Properties

Label 8016.2.a.q
Level 8016
Weight 2
Character orbit 8016.a
Self dual Yes
Analytic conductor 64.008
Analytic rank 1
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8016 = 2^{4} \cdot 3 \cdot 167 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8016.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(64.0080822603\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.161121.1
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + ( -1 - \beta_{3} - \beta_{4} ) q^{5} + ( 1 - \beta_{1} - \beta_{3} - \beta_{4} ) q^{7} + q^{9} +O(q^{10})\) \( q - q^{3} + ( -1 - \beta_{3} - \beta_{4} ) q^{5} + ( 1 - \beta_{1} - \beta_{3} - \beta_{4} ) q^{7} + q^{9} + ( 1 + 2 \beta_{1} + \beta_{3} - \beta_{4} ) q^{11} + ( -1 + \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} ) q^{13} + ( 1 + \beta_{3} + \beta_{4} ) q^{15} + ( -1 - 2 \beta_{1} ) q^{17} + ( 1 - \beta_{1} + 2 \beta_{2} - 2 \beta_{3} - \beta_{4} ) q^{19} + ( -1 + \beta_{1} + \beta_{3} + \beta_{4} ) q^{21} + ( 2 + \beta_{1} - \beta_{3} + \beta_{4} ) q^{23} + ( -2 - 2 \beta_{2} + 3 \beta_{3} + 4 \beta_{4} ) q^{25} - q^{27} + ( -3 + \beta_{3} + 2 \beta_{4} ) q^{29} + ( 1 - \beta_{1} - 2 \beta_{2} + 2 \beta_{4} ) q^{31} + ( -1 - 2 \beta_{1} - \beta_{3} + \beta_{4} ) q^{33} + ( 1 + \beta_{1} - \beta_{2} + \beta_{3} + 2 \beta_{4} ) q^{35} + ( -2 + \beta_{1} - \beta_{2} - \beta_{3} ) q^{37} + ( 1 - \beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} ) q^{39} + ( -2 - \beta_{2} - 3 \beta_{3} - 2 \beta_{4} ) q^{41} + ( -2 + 2 \beta_{1} - 3 \beta_{2} + 3 \beta_{3} + \beta_{4} ) q^{43} + ( -1 - \beta_{3} - \beta_{4} ) q^{45} + ( 4 - 3 \beta_{1} + 4 \beta_{3} + \beta_{4} ) q^{47} + ( -1 - 2 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{49} + ( 1 + 2 \beta_{1} ) q^{51} + ( -4 - \beta_{1} + 2 \beta_{2} - \beta_{3} + 2 \beta_{4} ) q^{53} + ( -1 - 2 \beta_{1} - 2 \beta_{2} - \beta_{3} + 2 \beta_{4} ) q^{55} + ( -1 + \beta_{1} - 2 \beta_{2} + 2 \beta_{3} + \beta_{4} ) q^{57} + ( 2 - 3 \beta_{1} + 2 \beta_{2} + \beta_{3} + 2 \beta_{4} ) q^{59} + ( -2 + 2 \beta_{1} + 2 \beta_{2} + 4 \beta_{3} + 3 \beta_{4} ) q^{61} + ( 1 - \beta_{1} - \beta_{3} - \beta_{4} ) q^{63} + ( -2 \beta_{1} - 2 \beta_{2} + 3 \beta_{3} + 6 \beta_{4} ) q^{65} + ( -1 + 3 \beta_{1} + 3 \beta_{2} - 3 \beta_{3} - \beta_{4} ) q^{67} + ( -2 - \beta_{1} + \beta_{3} - \beta_{4} ) q^{69} + ( 6 - \beta_{1} - \beta_{2} - 2 \beta_{3} + 2 \beta_{4} ) q^{71} + ( -3 + 3 \beta_{1} - \beta_{2} + \beta_{4} ) q^{73} + ( 2 + 2 \beta_{2} - 3 \beta_{3} - 4 \beta_{4} ) q^{75} + ( -3 + 3 \beta_{1} - 