Properties

Label 8004.2.a.h.1.12
Level $8004$
Weight $2$
Character 8004.1
Self dual yes
Analytic conductor $63.912$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8004,2,Mod(1,8004)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8004, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8004.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8004 = 2^{2} \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8004.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [13,0,-13,0,5,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.9122617778\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 5 x^{12} - 27 x^{11} + 158 x^{10} + 180 x^{9} - 1652 x^{8} + 65 x^{7} + 7388 x^{6} + \cdots - 5832 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(2.93518\) of defining polynomial
Character \(\chi\) \(=\) 8004.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +2.93518 q^{5} +2.71487 q^{7} +1.00000 q^{9} -3.58887 q^{11} -3.17111 q^{13} -2.93518 q^{15} +4.47862 q^{17} -2.55694 q^{19} -2.71487 q^{21} -1.00000 q^{23} +3.61530 q^{25} -1.00000 q^{27} -1.00000 q^{29} -5.38333 q^{31} +3.58887 q^{33} +7.96863 q^{35} +5.07603 q^{37} +3.17111 q^{39} +0.235962 q^{41} +8.18346 q^{43} +2.93518 q^{45} -6.76932 q^{47} +0.370499 q^{49} -4.47862 q^{51} -2.07077 q^{53} -10.5340 q^{55} +2.55694 q^{57} +5.67608 q^{59} +3.60240 q^{61} +2.71487 q^{63} -9.30780 q^{65} +2.30488 q^{67} +1.00000 q^{69} +5.54897 q^{71} +11.4518 q^{73} -3.61530 q^{75} -9.74330 q^{77} +4.16775 q^{79} +1.00000 q^{81} +6.64646 q^{83} +13.1456 q^{85} +1.00000 q^{87} +8.84427 q^{89} -8.60915 q^{91} +5.38333 q^{93} -7.50509 q^{95} +10.2089 q^{97} -3.58887 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - 13 q^{3} + 5 q^{5} - 8 q^{7} + 13 q^{9} + q^{11} + q^{13} - 5 q^{15} - 2 q^{17} - 10 q^{19} + 8 q^{21} - 13 q^{23} + 14 q^{25} - 13 q^{27} - 13 q^{29} - 26 q^{31} - q^{33} + 19 q^{35} + 15 q^{37}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 2.93518 1.31265 0.656327 0.754477i \(-0.272109\pi\)
0.656327 + 0.754477i \(0.272109\pi\)
\(6\) 0 0
\(7\) 2.71487 1.02612 0.513062 0.858352i \(-0.328511\pi\)
0.513062 + 0.858352i \(0.328511\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.58887 −1.08208 −0.541042 0.840996i \(-0.681970\pi\)
−0.541042 + 0.840996i \(0.681970\pi\)
\(12\) 0 0
\(13\) −3.17111 −0.879509 −0.439754 0.898118i \(-0.644935\pi\)
−0.439754 + 0.898118i \(0.644935\pi\)
\(14\) 0 0
\(15\) −2.93518 −0.757861
\(16\) 0 0
\(17\) 4.47862 1.08622 0.543112 0.839660i \(-0.317246\pi\)
0.543112 + 0.839660i \(0.317246\pi\)
\(18\) 0 0
\(19\) −2.55694 −0.586603 −0.293301 0.956020i \(-0.594754\pi\)
−0.293301 + 0.956020i \(0.594754\pi\)
\(20\) 0 0
\(21\) −2.71487 −0.592432
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 3.61530 0.723059
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −5.38333 −0.966874 −0.483437 0.875379i \(-0.660612\pi\)
−0.483437 + 0.875379i \(0.660612\pi\)
\(32\) 0 0
\(33\) 3.58887 0.624742
\(34\) 0 0
\(35\) 7.96863 1.34694
\(36\) 0 0
\(37\) 5.07603 0.834494 0.417247 0.908793i \(-0.362995\pi\)
0.417247 + 0.908793i \(0.362995\pi\)
\(38\) 0 0
\(39\) 3.17111 0.507785
\(40\) 0 0
\(41\) 0.235962 0.0368511 0.0184255 0.999830i \(-0.494135\pi\)
0.0184255 + 0.999830i \(0.494135\pi\)
\(42\) 0 0
\(43\) 8.18346 1.24797 0.623983 0.781438i \(-0.285514\pi\)
0.623983 + 0.781438i \(0.285514\pi\)
\(44\) 0 0
\(45\) 2.93518 0.437551
\(46\) 0 0
\(47\) −6.76932 −0.987407 −0.493703 0.869630i \(-0.664357\pi\)
−0.493703 + 0.869630i \(0.664357\pi\)
\(48\) 0 0
\(49\) 0.370499 0.0529285
\(50\) 0 0
\(51\) −4.47862 −0.627132
\(52\) 0 0
\(53\) −2.07077 −0.284442 −0.142221 0.989835i \(-0.545424\pi\)
−0.142221 + 0.989835i \(0.545424\pi\)
\(54\) 0 0
\(55\) −10.5340 −1.42040
\(56\) 0 0
\(57\) 2.55694 0.338675
\(58\) 0 0
\(59\) 5.67608 0.738963 0.369481 0.929238i \(-0.379535\pi\)
0.369481 + 0.929238i \(0.379535\pi\)
\(60\) 0 0
\(61\) 3.60240 0.461240 0.230620 0.973044i \(-0.425925\pi\)
0.230620 + 0.973044i \(0.425925\pi\)
