.950450i \(-0.399377\pi\)
0.310878 + 0.950450i \(0.399377\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.0000 0.954815 0.477408 0.878682i \(-0.341577\pi\)
0.477408 + 0.878682i \(0.341577\pi\)
\(318\) 0 0
\(319\) 50.0000 2.79946
\(320\) 0 0
\(321\) −13.0000 −0.725589
\(322\) 0 0
\(323\) 9.00000 0.500773
\(324\) 0 0
\(325\) −8.00000 −0.443760
\(326\) 0 0
\(327\) 17.0000 0.940102
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −3.00000 −0.164895 −0.0824475 0.996595i \(-0.526274\pi\)
−0.0824475 + 0.996595i \(0.526274\pi\)
\(332\) 0 0
\(333\) −14.0000 −0.767195
\(334\) 0 0
\(335\) 7.00000 0.382451
\(336\) 0 0
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) 0 0
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) −55.0000 −2.97842
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.00000 −0.0538382
\(346\) 0 0
\(347\) −9.00000 −0.483145 −0.241573 0.970383i \(-0.577663\pi\)
−0.241573 + 0.970383i \(0.577663\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) −10.0000 −0.533761
\(352\) 0 0
\(353\) 9.00000 0.479022 0.239511 0.970894i \(-0.423013\pi\)
0.239511 + 0.970894i \(0.423013\pi\)
\(354\) 0 0
\(355\) −12.0000 −0.636894
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −29.0000 −1.53056 −0.765281 0.643697i \(-0.777400\pi\)
−0.765281 + 0.643697i \(0.777400\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 0 0
\(363\) 14.0000 0.734809
\(364\) 0 0
\(365\) 5.00000 0.261712
\(366\) 0 0
\(367\) 15.0000 0.782994 0.391497 0.920179i \(-0.371957\pi\)
0.391497 + 0.920179i \(0.371957\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 19.0000 0.983783 0.491891 0.870657i \(-0.336306\pi\)
0.491891 + 0.870657i \(0.336306\pi\)
\(374\) 0 0
\(375\) −9.00000 −0.464758
\(376\) 0 0
\(377\) −20.0000 −1.03005
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 4.00000 0.204926
\(382\) 0 0
\(383\) 27.0000 1.37964 0.689818 0.723983i \(-0.257691\pi\)
0.689818 + 0.723983i \(0.257691\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −16.0000 −0.813326
\(388\) 0 0
\(389\) 3.00000 0.152106 0.0760530 0.997104i \(-0.475768\pi\)
0.0760530 + 0.997104i \(0.475768\pi\)
\(390\) 0 0
\(391\) −3.00000 −0.151717
\(392\) 0 0
\(393\) −3.00000 −0.151330
\(394\) 0 0
\(395\) 9.00000 0.452839
\(396\) 0 0
\(397\) −29.0000 −1.45547 −0.727734 0.685859i \(-0.759427\pi\)
−0.727734 + 0.685859i \(0.759427\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.0000 −0.649189 −0.324595 0.945853i \(-0.605228\pi\)
−0.324595 + 0.945853i \(0.605228\pi\)
\(402\) 0 0
\(403\) 22.0000 1.09590
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −35.0000 −1.73489
\(408\) 0 0
\(409\) −35.0000 −1.73064 −0.865319 0.501221i \(-0.832884\pi\)
−0.865319 + 0.501221i \(0.832884\pi\)
\(410\) 0 0
\(411\) 9.00000 0.443937
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 20.0000 0.979404
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) −18.0000 −0.877266 −0.438633 0.898666i \(-0.644537\pi\)
−0.438633 + 0.898666i \(0.644537\pi\)
\(422\) 0 0
\(423\) −14.0000 −0.680703
\(424\) 0 0
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −10.0000 −0.482805
\(430\) 0 0
\(431\) −35.0000 −1.68589 −0.842945 0.537999i \(-0.819180\pi\)
