Properties

Label 8035.2.a.e
Level 8035
Weight 2
Character orbit 8035.a
Self dual Yes
Analytic conductor 64.160
Analytic rank 0
Dimension 153
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8035 = 5 \cdot 1607 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8035.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(64.1597980241\)
Analytic rank: \(0\)
Dimension: \(153\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 153q + 18q^{2} + 7q^{3} + 176q^{4} + 153q^{5} + 19q^{6} + 5q^{7} + 57q^{8} + 206q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 153q + 18q^{2} + 7q^{3} + 176q^{4} + 153q^{5} + 19q^{6} + 5q^{7} + 57q^{8} + 206q^{9} + 18q^{10} + 38q^{11} + 14q^{12} + 28q^{13} + 53q^{14} + 7q^{15} + 214q^{16} + 50q^{17} + 47q^{18} + 65q^{19} + 176q^{20} + 109q^{21} + 13q^{22} + 52q^{23} + 66q^{24} + 153q^{25} + 36q^{26} + 19q^{27} + 26q^{28} + 172q^{29} + 19q^{30} + 60q^{31} + 107q^{32} + 4q^{33} + 40q^{34} + 5q^{35} + 241q^{36} + 65q^{37} + 29q^{38} + 56q^{39} + 57q^{40} + 152q^{41} - 19q^{42} + 22q^{43} + 97q^{44} + 206q^{45} + 86q^{46} + 37q^{47} - 4q^{48} + 260q^{49} + 18q^{50} + 102q^{51} - 6q^{52} + 169q^{53} + 64q^{54} + 38q^{55} + 146q^{56} + 40q^{57} - 9q^{58} + 64q^{59} + 14q^{60} + 164q^{61} + 12q^{62} + 19q^{63} + 259q^{64} + 28q^{65} + 6q^{66} + 5q^{67} + 112q^{68} + 119q^{69} + 53q^{70} + 100q^{71} + 77q^{72} + 10q^{73} + 98q^{74} + 7q^{75} + 126q^{76} + 80q^{77} - 4q^{78} + 110q^{79} + 214q^{80} + 305q^{81} - 27q^{82} + 36q^{83} + 172q^{84} + 50q^{85} + 44q^{86} + 23q^{87} + 47q^{88} + 143q^{89} + 47q^{90} + 82q^{91} + 130q^{92} + 31q^{93} + 77q^{94} + 65q^{95} + 57q^{96} + 11q^{97} + 29q^{98} + 99q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.77624 1.54873 5.70752 1.00000 −4.29965 −0.285554 −10.2930 −0.601430 −2.77624
1.2 −2.71462 2.16303 5.36914 1.00000 −5.87179 −4.59135 −9.14592 1.67870 −2.71462
1.3 −2.69988 −0.494659 5.28933 1.00000 1.33552 3.45834 −8.88080 −2.75531 −2.69988
1.4 −2.68656 −0.551136 5.21758 1.00000 1.48066 −4.17471 −8.64421 −2.69625 −2.68656
1.5 −2.65503 −2.98031 5.04918 1.00000 7.91280 −3.81633 −8.09566 5.88223 −2.65503
1.6 −2.62009 −2.60275 4.86488 1.00000 6.81943 0.626563 −7.50624 3.77428 −2.62009
1.7 −2.59466 −3.04599 4.73224 1.00000 7.90331 −0.447166 −7.08923 6.27808 −2.59466
1.8 −2.59020 −1.81242 4.70914 1.00000 4.69454 3.39615 −7.01723 0.284882 −2.59020
1.9 −2.55001 2.17323 4.50255 1.00000 −5.54177 4.37483 −6.38153 1.72295 −2.55001
1.10 −2.54388 1.32249 4.47134 1.00000 −3.36426 2.08615 −6.28679 −1.25102 −2.54388
1.11 −2.52944 −2.42468 4.39805 1.00000 6.13306 0.256968 −6.06570 2.87905 −2.52944
1.12 −2.51924 −1.73731 4.34657 1.00000 4.37670 −5.14815 −5.91158 0.0182398 −2.51924
1.13 −2.41868 3.20867 3.85002 1.00000 −7.76074 −2.07887 −4.47460 7.29555 −2.41868
1.14 −2.41769 −0.844619 3.84521 1.00000 2.04202 0.104455 −4.46113 −2.28662 −2.41769
1.15 −2.33215 −3.21462 3.43894 1.00000 7.49699 −4.86714 −3.35583 7.33378 −2.33215
1.16 −2.32037 2.64444 3.38410 1.00000 −6.13607 4.54944 −3.21162 3.99307 −2.32037
1.17 −2.31112 3.30909 3.34126 1.00000 −7.64768 0.225615 −3.09980 7.95005 −2.31112
1.18 −2.29854 0.376180 3.28327 1.00000 −0.864664 −1.95111 −2.94965 −2.85849 −2.29854
1.19 −2.28006 1.15086 3.19869 1.00000 −2.62404 −0.851041 −2.73309 −1.67552 −2.28006
1.20 −2.27555 1.50447 3.17814 1.00000 −3.42350 2.50382 −2.68091 −0.736575 −2.27555
See next 80 embeddings (of 153 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.153
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(5\) \(-1\)
\(1607\) \(1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{2}^{153} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8035))\).