\(62\) 0 0
\(63\) 2.71487 0.342041
\(64\) 0 0
\(65\) −9.30780 −1.15449
\(66\) 0 0
\(67\) 2.30488 0.281587 0.140793 0.990039i \(-0.455035\pi\)
0.140793 + 0.990039i \(0.455035\pi\)
\(68\) 0 0
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) 5.54897 0.658542 0.329271 0.944235i \(-0.393197\pi\)
0.329271 + 0.944235i \(0.393197\pi\)
\(72\) 0 0
\(73\) 11.4518 1.34033 0.670163 0.742214i \(-0.266224\pi\)
0.670163 + 0.742214i \(0.266224\pi\)
\(74\) 0 0
\(75\) −3.61530 −0.417458
\(76\) 0 0
\(77\) −9.74330 −1.11035
\(78\) 0 0
\(79\) 4.16775 0.468908 0.234454 0.972127i \(-0.424670\pi\)
0.234454 + 0.972127i \(0.424670\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.64646 0.729543 0.364772 0.931097i \(-0.381147\pi\)
0.364772 + 0.931097i \(0.381147\pi\)
\(84\) 0 0
\(85\) 13.1456 1.42584
\(86\) 0 0
\(87\) 1.00000 0.107211
\(88\) 0 0
\(89\) 8.84427 0.937491 0.468745 0.883333i \(-0.344706\pi\)
0.468745 + 0.883333i \(0.344706\pi\)
\(90\) 0 0
\(91\) −8.60915 −0.902484
\(92\) 0 0
\(93\) 5.38333 0.558225
\(94\) 0 0
\(95\) −7.50509 −0.770006
\(96\) 0 0
\(97\) 10.2089 1.03655 0.518277 0.855213i \(-0.326574\pi\)
0.518277 + 0.855213i \(0.326574\pi\)
\(98\) 0 0
\(99\) −3.58887 −0.360695
\(100\) 0 0
\(101\) 14.0772 1.40073 0.700366 0.713784i \(-0.253020\pi\)
0.700366 + 0.713784i \(0.253020\pi\)
\(102\) 0 0
\(103\) 0.536603 0.0528730 0.0264365 0.999650i \(-0.491584\pi\)
0.0264365 + 0.999650i \(0.491584\pi\)
\(104\) 0 0
\(105\) −7.96863 −0.777658
\(106\) 0 0
\(107\) 6.01387 0.581383 0.290691 0.956817i \(-0.406115\pi\)
0.290691 + 0.956817i \(0.406115\pi\)
\(108\) 0 0
\(109\) 11.0166 1.05520 0.527600 0.849493i \(-0.323092\pi\)
0.527600 + 0.849493i \(0.323092\pi\)
\(110\) 0 0
\(111\) −5.07603 −0.481795
\(112\) 0 0
\(113\) 19.0729 1.79422 0.897112 0.441803i \(-0.145661\pi\)
0.897112 + 0.441803i \(0.145661\pi\)
\(114\) 0 0
\(115\) −2.93518 −0.273707
\(116\) 0 0
\(117\) −3.17111 −0.293170
\(118\) 0 0
\(119\) 12.1588 1.11460
\(120\) 0 0
\(121\) 1.87997 0.170906
\(122\) 0 0
\(123\) −0.235962 −0.0212760
\(124\) 0 0
\(125\) −4.06436 −0.363527
\(126\) 0 0
\(127\) 16.5571 1.46920 0.734602 0.678498i \(-0.237369\pi\)
0.734602 + 0.678498i \(0.237369\pi\)
\(128\) 0 0
\(129\) −8.18346 −0.720513
\(130\) 0 0
\(131\) 6.58954 0.575731 0.287865 0.957671i \(-0.407054\pi\)
0.287865 + 0.957671i \(0.407054\pi\)
\(132\) 0 0
\(133\) −6.94176 −0.601927
\(134\) 0 0
\(135\) −2.93518 −0.252620
\(136\) 0 0
\(137\) 2.66517 0.227701 0.113850 0.993498i \(-0.463682\pi\)
0.113850 + 0.993498i \(0.463682\pi\)
\(138\) 0 0
\(139\) 15.6879 1.33063 0.665314 0.746564i \(-0.268298\pi\)
0.665314 + 0.746564i \(0.268298\pi\)
\(140\) 0 0
\(141\) 6.76932 0.570079
\(142\) 0 0
\(143\) 11.3807 0.951703
\(144\) 0 0
\(145\) −2.93518 −0.243754
\(146\) 0 0
\(147\) −0.370499 −0.0305583
\(148\) 0 0
\(149\) 5.07527 0.415782 0.207891 0.978152i \(-0.433340\pi\)
0.207891 + 0.978152i \(0.433340\pi\)
\(150\) 0 0
\(151\) −9.51640 −0.774434 −0.387217 0.921989i \(-0.626564\pi\)
−0.387217 + 0.921989i \(0.626564\pi\)
\(152\) 0 0
\(153\) 4.47862 0.362075
\(154\) 0 0
\(155\) −15.8010 −1.26917
\(156\) 0 0
\(157\) 2.74605 0.219158 0.109579 0.993978i \(-0.465050\pi\)
0.109579 + 0.993978i \(0.465050\pi\)
\(158\) 0 0
\(159\) 2.07077 0.164223
\(160\) 0 0
\(161\) −2.71487 −0.213961
\(162\) 0 0
\(163\) 3.29661 0.258210 0.129105 0.991631i \(-0.458790\pi\)
0.129105 + 0.991631i \(0.458790\pi\)
\(164\) 0 0
\(165\) 10.5340 0.820069
\(166\) 0 0
\(167\) −21.0440 −1.62843 −0.814215 0.580563i \(-0.802832\pi\)
−0.814215 + 0.580563i \(0.802832\pi\)
\(168\) 0 0
\(169\) −2.94404 −0.226464
\(170\) 0 0
\(171\) −2.55694 −0.195534
\(172\) 0 0
\(173\) 14.9462 1.13634 0.568168 0.822913i \(-0.307652\pi\)
0.568168 + 0.822913i \(0.307652\pi\)
\(174\) 0 0
\(175\) 9.81505 0.741948
\(176\) 0 0
\(177\) −5.67608 −0.426640
\(178\) 0 0
\(179\) −5.34025 −0.399149 −0.199574 0.979883i \(-0.563956\pi\)
−0.199574 + 0.979883i \(0.563956\pi\)
\(180\) 0 0
\(181\) −20.4669 −1.52129 −0.760645 0.649168i \(-0.775117\pi\)