−0.842945 + 0.537999i \(0.819180\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) −10.0000 −0.479463
\(436\) 0 0
\(437\) −3.00000 −0.143509
\(438\) 0 0
\(439\) 7.00000 0.334092 0.167046 0.985949i \(-0.446577\pi\)
0.167046 + 0.985949i \(0.446577\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 39.0000 1.85295 0.926473 0.376361i \(-0.122825\pi\)
0.926473 + 0.376361i \(0.122825\pi\)
\(444\) 0 0
\(445\) 3.00000 0.142214
\(446\) 0 0
\(447\) −7.00000 −0.331089
\(448\) 0 0
\(449\) 22.0000 1.03824 0.519122 0.854700i \(-0.326259\pi\)
0.519122 + 0.854700i \(0.326259\pi\)
\(450\) 0 0
\(451\) −5.00000 −0.235441
\(452\) 0 0
\(453\) −5.00000 −0.234920
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.00000 0.233890 0.116945 0.993138i \(-0.462690\pi\)
0.116945 + 0.993138i \(0.462690\pi\)
\(458\) 0 0
\(459\) −15.0000 −0.700140
\(460\) 0 0
\(461\) −2.00000 −0.0931493 −0.0465746 0.998915i \(-0.514831\pi\)
−0.0465746 + 0.998915i \(0.514831\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 0 0
\(465\) 11.0000 0.510113
\(466\) 0 0
\(467\) 33.0000 1.52706 0.763529 0.645774i \(-0.223465\pi\)
0.763529 + 0.645774i \(0.223465\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.00000 0.138233
\(472\) 0 0
\(473\) −40.0000 −1.83920
\(474\) 0 0
\(475\) −12.0000 −0.550598
\(476\) 0 0
\(477\) 22.0000 1.00731
\(478\) 0 0
\(479\) 17.0000 0.776750 0.388375 0.921501i \(-0.373037\pi\)
0.388375 + 0.921501i \(0.373037\pi\)
\(480\) 0 0
\(481\) 14.0000 0.638345
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) −35.0000 −1.58600 −0.793001 0.609221i \(-0.791482\pi\)
−0.793001 + 0.609221i \(0.791482\pi\)
\(488\) 0 0
\(489\) −17.0000 −0.768767
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) −30.0000 −1.35113
\(494\) 0 0
\(495\) 10.0000 0.449467
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.00000 −0.134298 −0.0671492 0.997743i \(-0.521390\pi\)
−0.0671492 + 0.997743i \(0.521390\pi\)
\(500\) 0 0
\(501\) −16.0000 −0.714827
\(502\) 0 0
\(503\) −40.0000 −1.78351 −0.891756 0.452517i \(-0.850526\pi\)
−0.891756 + 0.452517i \(0.850526\pi\)
\(504\) 0 0
\(505\) 11.0000 0.489494
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 0 0
\(509\) −5.00000 −0.221621 −0.110811 0.993842i \(-0.535345\pi\)
−0.110811 + 0.993842i \(0.535345\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −15.0000 −0.662266
\(514\) 0 0
\(515\) 1.00000 0.0440653
\(516\) 0 0
\(517\) −35.0000 −1.53930
\(518\) 0 0
\(519\) 21.0000 0.921798
\(520\) 0 0
\(521\) 27.0000 1.18289 0.591446 0.806345i \(-0.298557\pi\)
0.591446 + 0.806345i \(0.298557\pi\)
\(522\) 0 0
\(523\) −39.0000 −1.70535 −0.852675 0.522441i \(-0.825022\pi\)
−0.852675 + 0.522441i \(0.825022\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 33.0000 1.43750
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) 0 0
\(531\) −14.0000 −0.607548
\(532\) 0 0
\(533\) 2.00000 0.0866296
\(534\) 0 0
\(535\) −13.0000 −0.562039
\(536\) 0 0
\(537\) 7.00000 0.302072
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 11.0000 0.472927 0.236463 0.971640i \(-0.424012\pi\)
0.236463 + 0.971640i \(0.424012\pi\)
\(542\) 0 0
\(543\) 22.0000 0.944110
