Properties

Label 8008.2.a.i
Level 8008
Weight 2
Character orbit 8008.a
Self dual Yes
Analytic conductor 63.944
Analytic rank 1
Dimension 3
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8008 = 2^{3} \cdot 7 \cdot 11 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8008.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(63.9442019386\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 + \beta_{2} ) q^{3} + ( 2 - \beta_{1} ) q^{5} - q^{7} + ( 1 + \beta_{1} ) q^{9} +O(q^{10})\) \( q + ( 1 + \beta_{2} ) q^{3} + ( 2 - \beta_{1} ) q^{5} - q^{7} + ( 1 + \beta_{1} ) q^{9} - q^{11} + q^{13} + ( 1 - 2 \beta_{1} + 2 \beta_{2} ) q^{15} + ( -5 + \beta_{1} - 2 \beta_{2} ) q^{17} + ( 2 \beta_{1} - \beta_{2} ) q^{19} + ( -1 - \beta_{2} ) q^{21} + ( -4 + 3 \beta_{1} + \beta_{2} ) q^{23} + ( 2 - 4 \beta_{1} + \beta_{2} ) q^{25} + ( -1 + 2 \beta_{1} - 2 \beta_{2} ) q^{27} + ( 2 - 2 \beta_{1} - 2 \beta_{2} ) q^{29} + ( -6 + \beta_{1} - \beta_{2} ) q^{31} + ( -1 - \beta_{2} ) q^{33} + ( -2 + \beta_{1} ) q^{35} + ( 2 + \beta_{1} - \beta_{2} ) q^{37} + ( 1 + \beta_{2} ) q^{39} + ( -2 - 6 \beta_{1} + 4 \beta_{2} ) q^{41} + ( 3 + 3 \beta_{1} ) q^{43} + ( -1 + \beta_{1} - \beta_{2} ) q^{45} + ( -4 \beta_{1} + 2 \beta_{2} ) q^{47} + q^{49} + ( -10 - 3 \beta_{2} ) q^{51} + ( -5 - \beta_{1} - 4 \beta_{2} ) q^{53} + ( -2 + \beta_{1} ) q^{55} + ( -1 + 3 \beta_{1} + \beta_{2} ) q^{57} + ( 2 + 3 \beta_{1} - 3 \beta_{2} ) q^{59} + ( 3 + \beta_{1} ) q^{61} + ( -1 - \beta_{1} ) q^{63} + ( 2 - \beta_{1} ) q^{65} + ( -3 - 2 \beta_{1} + \beta_{2} ) q^{67} + ( 2 + 7 \beta_{1} - 5 \beta_{2} ) q^{69} + ( -8 + \beta_{1} - 2 \beta_{2} ) q^{71} + ( -6 - 4 \beta_{1} ) q^{73} + ( 1 - 7 \beta_{1} + \beta_{2} ) q^{75} + q^{77} + ( 2 \beta_{1} + 3 \beta_{2} ) q^{79} + ( -8 - \beta_{1} + \beta_{2} ) q^{81} + ( 4 \beta_{1} + \beta_{2} ) q^{83} + ( -11 + 9 \beta_{1} - 5 \beta_{2} ) q^{85} + ( -6 - 6 \beta_{1} + 4 \beta_{2} ) q^{87} + ( 5 + 4 \beta_{1} - \beta_{2} ) q^{89} - q^{91} + ( -8 + \beta_{1} - 5 \beta_{2} ) q^{93} + ( -5 + 5 \beta_{1} - 4 \beta_{2} ) q^{95} + ( -2 + 5 \beta_{1} - 7 \beta_{2} ) q^{97} + ( -1 - \beta_{1} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + 2q^{3} + 6q^{5} - 3q^{7} + 3q^{9} + O(q^{10}) \) \( 3q + 2q^{3} + 6q^{5} - 3q^{7} + 3q^{9} - 3q^{11} + 3q^{13} + q^{15} - 13q^{17} + q^{19} - 2q^{21} - 13q^{23} + 5q^{25} - q^{27} + 8q^{29} - 17q^{31} - 2q^{33} - 6q^{35} + 7q^{37} + 2q^{39} - 10q^{41} + 9q^{43} - 2q^{45} - 2q^{47} + 3q^{49} - 27q^{51} - 11q^{53} - 6q^{55} - 4q^{57} + 9q^{59} + 9q^{61} - 3q^{63} + 6q^{65} - 10q^{67} + 11q^{69} - 22q^{71} - 18q^{73} + 2q^{75} + 3q^{77} - 3q^{79} - 25q^{81} - q^{83} - 28q^{85} - 22q^{87} + 16q^{89} - 3q^{91} - 19q^{93} - 11q^{95} + q^{97} - 3q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - 4 x - 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 3\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.254102
−1.86081
2.11491
0 −1.93543 0 2.25410 0 −1.00000 0 0.745898 0
1.2 0 1.46260 0 3.86081 0 −1.00000 0 −0.860806 0
1.3 0 2.47283 0 −0.114908 0 −1.00000 0 3.11491 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(1\)
\(11\) \(1\)
\(13\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8008))\):

\( T_{3}^{3} - 2 T_{3}^{2} - 4 T_{3} + 7 \)
\( T_{5}^{3} - 6 T_{5}^{2} + 8 T_{5} + 1 \)
\( T_{17}^{3} + 13 T_{17}^{2} + 37 T_{17} - 28 \)