−0.760645 + 0.649168i \(0.775117\pi\)
\(182\) 0 0
\(183\) −3.60240 −0.266297
\(184\) 0 0
\(185\) 14.8991 1.09540
\(186\) 0 0
\(187\) −16.0732 −1.17539
\(188\) 0 0
\(189\) −2.71487 −0.197477
\(190\) 0 0
\(191\) −23.0846 −1.67034 −0.835172 0.549989i \(-0.814632\pi\)
−0.835172 + 0.549989i \(0.814632\pi\)
\(192\) 0 0
\(193\) 18.8353 1.35580 0.677899 0.735155i \(-0.262891\pi\)
0.677899 + 0.735155i \(0.262891\pi\)
\(194\) 0 0
\(195\) 9.30780 0.666545
\(196\) 0 0
\(197\) 12.0193 0.856336 0.428168 0.903699i \(-0.359159\pi\)
0.428168 + 0.903699i \(0.359159\pi\)
\(198\) 0 0
\(199\) −24.0112 −1.70211 −0.851055 0.525076i \(-0.824037\pi\)
−0.851055 + 0.525076i \(0.824037\pi\)
\(200\) 0 0
\(201\) −2.30488 −0.162574
\(202\) 0 0
\(203\) −2.71487 −0.190546
\(204\) 0 0
\(205\) 0.692592 0.0483727
\(206\) 0 0
\(207\) −1.00000 −0.0695048
\(208\) 0 0
\(209\) 9.17653 0.634754
\(210\) 0 0
\(211\) 26.2057 1.80408 0.902038 0.431656i \(-0.142071\pi\)
0.902038 + 0.431656i \(0.142071\pi\)
\(212\) 0 0
\(213\) −5.54897 −0.380209
\(214\) 0 0
\(215\) 24.0199 1.63815
\(216\) 0 0
\(217\) −14.6150 −0.992132
\(218\) 0 0
\(219\) −11.4518 −0.773838
\(220\) 0 0
\(221\) −14.2022 −0.955344
\(222\) 0 0
\(223\) −25.8799 −1.73304 −0.866522 0.499138i \(-0.833650\pi\)
−0.866522 + 0.499138i \(0.833650\pi\)
\(224\) 0 0
\(225\) 3.61530 0.241020
\(226\) 0 0
\(227\) 3.84644 0.255297 0.127649 0.991819i \(-0.459257\pi\)
0.127649 + 0.991819i \(0.459257\pi\)
\(228\) 0 0
\(229\) −28.1470 −1.86001 −0.930004 0.367550i \(-0.880197\pi\)
−0.930004 + 0.367550i \(0.880197\pi\)
\(230\) 0 0
\(231\) 9.74330 0.641062
\(232\) 0 0
\(233\) −0.131560 −0.00861881 −0.00430941 0.999991i \(-0.501372\pi\)
−0.00430941 + 0.999991i \(0.501372\pi\)
\(234\) 0 0
\(235\) −19.8692 −1.29612
\(236\) 0 0
\(237\) −4.16775 −0.270724
\(238\) 0 0
\(239\) −10.7006 −0.692167 −0.346084 0.938204i \(-0.612489\pi\)
−0.346084 + 0.938204i \(0.612489\pi\)
\(240\) 0 0
\(241\) −7.51815 −0.484286 −0.242143 0.970241i \(-0.577850\pi\)
−0.242143 + 0.970241i \(0.577850\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 1.08748 0.0694768
\(246\) 0 0
\(247\) 8.10836 0.515923
\(248\) 0 0
\(249\) −6.64646 −0.421202
\(250\) 0 0
\(251\) 16.0258 1.01154 0.505769 0.862669i \(-0.331209\pi\)
0.505769 + 0.862669i \(0.331209\pi\)
\(252\) 0 0
\(253\) 3.58887 0.225630
\(254\) 0 0
\(255\) −13.1456 −0.823207
\(256\) 0 0
\(257\) 14.6440 0.913466 0.456733 0.889604i \(-0.349020\pi\)
0.456733 + 0.889604i \(0.349020\pi\)
\(258\) 0 0
\(259\) 13.7807 0.856294
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) 0 0
\(263\) −17.7426 −1.09406 −0.547029 0.837114i \(-0.684241\pi\)
−0.547029 + 0.837114i \(0.684241\pi\)
\(264\) 0 0
\(265\) −6.07808 −0.373373
\(266\) 0 0
\(267\) −8.84427 −0.541261
\(268\) 0 0
\(269\) 7.41764 0.452261 0.226131 0.974097i \(-0.427392\pi\)
0.226131 + 0.974097i \(0.427392\pi\)
\(270\) 0 0
\(271\) −4.08324 −0.248039 −0.124020 0.992280i \(-0.539579\pi\)
−0.124020 + 0.992280i \(0.539579\pi\)
\(272\) 0 0
\(273\) 8.60915 0.521050
\(274\) 0 0
\(275\) −12.9748 −0.782411
\(276\) 0 0
\(277\) −14.8936 −0.894868 −0.447434 0.894317i \(-0.647662\pi\)
−0.447434 + 0.894317i \(0.647662\pi\)
\(278\) 0 0
\(279\) −5.38333 −0.322291
\(280\) 0 0
\(281\) 9.09591 0.542617 0.271308 0.962492i \(-0.412544\pi\)
0.271308 + 0.962492i \(0.412544\pi\)
\(282\) 0 0
\(283\) 24.1814 1.43744 0.718719 0.695301i \(-0.244729\pi\)
0.718719 + 0.695301i \(0.244729\pi\)
\(284\) 0 0
\(285\) 7.50509 0.444563
\(286\) 0 0
\(287\) 0.640605 0.0378137
\(288\) 0 0
\(289\) 3.05800 0.179883
\(290\) 0 0
\(291\) −10.2089 −0.598455
\(292\) 0 0
\(293\) 17.0939 0.998639 0.499319 0.866418i \(-0.333583\pi\)
0.499319 + 0.866418i \(0.333583\pi\)
\(294\) 0 0
\(295\) 16.6603 0.970002
\(296\) 0 0
\(297\) 3.58887 0.208247
\(298\) 0 0
\(299\) 3.17111 0.183390
\(300\) 0 0
\(301\) 22.2170 1.28057
\(302\) 0 0
\(303\) −14.0772 −0.808713
\(304\) 0 0
\(305\) 10.5737 0.605448
\(306\) 0 0
\(307\) 24.2673 1.38501 0.692504 0.721414i \(-0.256507\pi\)