\(544\) 0 0
\(545\) 17.0000 0.728200
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) −30.0000 −1.27804
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 7.00000 0.297133
\(556\) 0 0
\(557\) 33.0000 1.39825 0.699127 0.714997i \(-0.253572\pi\)
0.699127 + 0.714997i \(0.253572\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) −15.0000 −0.633300
\(562\) 0 0
\(563\) 25.0000 1.05362 0.526812 0.849982i \(-0.323387\pi\)
0.526812 + 0.849982i \(0.323387\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.0000 0.628833 0.314416 0.949285i \(-0.398191\pi\)
0.314416 + 0.949285i \(0.398191\pi\)
\(570\) 0 0
\(571\) 15.0000 0.627730 0.313865 0.949468i \(-0.398376\pi\)
0.313865 + 0.949468i \(0.398376\pi\)
\(572\) 0 0
\(573\) 1.00000 0.0417756
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) 39.0000 1.62359 0.811796 0.583942i \(-0.198490\pi\)
0.811796 + 0.583942i \(0.198490\pi\)
\(578\) 0 0
\(579\) 17.0000 0.706496
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 55.0000 2.27787
\(584\) 0 0
\(585\) −4.00000 −0.165380
\(586\) 0 0
\(587\) −36.0000 −1.48588 −0.742940 0.669359i \(-0.766569\pi\)
−0.742940 + 0.669359i \(0.766569\pi\)
\(588\) 0 0
\(589\) 33.0000 1.35974
\(590\) 0 0
\(591\) 26.0000 1.06950
\(592\) 0 0
\(593\) −5.00000 −0.205325 −0.102663 0.994716i \(-0.532736\pi\)
−0.102663 + 0.994716i \(0.532736\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 21.0000 0.859473
\(598\) 0 0
\(599\) 9.00000 0.367730 0.183865 0.982952i \(-0.441139\pi\)
0.183865 + 0.982952i \(0.441139\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 0 0
\(603\) −14.0000 −0.570124
\(604\) 0 0
\(605\) 14.0000 0.569181
\(606\) 0 0
\(607\) −35.0000 −1.42061 −0.710303 0.703896i \(-0.751442\pi\)
−0.710303 + 0.703896i \(0.751442\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14.0000 0.566379
\(612\) 0 0
\(613\) 27.0000 1.09052 0.545260 0.838267i \(-0.316431\pi\)
0.545260 + 0.838267i \(0.316431\pi\)
\(614\) 0 0
\(615\) 1.00000 0.0403239
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) 11.0000 0.442127 0.221064 0.975259i \(-0.429047\pi\)
0.221064 + 0.975259i \(0.429047\pi\)
\(620\) 0 0
\(621\) 5.00000 0.200643
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) −15.0000 −0.599042
\(628\) 0 0
\(629\) 21.0000 0.837325
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) −12.0000 −0.476957
\(634\) 0 0
\(635\) 4.00000 0.158735
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 24.0000 0.949425
\(640\) 0 0
\(641\) −15.0000 −0.592464 −0.296232 0.955116i \(-0.595730\pi\)
−0.296232 + 0.955116i \(0.595730\pi\)
\(642\) 0 0
\(643\) 36.0000 1.41970 0.709851 0.704352i \(-0.248762\pi\)
0.709851 + 0.704352i \(0.248762\pi\)
\(644\) 0 0
\(645\) 8.00000 0.315000
\(646\) 0 0
\(647\) 19.0000 0.746967 0.373484 0.927637i \(-0.378163\pi\)
0.373484 + 0.927637i \(0.378163\pi\)
\(648\) 0 0
\(649\) −35.0000 −1.37387
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.00000 0.352197 0.176099 0.984373i \(-0.443652\pi\)
0.176099 + 0.984373i \(0.443652\pi\)
\(654\) 0 0
\(655\) −3.00000 −0.117220
\(656\) 0 0
\(657\) −10.0000 −0.390137
\(658\) 0 0
\(659\) −4.00000 −0.155818 −0.0779089 0.996960i \(-0.524824\pi\)