3 \beta_{2} + 3 \beta_{3} ) q^{77} + ( 4 \beta_{1} + \beta_{2} + 5 \beta_{3} - \beta_{4} ) q^{79} + q^{81} + ( 2 - 3 \beta_{1} + \beta_{2} + 2 \beta_{3} + 3 \beta_{4} ) q^{83} + ( 1 + 2 \beta_{1} + 2 \beta_{2} + \beta_{3} + \beta_{4} ) q^{85} + ( 3 - \beta_{3} - 2 \beta_{4} ) q^{87} + ( -5 + 3 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} - \beta_{4} ) q^{89} + ( -3 + 2 \beta_{1} - \beta_{2} + 5 \beta_{3} + 3 \beta_{4} ) q^{91} + ( -1 + \beta_{1} + 2 \beta_{2} - 2 \beta_{4} ) q^{93} + ( -\beta_{1} - 4 \beta_{2} + 6 \beta_{3} + 6 \beta_{4} ) q^{95} + ( 3 + \beta_{2} - 2 \beta_{3} - \beta_{4} ) q^{97} + ( 1 + 2 \beta_{1} + \beta_{3} - \beta_{4} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5q - 5q^{3} - 7q^{5} + 2q^{7} + 5q^{9} + O(q^{10}) \) \( 5q - 5q^{3} - 7q^{5} + 2q^{7} + 5q^{9} + 5q^{11} - 8q^{13} + 7q^{15} - 7q^{17} - 2q^{19} - 2q^{21} + 13q^{23} + 2q^{25} - 5q^{27} - 11q^{29} + 12q^{31} - 5q^{33} + 12q^{35} - 7q^{37} + 8q^{39} - 12q^{41} - 7q^{45} + 19q^{47} - 9q^{49} + 7q^{51} - 21q^{53} + q^{55} + 2q^{57} + 7q^{59} - 6q^{61} + 2q^{63} + 14q^{65} - 10q^{67} - 13q^{69} + 35q^{71} - 8q^{73} - 2q^{75} - 6q^{77} + 5q^{81} + 11q^{83} + 5q^{85} + 11q^{87} - 32q^{89} - 5q^{91} - 12q^{93} + 19q^{95} + 11q^{97} + 5q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{5} - x^{4} - 6 x^{3} + 3 x^{2} + 5 x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{4} - \nu^{3} - 5 \nu^{2} + 3 \nu + 1 \)
\(\beta_{3}\)\(=\)\( \nu^{4} - \nu^{3} - 6 \nu^{2} + 3 \nu + 4 \)
\(\beta_{4}\)\(=\)\( -2 \nu^{4} + 3 \nu^{3} + 11 \nu^{2} - 11 \nu - 6 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(-\beta_{3} + \beta_{2} + 3\)
\(\nu^{3}\)\(=\)\(\beta_{4} + \beta_{3} + \beta_{2} + 5 \beta_{1} + 1\)
\(\nu^{4}\)\(=\)\(\beta_{4} - 4 \beta_{3} + 7 \beta_{2} + 2 \beta_{1} + 15\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.544588
2.56399
−0.261082
−2.07823
1.31991
0 −1.00000 0 −4.42860 0 −1.88401 0 1.00000 0
1.2 0 −1.00000 0 −1.85181 0 −2.41580 0 1.00000 0
1.3 0 −1.00000 0 −1.38924 0 0.871845 0 1.00000 0
1.4 0 −1.00000 0 −0.614948 0 3.46328 0 1.00000 0
1.5 0 −1.00000 0 1.28459 0 1.96468 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(167\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8016))\):

\( T_{5}^{5} + 7 T_{5}^{4} + 11 T_{5}^{3} - 6 T_{5}^{2} - 21 T_{5} - 9 \)
\( T_{7}^{5} - 2 T_{7}^{4} - 11 T_{7}^{3} + 15 T_{7}^{2} + 27 T_{7} - 27 \)
\( T_{11}^{5} - 5 T_{11}^{4} - 19 T_{11}^{3} + 84 T_{11}^{2} + 45 T_{11} - 243 \)
\( T_{13}^{5} + 8 T_{13}^{4} - T_{13}^{3} - 124 T_{13}^{2} - 218 T_{13} + 27 \)