0.692504 + 0.721414i \(0.256507\pi\)
\(308\) 0 0
\(309\) −0.536603 −0.0305263
\(310\) 0 0
\(311\) −11.6000 −0.657774 −0.328887 0.944369i \(-0.606674\pi\)
−0.328887 + 0.944369i \(0.606674\pi\)
\(312\) 0 0
\(313\) 3.77413 0.213326 0.106663 0.994295i \(-0.465983\pi\)
0.106663 + 0.994295i \(0.465983\pi\)
\(314\) 0 0
\(315\) 7.96863 0.448981
\(316\) 0 0
\(317\) −20.3142 −1.14096 −0.570479 0.821312i \(-0.693242\pi\)
−0.570479 + 0.821312i \(0.693242\pi\)
\(318\) 0 0
\(319\) 3.58887 0.200938
\(320\) 0 0
\(321\) −6.01387 −0.335662
\(322\) 0 0
\(323\) −11.4516 −0.637182
\(324\) 0 0
\(325\) −11.4645 −0.635937
\(326\) 0 0
\(327\) −11.0166 −0.609220
\(328\) 0 0
\(329\) −18.3778 −1.01320
\(330\) 0 0
\(331\) 34.4015 1.89088 0.945439 0.325798i \(-0.105633\pi\)
0.945439 + 0.325798i \(0.105633\pi\)
\(332\) 0 0
\(333\) 5.07603 0.278165
\(334\) 0 0
\(335\) 6.76526 0.369626
\(336\) 0 0
\(337\) −3.68666 −0.200825 −0.100413 0.994946i \(-0.532016\pi\)
−0.100413 + 0.994946i \(0.532016\pi\)
\(338\) 0 0
\(339\) −19.0729 −1.03590
\(340\) 0 0
\(341\) 19.3200 1.04624
\(342\) 0 0
\(343\) −17.9982 −0.971812
\(344\) 0 0
\(345\) 2.93518 0.158025
\(346\) 0 0
\(347\) 3.11968 0.167473 0.0837365 0.996488i \(-0.473315\pi\)
0.0837365 + 0.996488i \(0.473315\pi\)
\(348\) 0 0
\(349\) −19.5424 −1.04608 −0.523039 0.852309i \(-0.675202\pi\)
−0.523039 + 0.852309i \(0.675202\pi\)
\(350\) 0 0
\(351\) 3.17111 0.169262
\(352\) 0 0
\(353\) −16.0982 −0.856821 −0.428410 0.903584i \(-0.640926\pi\)
−0.428410 + 0.903584i \(0.640926\pi\)
\(354\) 0 0
\(355\) 16.2872 0.864437
\(356\) 0 0
\(357\) −12.1588 −0.643514
\(358\) 0 0
\(359\) 11.0469 0.583034 0.291517 0.956566i \(-0.405840\pi\)
0.291517 + 0.956566i \(0.405840\pi\)
\(360\) 0 0
\(361\) −12.4620 −0.655897
\(362\) 0 0
\(363\) −1.87997 −0.0986728
\(364\) 0 0
\(365\) 33.6130 1.75938
\(366\) 0 0
\(367\) 17.0291 0.888913 0.444456 0.895801i \(-0.353397\pi\)
0.444456 + 0.895801i \(0.353397\pi\)
\(368\) 0 0
\(369\) 0.235962 0.0122837
\(370\) 0 0
\(371\) −5.62186 −0.291872
\(372\) 0 0
\(373\) 23.7067 1.22749 0.613744 0.789505i \(-0.289663\pi\)
0.613744 + 0.789505i \(0.289663\pi\)
\(374\) 0 0
\(375\) 4.06436 0.209883
\(376\) 0 0
\(377\) 3.17111 0.163321
\(378\) 0 0
\(379\) −28.2242 −1.44978 −0.724890 0.688865i \(-0.758109\pi\)
−0.724890 + 0.688865i \(0.758109\pi\)
\(380\) 0 0
\(381\) −16.5571 −0.848246
\(382\) 0 0
\(383\) 5.55185 0.283686 0.141843 0.989889i \(-0.454697\pi\)
0.141843 + 0.989889i \(0.454697\pi\)
\(384\) 0 0
\(385\) −28.5983 −1.45751
\(386\) 0 0
\(387\) 8.18346 0.415989
\(388\) 0 0
\(389\) 26.5610 1.34669 0.673347 0.739327i \(-0.264856\pi\)
0.673347 + 0.739327i \(0.264856\pi\)
\(390\) 0 0
\(391\) −4.47862 −0.226493
\(392\) 0 0
\(393\) −6.58954 −0.332398
\(394\) 0 0
\(395\) 12.2331 0.615514
\(396\) 0 0
\(397\) −18.0667 −0.906740 −0.453370 0.891322i \(-0.649778\pi\)
−0.453370 + 0.891322i \(0.649778\pi\)
\(398\) 0 0
\(399\) 6.94176 0.347523
\(400\) 0 0
\(401\) 7.62011 0.380530 0.190265 0.981733i \(-0.439065\pi\)
0.190265 + 0.981733i \(0.439065\pi\)
\(402\) 0 0
\(403\) 17.0711 0.850374
\(404\) 0 0
\(405\) 2.93518 0.145850
\(406\) 0 0
\(407\) −18.2172 −0.902993
\(408\) 0 0
\(409\) −15.6778 −0.775218 −0.387609 0.921824i \(-0.626699\pi\)
−0.387609 + 0.921824i \(0.626699\pi\)
\(410\) 0 0
\(411\) −2.66517 −0.131463
\(412\) 0 0
\(413\) 15.4098 0.758267
\(414\) 0 0
\(415\) 19.5086 0.957638
\(416\) 0 0
\(417\) −15.6879 −0.768239
\(418\) 0 0
\(419\) −32.3822 −1.58197 −0.790987 0.611833i \(-0.790432\pi\)
−0.790987 + 0.611833i \(0.790432\pi\)
\(420\) 0 0
\(421\) 7.08743 0.345420 0.172710 0.984973i \(-0.444748\pi\)
0.172710 + 0.984973i \(0.444748\pi\)
\(422\) 0 0
\(423\) −6.76932 −0.329136
\(424\) 0 0
\(425\) 16.1915 0.785404
\(426\) 0 0
\(427\) 9.78003 0.473289
\(428\) 0 0
\(429\) −11.3807 −0.549466
\(430\) 0 0
\(431\) 5.12783 0.246999 0.123499 0.992345i \(-0.460588\pi\)
0.123499 + 0.992345i \(0.460588\pi\)
\(432\) 0 0
\(433\) −16.8665 −0.810550 −0.405275 0.914195i \(-0.632824\pi\)