−0.0779089 + 0.996960i \(0.524824\pi\)
\(660\) 0 0
\(661\) −51.0000 −1.98367 −0.991835 0.127527i \(-0.959296\pi\)
−0.991835 + 0.127527i \(0.959296\pi\)
\(662\) 0 0
\(663\) 6.00000 0.233021
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.0000 0.387202
\(668\) 0 0
\(669\) −8.00000 −0.309298
\(670\) 0 0
\(671\) −5.00000 −0.193023
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 0 0
\(675\) 20.0000 0.769800
\(676\) 0 0
\(677\) −15.0000 −0.576497 −0.288248 0.957556i \(-0.593073\pi\)
−0.288248 + 0.957556i \(0.593073\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 9.00000 0.344881
\(682\) 0 0
\(683\) 31.0000 1.18618 0.593091 0.805135i \(-0.297907\pi\)
0.593091 + 0.805135i \(0.297907\pi\)
\(684\) 0 0
\(685\) 9.00000 0.343872
\(686\) 0 0
\(687\) 27.0000 1.03011
\(688\) 0 0
\(689\) −22.0000 −0.838133
\(690\) 0 0
\(691\) −9.00000 −0.342376 −0.171188 0.985238i \(-0.554761\pi\)
−0.171188 + 0.985238i \(0.554761\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 20.0000 0.758643
\(696\) 0 0
\(697\) 3.00000 0.113633
\(698\) 0 0
\(699\) 13.0000 0.491705
\(700\) 0 0
\(701\) 50.0000 1.88847 0.944237 0.329267i \(-0.106802\pi\)
0.944237 + 0.329267i \(0.106802\pi\)
\(702\) 0 0
\(703\) 21.0000 0.792030
\(704\) 0 0
\(705\) 7.00000 0.263635
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −19.0000 −0.713560 −0.356780 0.934188i \(-0.616125\pi\)
−0.356780 + 0.934188i \(0.616125\pi\)
\(710\) 0 0
\(711\) −18.0000 −0.675053
\(712\) 0 0
\(713\) −11.0000 −0.411953
\(714\) 0 0
\(715\) −10.0000 −0.373979
\(716\) 0 0
\(717\) −16.0000 −0.597531
\(718\) 0 0
\(719\) 11.0000 0.410231 0.205115 0.978738i \(-0.434243\pi\)
0.205115 + 0.978738i \(0.434243\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −19.0000 −0.706618
\(724\) 0 0
\(725\) 40.0000 1.48556
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 24.0000 0.887672
\(732\) 0 0
\(733\) −3.00000 −0.110808 −0.0554038 0.998464i \(-0.517645\pi\)
−0.0554038 + 0.998464i \(0.517645\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −35.0000 −1.28924
\(738\) 0 0
\(739\) −15.0000 −0.551784 −0.275892 0.961189i \(-0.588973\pi\)
−0.275892 + 0.961189i \(0.588973\pi\)
\(740\) 0 0
\(741\) 6.00000 0.220416
\(742\) 0 0
\(743\) −48.0000 −1.76095 −0.880475 0.474093i \(-0.842776\pi\)
−0.880475 + 0.474093i \(0.842776\pi\)
\(744\) 0 0
\(745\) −7.00000 −0.256460
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −7.00000 −0.255434 −0.127717 0.991811i \(-0.540765\pi\)
−0.127717 + 0.991811i \(0.540765\pi\)
\(752\) 0 0
\(753\) −24.0000 −0.874609
\(754\) 0 0
\(755\) −5.00000 −0.181969
\(756\) 0 0
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) 0 0
\(759\) 5.00000 0.181489
\(760\) 0 0
\(761\) 49.0000 1.77625 0.888124 0.459603i \(-0.152008\pi\)
0.888124 + 0.459603i \(0.152008\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −6.00000 −0.216930
\(766\) 0 0
\(767\) 14.0000 0.505511
\(768\) 0 0
\(769\) 10.0000 0.360609 0.180305 0.983611i \(-0.442292\pi\)
0.180305 + 0.983611i \(0.442292\pi\)
\(770\) 0 0
\(771\) 7.00000 0.252099
\(772\) 0 0
\(773\) 19.0000 0.683383 0.341691 0.939812i \(-0.389000\pi\)
0.341691 + 0.939812i \(0.389000\pi\)
