# Properties

 Label 8011.2 Level 8011 Weight 2 Dimension 2.67e+06 Nonzero newspaces 12 Sturm bound 1.0696e+07

## Defining parameters

 Level: $$N$$ = $$8011$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$12$$ Sturm bound: $$10696020$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(8011))$$.

Total New Old
Modular forms 2678010 2678010 0
Cusp forms 2670001 2670001 0
Eisenstein series 8009 8009 0

## Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(8011))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
8011.2.a $$\chi_{8011}(1, \cdot)$$ 8011.2.a.a 309 1
8011.2.a.b 358
8011.2.c $$\chi_{8011}(89, \cdot)$$ n/a 1332 2
8011.2.d $$\chi_{8011}(930, \cdot)$$ n/a 2664 4
8011.2.f $$\chi_{8011}(1972, \cdot)$$ n/a 4002 6
8011.2.h $$\chi_{8011}(501, \cdot)$$ n/a 5328 8
8011.2.k $$\chi_{8011}(52, \cdot)$$ n/a 16008 24
8011.2.l $$\chi_{8011}(6, \cdot)$$ n/a 58608 88
8011.2.o $$\chi_{8011}(22, \cdot)$$ n/a 117216 176
8011.2.p $$\chi_{8011}(5, \cdot)$$ n/a 234432 352
8011.2.r $$\chi_{8011}(19, \cdot)$$ n/a 352176 528
8011.2.t $$\chi_{8011}(4, \cdot)$$ n/a 468864 704
8011.2.w $$\chi_{8011}(7, \cdot)$$ n/a 1408704 2112

"n/a" means that newforms for that character have not been added to the database yet