−0.405275 + 0.914195i \(0.632824\pi\)
\(434\) 0 0
\(435\) 2.93518 0.140731
\(436\) 0 0
\(437\) 2.55694 0.122315
\(438\) 0 0
\(439\) −25.1420 −1.19996 −0.599981 0.800014i \(-0.704825\pi\)
−0.599981 + 0.800014i \(0.704825\pi\)
\(440\) 0 0
\(441\) 0.370499 0.0176428
\(442\) 0 0
\(443\) 4.20154 0.199621 0.0998105 0.995006i \(-0.468176\pi\)
0.0998105 + 0.995006i \(0.468176\pi\)
\(444\) 0 0
\(445\) 25.9595 1.23060
\(446\) 0 0
\(447\) −5.07527 −0.240052
\(448\) 0 0
\(449\) 13.0873 0.617629 0.308815 0.951122i \(-0.400068\pi\)
0.308815 + 0.951122i \(0.400068\pi\)
\(450\) 0 0
\(451\) −0.846836 −0.0398760
\(452\) 0 0
\(453\) 9.51640 0.447120
\(454\) 0 0
\(455\) −25.2694 −1.18465
\(456\) 0 0
\(457\) −2.16189 −0.101129 −0.0505645 0.998721i \(-0.516102\pi\)
−0.0505645 + 0.998721i \(0.516102\pi\)
\(458\) 0 0
\(459\) −4.47862 −0.209044
\(460\) 0 0
\(461\) 3.71289 0.172926 0.0864632 0.996255i \(-0.472443\pi\)
0.0864632 + 0.996255i \(0.472443\pi\)
\(462\) 0 0
\(463\) −3.73581 −0.173618 −0.0868089 0.996225i \(-0.527667\pi\)
−0.0868089 + 0.996225i \(0.527667\pi\)
\(464\) 0 0
\(465\) 15.8010 0.732756
\(466\) 0 0
\(467\) 2.01144 0.0930785 0.0465393 0.998916i \(-0.485181\pi\)
0.0465393 + 0.998916i \(0.485181\pi\)
\(468\) 0 0
\(469\) 6.25745 0.288942
\(470\) 0 0
\(471\) −2.74605 −0.126531
\(472\) 0 0
\(473\) −29.3693 −1.35040
\(474\) 0 0
\(475\) −9.24411 −0.424149
\(476\) 0 0
\(477\) −2.07077 −0.0948139
\(478\) 0 0
\(479\) 16.2844 0.744053 0.372026 0.928222i \(-0.378663\pi\)
0.372026 + 0.928222i \(0.378663\pi\)
\(480\) 0 0
\(481\) −16.0967 −0.733945
\(482\) 0 0
\(483\) 2.71487 0.123531
\(484\) 0 0
\(485\) 29.9649 1.36064
\(486\) 0 0
\(487\) −14.4120 −0.653069 −0.326534 0.945185i \(-0.605881\pi\)
−0.326534 + 0.945185i \(0.605881\pi\)
\(488\) 0 0
\(489\) −3.29661 −0.149078
\(490\) 0 0
\(491\) −11.8871 −0.536458 −0.268229 0.963355i \(-0.586438\pi\)
−0.268229 + 0.963355i \(0.586438\pi\)
\(492\) 0 0
\(493\) −4.47862 −0.201707
\(494\) 0 0
\(495\) −10.5340 −0.473467
\(496\) 0 0
\(497\) 15.0647 0.675745
\(498\) 0 0
\(499\) −9.17119 −0.410559 −0.205279 0.978703i \(-0.565810\pi\)
−0.205279 + 0.978703i \(0.565810\pi\)
\(500\) 0 0
\(501\) 21.0440 0.940175
\(502\) 0 0
\(503\) 25.2300 1.12495 0.562474 0.826815i \(-0.309849\pi\)
0.562474 + 0.826815i \(0.309849\pi\)
\(504\) 0 0
\(505\) 41.3191 1.83868
\(506\) 0 0
\(507\) 2.94404 0.130749
\(508\) 0 0
\(509\) 2.94323 0.130456 0.0652282 0.997870i \(-0.479222\pi\)
0.0652282 + 0.997870i \(0.479222\pi\)
\(510\) 0 0
\(511\) 31.0900 1.37534
\(512\) 0 0
\(513\) 2.55694 0.112892
\(514\) 0 0
\(515\) 1.57503 0.0694040
\(516\) 0 0
\(517\) 24.2942 1.06846
\(518\) 0 0
\(519\) −14.9462 −0.656064
\(520\) 0 0
\(521\) −13.2602 −0.580939 −0.290469 0.956884i \(-0.593811\pi\)
−0.290469 + 0.956884i \(0.593811\pi\)
\(522\) 0 0
\(523\) −1.65072 −0.0721809 −0.0360904 0.999349i \(-0.511490\pi\)
−0.0360904 + 0.999349i \(0.511490\pi\)
\(524\) 0 0
\(525\) −9.81505 −0.428364
\(526\) 0 0
\(527\) −24.1099 −1.05024
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 5.67608 0.246321
\(532\) 0 0
\(533\) −0.748262 −0.0324108
\(534\) 0 0
\(535\) 17.6518 0.763154
\(536\) 0 0
\(537\) 5.34025 0.230449
\(538\) 0 0
\(539\) −1.32967 −0.0572731
\(540\) 0 0
\(541\) −0.351096 −0.0150948 −0.00754740 0.999972i \(-0.502402\pi\)
−0.00754740 + 0.999972i \(0.502402\pi\)
\(542\) 0 0
\(543\) 20.4669 0.878317
\(544\) 0 0
\(545\) 32.3357 1.38511
\(546\) 0 0
\(547\) −0.518654 −0.0221760 −0.0110880 0.999939i \(-0.503530\pi\)
−0.0110880 + 0.999939i \(0.503530\pi\)
\(548\) 0 0
\(549\) 3.60240 0.153747
\(550\) 0 0
\(551\) 2.55694 0.108929
\(552\) 0 0
\(553\) 11.3149 0.481157
\(554\) 0 0
\(555\) −14.8991 −0.632430
\(556\) 0 0
\(557\) 23.0357 0.976056 0.488028 0.872828i \(-0.337716\pi\)
0.488028 + 0.872828i \(0.337716\pi\)
\(558\) 0 0
\(559\) −25.9507 −1.09760
\(560\) 0 0
\(561\) 16.0732 0.678609
\(562\) 0 0
\(563\) 25.4451 1.07238 0.536191 0.844097i \(-0.319863\pi\)
0.536191 + 0.844097i \(0.319863\pi\)
\(564\) 0 0
\(565\) 55.9823 2.35519