\(774\) 0 0
\(775\) −44.0000 −1.58053
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.00000 0.107486
\(780\) 0 0
\(781\) 60.0000 2.14697
\(782\) 0 0
\(783\) 50.0000 1.78685
\(784\) 0 0
\(785\) 3.00000 0.107075
\(786\) 0 0
\(787\) 47.0000 1.67537 0.837685 0.546154i \(-0.183909\pi\)
0.837685 + 0.546154i \(0.183909\pi\)
\(788\) 0 0
\(789\) 19.0000 0.676418
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 2.00000 0.0710221
\(794\) 0 0
\(795\) −11.0000 −0.390130
\(796\) 0 0
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) 21.0000 0.742927
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) −25.0000 −0.882231
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −11.0000 −0.387218
\(808\) 0 0
\(809\) −31.0000 −1.08990 −0.544951 0.838468i \(-0.683452\pi\)
−0.544951 + 0.838468i \(0.683452\pi\)
\(810\) 0 0
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) 0 0
\(813\) 25.0000 0.876788
\(814\) 0 0
\(815\) −17.0000 −0.595484
\(816\) 0 0
\(817\) 24.0000 0.839654
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17.0000 −0.593304 −0.296652 0.954986i \(-0.595870\pi\)
−0.296652 + 0.954986i \(0.595870\pi\)
\(822\) 0 0
\(823\) −5.00000 −0.174289 −0.0871445 0.996196i \(-0.527774\pi\)
−0.0871445 + 0.996196i \(0.527774\pi\)
\(824\) 0 0
\(825\) 20.0000 0.696311
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) −51.0000 −1.77130 −0.885652 0.464350i \(-0.846288\pi\)
−0.885652 + 0.464350i \(0.846288\pi\)
\(830\) 0 0
\(831\) 23.0000 0.797861
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) 0 0
\(837\) −55.0000 −1.90108
\(838\) 0 0
\(839\) −8.00000 −0.276191 −0.138095 0.990419i \(-0.544098\pi\)
−0.138095 + 0.990419i \(0.544098\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) 0 0
\(843\) −14.0000 −0.482186
\(844\) 0 0
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −17.0000 −0.583438
\(850\) 0 0
\(851\) −7.00000 −0.239957
\(852\) 0 0
\(853\) 14.0000 0.479351 0.239675 0.970853i \(-0.422959\pi\)
0.239675 + 0.970853i \(0.422959\pi\)
\(854\) 0 0
\(855\) −6.00000 −0.205196
\(856\) 0 0
\(857\) 13.0000 0.444072 0.222036 0.975039i \(-0.428730\pi\)
0.222036 + 0.975039i \(0.428730\pi\)
\(858\) 0 0
\(859\) −11.0000 −0.375315 −0.187658 0.982235i \(-0.560090\pi\)
−0.187658 + 0.982235i \(0.560090\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −45.0000 −1.53182 −0.765909 0.642949i \(-0.777711\pi\)
−0.765909 + 0.642949i \(0.777711\pi\)
\(864\) 0 0
\(865\) 21.0000 0.714021
\(866\) 0 0
\(867\) −8.00000 −0.271694
\(868\) 0 0
\(869\) −45.0000 −1.52652
\(870\) 0 0
\(871\) 14.0000 0.474372
\(872\) 0 0
\(873\) 4.00000 0.135379
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 11.0000 0.371444 0.185722 0.982602i \(-0.440538\pi\)
0.185722 + 0.982602i \(0.440538\pi\)
\(878\) 0 0
\(879\) 18.0000 0.607125
\(880\) 0 0
\(881\) 50.0000 1.68454 0.842271 0.539054i \(-0.181218\pi\)
0.842271 + 0.539054i \(0.181218\pi\)
\(882\) 0 0
\(883\) −32.0000 −1.07689 −0.538443 0.842662i \(-0.680987\pi\)
−0.538443 + 0.842662i \(0.680987\pi\)
\(884\) 0 0
\(885\) 7.00000 0.235302
\(886\) 0 0
\(887\) 43.0000 1.44380 0.721899 0.691998i \(-0.243269\pi\)