\(566\) 0 0
\(567\) 2.71487 0.114014
\(568\) 0 0
\(569\) −0.429499 −0.0180055 −0.00900276 0.999959i \(-0.502866\pi\)
−0.00900276 + 0.999959i \(0.502866\pi\)
\(570\) 0 0
\(571\) −40.2698 −1.68524 −0.842619 0.538510i \(-0.818988\pi\)
−0.842619 + 0.538510i \(0.818988\pi\)
\(572\) 0 0
\(573\) 23.0846 0.964373
\(574\) 0 0
\(575\) −3.61530 −0.150768
\(576\) 0 0
\(577\) 29.7628 1.23904 0.619520 0.784981i \(-0.287327\pi\)
0.619520 + 0.784981i \(0.287327\pi\)
\(578\) 0 0
\(579\) −18.8353 −0.782770
\(580\) 0 0
\(581\) 18.0442 0.748601
\(582\) 0 0
\(583\) 7.43171 0.307790
\(584\) 0 0
\(585\) −9.30780 −0.384830
\(586\) 0 0
\(587\) −3.66570 −0.151300 −0.0756498 0.997134i \(-0.524103\pi\)
−0.0756498 + 0.997134i \(0.524103\pi\)
\(588\) 0 0
\(589\) 13.7649 0.567171
\(590\) 0 0
\(591\) −12.0193 −0.494406
\(592\) 0 0
\(593\) 41.1114 1.68824 0.844122 0.536151i \(-0.180122\pi\)
0.844122 + 0.536151i \(0.180122\pi\)
\(594\) 0 0
\(595\) 35.6884 1.46308
\(596\) 0 0
\(597\) 24.0112 0.982714
\(598\) 0 0
\(599\) 2.21185 0.0903736 0.0451868 0.998979i \(-0.485612\pi\)
0.0451868 + 0.998979i \(0.485612\pi\)
\(600\) 0 0
\(601\) −26.1361 −1.06612 −0.533058 0.846079i \(-0.678957\pi\)
−0.533058 + 0.846079i \(0.678957\pi\)
\(602\) 0 0
\(603\) 2.30488 0.0938622
\(604\) 0 0
\(605\) 5.51805 0.224341
\(606\) 0 0
\(607\) 39.4865 1.60271 0.801353 0.598192i \(-0.204114\pi\)
0.801353 + 0.598192i \(0.204114\pi\)
\(608\) 0 0
\(609\) 2.71487 0.110012
\(610\) 0 0
\(611\) 21.4663 0.868433
\(612\) 0 0
\(613\) 43.6230 1.76192 0.880958 0.473194i \(-0.156899\pi\)
0.880958 + 0.473194i \(0.156899\pi\)
\(614\) 0 0
\(615\) −0.692592 −0.0279280
\(616\) 0 0
\(617\) −41.5910 −1.67439 −0.837195 0.546904i \(-0.815806\pi\)
−0.837195 + 0.546904i \(0.815806\pi\)
\(618\) 0 0
\(619\) −27.2209 −1.09410 −0.547050 0.837100i \(-0.684249\pi\)
−0.547050 + 0.837100i \(0.684249\pi\)
\(620\) 0 0
\(621\) 1.00000 0.0401286
\(622\) 0 0
\(623\) 24.0110 0.961981
\(624\) 0 0
\(625\) −30.0061 −1.20024
\(626\) 0 0
\(627\) −9.17653 −0.366475
\(628\) 0 0
\(629\) 22.7336 0.906448
\(630\) 0 0
\(631\) 38.7594 1.54299 0.771493 0.636238i \(-0.219510\pi\)
0.771493 + 0.636238i \(0.219510\pi\)
\(632\) 0 0
\(633\) −26.2057 −1.04158
\(634\) 0 0
\(635\) 48.5981 1.92856
\(636\) 0 0
\(637\) −1.17490 −0.0465511
\(638\) 0 0
\(639\) 5.54897 0.219514
\(640\) 0 0
\(641\) 7.90994 0.312424 0.156212 0.987724i \(-0.450072\pi\)
0.156212 + 0.987724i \(0.450072\pi\)
\(642\) 0 0
\(643\) 16.2425 0.640543 0.320272 0.947326i \(-0.396226\pi\)
0.320272 + 0.947326i \(0.396226\pi\)
\(644\) 0 0
\(645\) −24.0199 −0.945784
\(646\) 0 0
\(647\) −25.9612 −1.02064 −0.510319 0.859985i \(-0.670473\pi\)
−0.510319 + 0.859985i \(0.670473\pi\)
\(648\) 0 0
\(649\) −20.3707 −0.799620
\(650\) 0 0
\(651\) 14.6150 0.572808
\(652\) 0 0
\(653\) 17.4622 0.683348 0.341674 0.939818i \(-0.389006\pi\)
0.341674 + 0.939818i \(0.389006\pi\)
\(654\) 0 0
\(655\) 19.3415 0.755735
\(656\) 0 0
\(657\) 11.4518 0.446775
\(658\) 0 0
\(659\) −10.6803 −0.416045 −0.208023 0.978124i \(-0.566703\pi\)
−0.208023 + 0.978124i \(0.566703\pi\)
\(660\) 0 0
\(661\) 17.2518 0.671016 0.335508 0.942037i \(-0.391092\pi\)
0.335508 + 0.942037i \(0.391092\pi\)
\(662\) 0 0
\(663\) 14.2022 0.551568
\(664\) 0 0
\(665\) −20.3753 −0.790121
\(666\) 0 0
\(667\) 1.00000 0.0387202
\(668\) 0 0
\(669\) 25.8799 1.00057
\(670\) 0 0
\(671\) −12.9285 −0.499100
\(672\) 0 0
\(673\) −21.3349 −0.822402 −0.411201 0.911545i \(-0.634891\pi\)
−0.411201 + 0.911545i \(0.634891\pi\)
\(674\) 0 0
\(675\) −3.61530 −0.139153
\(676\) 0 0
\(677\) −50.7006 −1.94858 −0.974291 0.225294i \(-0.927666\pi\)
−0.974291 + 0.225294i \(0.927666\pi\)
\(678\) 0 0
\(679\) 27.7157 1.06363
\(680\) 0 0
\(681\) −3.84644 −0.147396
\(682\) 0 0
\(683\) 10.1622 0.388847 0.194424 0.980918i \(-0.437716\pi\)
0.194424 + 0.980918i \(0.437716\pi\)
\(684\) 0 0
\(685\) 7.82276 0.298892
\(686\) 0 0
\(687\) 28.1470 1.07388
\(688\) 0 0
\(689\) 6.56664 0.250169
\(690\) 0 0
\(691\) 17.4204 0.662703 0.331351 0.943507i \(-0.392495\pi\)
0.331351 + 0.943507i \(0.392495\pi\)
\(692\) 0 0
\(693\) −9.74330 −0.370117
\(694\) 0 0
\(695\) 46.0468 1.74665
\(696\) 0 0
\(697\) 1.05678 0.0400285
\(698\) 0 0
\(699\) 0.131560 0.00497607
\(700\) 0 0
\(701\) 2.85603 0.107871 0.0539354 0.998544i \(-0.482824\pi\)
0.0539354 + 0.998544i \(0.482824\pi\)
\(702\) 0 0
\(703\) −12.9791 −0.489517
\(704\) 0 0
\(705\) 19.8692 0.748317
\(706\) 0 0
\(707\) 38.2177 1.43732
\(708\) 0 0
\(709\) 25.5780 0.960604 0.480302 0.877103i \(-0.340527\pi\)
0.480302 + 0.877103i \(0.340527\pi\)
\(710\) 0 0
\(711\) 4.16775 0.156303
\(712\) 0 0
\(713\) 5.38333 0.201607
\(714\) 0 0
\(715\) 33.4045 1.24926
\(716\) 0 0
\(717\) 10.7006 0.399623
\(718\) 0 0
\(719\) −43.6869 −1.62925 −0.814624 0.579990i \(-0.803057\pi\)
−0.814624 + 0.579990i \(0.803057\pi\)
\(720\) 0 0
\(721\) 1.45680 0.0542542
\(722\) 0 0
\(723\) 7.51815 0.279603
\(724\) 0 0
\(725\) −3.61530 −0.134269
\(726\) 0 0
\(727\) −29.7216 −1.10231 −0.551156 0.834402i \(-0.685813\pi\)
−0.551156 + 0.834402i \(0.685813\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 36.6506 1.35557
\(732\) 0 0
\(733\) −10.8570 −0.401012 −0.200506 0.979692i \(-0.564259\pi\)
−0.200506 + 0.979692i \(0.564259\pi\)
\(734\) 0 0
\(735\) −1.08748 −0.0401124
\(736\) 0 0
\(737\) −8.27193 −0.304700
\(738\) 0 0
\(739\) 1.35269 0.0497594 0.0248797 0.999690i \(-0.492080\pi\)
0.0248797 + 0.999690i \(0.492080\pi\)
\(740\) 0 0
\(741\) −8.10836 −0.297868
\(742\) 0 0
\(743\) −32.4723 −1.19129 −0.595647 0.803246i \(-0.703104\pi\)
−0.595647 + 0.803246i \(0.703104\pi\)
\(744\) 0 0
\(745\) 14.8968 0.545778
\(746\) 0 0
\(747\) 6.64646 0.243181
\(748\) 0 0
\(749\) 16.3269 0.596570
\(750\) 0 0
\(751\) −9.79509 −0.357428 −0.178714 0.983901i \(-0.557194\pi\)
−0.178714 + 0.983901i \(0.557194\pi\)
\(752\) 0 0
\(753\) −16.0258 −0.584012
\(754\) 0 0
\(755\) −27.9324 −1.01656
\(756\) 0 0
\(757\) −28.0716 −1.02028 −0.510140 0.860092i \(-0.670406\pi\)
−0.510140 + 0.860092i \(0.670406\pi\)
\(758\) 0 0
\(759\) −3.58887 −0.130268
\(760\) 0 0
\(761\) 18.6002 0.674257 0.337129 0.941459i \(-0.390544\pi\)
0.337129 + 0.941459i \(0.390544\pi\)
\(762\) 0 0
\(763\) 29.9086 1.08276
\(764\) 0 0
\(765\) 13.1456 0.475279
\(766\) 0 0
\(767\) −17.9995 −0.649924
\(768\) 0 0
\(769\) −36.7281 −1.32445 −0.662224 0.749306i \(-0.730387\pi\)
−0.662224 + 0.749306i \(0.730387\pi\)
\(770\) 0 0
\(771\) −14.6440 −0.527390
\(772\) 0 0
\(773\) 22.6706 0.815406 0.407703 0.913115i \(-0.366330\pi\)
0.407703 + 0.913115i \(0.366330\pi\)
\(774\) 0 0
\(775\) −19.4623 −0.699107
\(776\) 0 0
\(777\) −13.7807 −0.494381
\(778\) 0 0
\(779\) −0.603341 −0.0216169
\(780\) 0 0
\(781\) −19.9145 −0.712598
\(782\) 0 0
\(783\) 1.00000 0.0357371
\(784\) 0 0
\(785\) 8.06015 0.287679
\(786\) 0 0
\(787\) −6.45810 −0.230206 −0.115103 0.993354i \(-0.536720\pi\)
−0.115103 + 0.993354i \(0.536720\pi\)
\(788\) 0 0
\(789\) 17.7426 0.631654
\(790\) 0 0
\(791\) 51.7803 1.84109
\(792\) 0 0
\(793\) −11.4236 −0.405664
\(794\) 0 0
\(795\) 6.07808 0.215567
\(796\) 0 0
\(797\) 7.31648 0.259163 0.129581 0.991569i \(-0.458637\pi\)
0.129581 + 0.991569i \(0.458637\pi\)
\(798\) 0 0
\(799\) −30.3172 −1.07254
\(800\) 0 0
\(801\) 8.84427 0.312497
\(802\) 0 0
\(803\) −41.0988 −1.45035
\(804\) 0 0
\(805\) −7.96863 −0.280857
\(806\) 0 0
\(807\) −7.41764 −0.261113
\(808\) 0 0
\(809\) −18.0091 −0.633167 −0.316584 0.948565i \(-0.602536\pi\)
−0.316584 + 0.948565i \(0.602536\pi\)
\(810\) 0 0
\(811\) −34.1144 −1.19792 −0.598960 0.800779i \(-0.704419\pi\)
−0.598960 + 0.800779i \(0.704419\pi\)
\(812\) 0 0
\(813\) 4.08324 0.143205
\(814\) 0 0
\(815\) 9.67614 0.338941
\(816\) 0 0
\(817\) −20.9246 −0.732060
\(818\) 0 0
\(819\) −8.60915 −0.300828
\(820\) 0 0
\(821\) 22.2717 0.777288 0.388644 0.921388i \(-0.372944\pi\)
0.388644 + 0.921388i \(0.372944\pi\)
\(822\) 0 0
\(823\) −15.0073 −0.523121 −0.261561 0.965187i \(-0.584237\pi\)
−0.261561 + 0.965187i \(0.584237\pi\)
\(824\) 0 0
\(825\) 12.9748 0.451725
\(826\) 0 0