0.721899 + 0.691998i \(0.243269\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −5.00000 −0.167506
\(892\) 0 0
\(893\) 21.0000 0.702738
\(894\) 0 0
\(895\) 7.00000 0.233984
\(896\) 0 0
\(897\) −2.00000 −0.0667781
\(898\) 0 0
\(899\) −110.000 −3.66871
\(900\) 0 0
\(901\) −33.0000 −1.09939
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 22.0000 0.731305
\(906\) 0 0
\(907\) 17.0000 0.564476 0.282238 0.959344i \(-0.408923\pi\)
0.282238 + 0.959344i \(0.408923\pi\)
\(908\) 0 0
\(909\) −22.0000 −0.729694
\(910\) 0 0
\(911\) −28.0000 −0.927681 −0.463841 0.885919i \(-0.653529\pi\)
−0.463841 + 0.885919i \(0.653529\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 1.00000 0.0330590
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 5.00000 0.164935 0.0824674 0.996594i \(-0.473720\pi\)
0.0824674 + 0.996594i \(0.473720\pi\)
\(920\) 0 0
\(921\) −12.0000 −0.395413
\(922\) 0 0
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) −28.0000 −0.920634
\(926\) 0 0
\(927\) −2.00000 −0.0656886
\(928\) 0 0
\(929\) −17.0000 −0.557752 −0.278876 0.960327i \(-0.589962\pi\)
−0.278876 + 0.960327i \(0.589962\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.00000 0.0327385
\(934\) 0 0
\(935\) −15.0000 −0.490552
\(936\) 0 0
\(937\) −6.00000 −0.196011 −0.0980057 0.995186i \(-0.531246\pi\)
−0.0980057 + 0.995186i \(0.531246\pi\)
\(938\) 0 0
\(939\) 11.0000 0.358971
\(940\) 0 0
\(941\) −27.0000 −0.880175 −0.440087 0.897955i \(-0.645053\pi\)
−0.440087 + 0.897955i \(0.645053\pi\)
\(942\) 0 0
\(943\) −1.00000 −0.0325645
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.0000 0.487435 0.243717 0.969846i \(-0.421633\pi\)
0.243717 + 0.969846i \(0.421633\pi\)
\(948\) 0 0
\(949\) 10.0000 0.324614
\(950\) 0 0
\(951\) 17.0000 0.551263
\(952\) 0 0
\(953\) 30.0000 0.971795 0.485898 0.874016i \(-0.338493\pi\)
0.485898 + 0.874016i \(0.338493\pi\)
\(954\) 0 0
\(955\) 1.00000 0.0323592
\(956\) 0 0
\(957\) 50.0000 1.61627
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 90.0000 2.90323
\(962\) 0 0
\(963\) 26.0000 0.837838
\(964\) 0 0
\(965\) 17.0000 0.547249
\(966\) 0 0
\(967\) 4.00000 0.128631 0.0643157 0.997930i \(-0.479514\pi\)
0.0643157 + 0.997930i \(0.479514\pi\)
\(968\) 0 0
\(969\) 9.00000 0.289122
\(970\) 0 0
\(971\) 11.0000 0.353007 0.176503 0.984300i \(-0.443521\pi\)
0.176503 + 0.984300i \(0.443521\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −8.00000 −0.256205
\(976\) 0 0
\(977\) −7.00000 −0.223950 −0.111975 0.993711i \(-0.535718\pi\)
−0.111975 + 0.993711i \(0.535718\pi\)
\(978\) 0 0
\(979\) −15.0000 −0.479402
\(980\) 0 0
\(981\) −34.0000 −1.08554
\(982\) 0 0
\(983\) 11.0000 0.350846 0.175423 0.984493i \(-0.443871\pi\)
0.175423 + 0.984493i \(0.443871\pi\)
\(984\) 0 0
\(985\) 26.0000 0.828429
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) −13.0000 −0.412959 −0.206479 0.978451i \(-0.566201\pi\)
−0.206479 + 0.978451i \(0.566201\pi\)
\(992\) 0 0
\(993\) −3.00000 −0.0952021
\(994\) 0 0
\(995\) 21.0000 0.665745
\(996\) 0 0
\(997\) −37.0000 −1.17180 −0.585901 0.810383i \(-0.699259\pi\)
−0.585901 + 0.810383i \(0.699259\pi\)
\(998\) 0 0
\(999\) −35.0000 −1.10735
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))