\(827\) −1.35082 −0.0469724 −0.0234862 0.999724i \(-0.507477\pi\)
−0.0234862 + 0.999724i \(0.507477\pi\)
\(828\) 0 0
\(829\) 33.0917 1.14932 0.574662 0.818391i \(-0.305134\pi\)
0.574662 + 0.818391i \(0.305134\pi\)
\(830\) 0 0
\(831\) 14.8936 0.516652
\(832\) 0 0
\(833\) 1.65932 0.0574922
\(834\) 0 0
\(835\) −61.7678 −2.13756
\(836\) 0 0
\(837\) 5.38333 0.186075
\(838\) 0 0
\(839\) −46.9173 −1.61977 −0.809883 0.586592i \(-0.800469\pi\)
−0.809883 + 0.586592i \(0.800469\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −9.09591 −0.313280
\(844\) 0 0
\(845\) −8.64128 −0.297269
\(846\) 0 0
\(847\) 5.10386 0.175371
\(848\) 0 0
\(849\) −24.1814 −0.829905
\(850\) 0 0
\(851\) −5.07603 −0.174004
\(852\) 0 0
\(853\) 29.2457 1.00135 0.500677 0.865634i \(-0.333085\pi\)
0.500677 + 0.865634i \(0.333085\pi\)
\(854\) 0 0
\(855\) −7.50509 −0.256669
\(856\) 0 0
\(857\) 50.3916 1.72134 0.860672 0.509160i \(-0.170044\pi\)
0.860672 + 0.509160i \(0.170044\pi\)
\(858\) 0 0
\(859\) 44.4056 1.51510 0.757550 0.652778i \(-0.226396\pi\)
0.757550 + 0.652778i \(0.226396\pi\)
\(860\) 0 0
\(861\) −0.640605 −0.0218318
\(862\) 0 0
\(863\) 41.1402 1.40043 0.700214 0.713933i \(-0.253088\pi\)
0.700214 + 0.713933i \(0.253088\pi\)
\(864\) 0 0
\(865\) 43.8697 1.49162
\(866\) 0 0
\(867\) −3.05800 −0.103855
\(868\) 0 0
\(869\) −14.9575 −0.507398
\(870\) 0 0
\(871\) −7.30905 −0.247658
\(872\) 0 0
\(873\) 10.2089 0.345518
\(874\) 0 0
\(875\) −11.0342 −0.373024
\(876\) 0 0
\(877\) −29.9193 −1.01030 −0.505152 0.863030i \(-0.668564\pi\)
−0.505152 + 0.863030i \(0.668564\pi\)
\(878\) 0 0
\(879\) −17.0939 −0.576564
\(880\) 0 0
\(881\) 24.6463 0.830355 0.415178 0.909740i \(-0.363719\pi\)
0.415178 + 0.909740i \(0.363719\pi\)
\(882\) 0 0
\(883\) 36.3717 1.22401 0.612003 0.790856i \(-0.290364\pi\)
0.612003 + 0.790856i \(0.290364\pi\)
\(884\) 0 0
\(885\) −16.6603 −0.560031
\(886\) 0 0
\(887\) −30.0299 −1.00831 −0.504153 0.863614i \(-0.668195\pi\)
−0.504153 + 0.863614i \(0.668195\pi\)
\(888\) 0 0
\(889\) 44.9503 1.50758
\(890\) 0 0
\(891\) −3.58887 −0.120232
\(892\) 0 0
\(893\) 17.3088 0.579216
\(894\) 0 0
\(895\) −15.6746 −0.523944
\(896\) 0 0
\(897\) −3.17111 −0.105880
\(898\) 0 0
\(899\) 5.38333 0.179544
\(900\) 0 0
\(901\) −9.27417 −0.308967
\(902\) 0 0
\(903\) −22.2170 −0.739335
\(904\) 0 0
\(905\) −60.0740 −1.99693
\(906\) 0 0
\(907\) −49.2448 −1.63515 −0.817574 0.575824i \(-0.804681\pi\)
−0.817574 + 0.575824i \(0.804681\pi\)
\(908\) 0 0
\(909\) 14.0772 0.466911
\(910\) 0 0
\(911\) 28.2619 0.936358 0.468179 0.883634i \(-0.344910\pi\)
0.468179 + 0.883634i \(0.344910\pi\)
\(912\) 0 0
\(913\) −23.8532 −0.789427
\(914\) 0 0
\(915\) −10.5737 −0.349555
\(916\) 0 0
\(917\) 17.8897 0.590770
\(918\) 0 0
\(919\) −42.1139 −1.38921 −0.694604 0.719392i \(-0.744421\pi\)
−0.694604 + 0.719392i \(0.744421\pi\)
\(920\) 0 0
\(921\) −24.2673 −0.799635
\(922\) 0 0
\(923\) −17.5964 −0.579193
\(924\) 0 0
\(925\) 18.3513 0.603389
\(926\) 0 0
\(927\) 0.536603 0.0176243
\(928\) 0 0
\(929\) 45.4642 1.49163 0.745817 0.666151i \(-0.232059\pi\)
0.745817 + 0.666151i \(0.232059\pi\)
\(930\) 0 0
\(931\) −0.947346 −0.0310480
\(932\) 0 0
\(933\) 11.6000 0.379766
\(934\) 0 0
\(935\) −47.1777 −1.54287
\(936\) 0 0
\(937\) −30.3802 −0.992478 −0.496239 0.868186i \(-0.665286\pi\)
−0.496239 + 0.868186i \(0.665286\pi\)
\(938\) 0 0
\(939\) −3.77413 −0.123164
\(940\) 0 0
\(941\) 16.4577 0.536505 0.268253 0.963349i \(-0.413554\pi\)
0.268253 + 0.963349i \(0.413554\pi\)
\(942\) 0 0
\(943\) −0.235962 −0.00768398
\(944\) 0 0
\(945\) −7.96863 −0.259219
\(946\) 0 0
\(947\) 59.6861 1.93954 0.969768 0.244027i \(-0.0784686\pi\)
0.969768 + 0.244027i \(0.0784686\pi\)
\(948\) 0 0
\(949\) −36.3148 −1.17883
\(950\) 0 0
\(951\) 20.3142 0.658732
\(952\) 0 0
\(953\) 18.7179 0.606331 0.303165 0.952938i \(-0.401957\pi\)
0.303165 + 0.952938i \(0.401957\pi\)
\(954\) 0 0
\(955\) −67.7575 −2.19258
\(956\) 0 0
\(957\) −3.58887 −0.116012
\(958\) 0 0
\(959\) 7.23558 0.233649
\(960\) 0 0
\(961\) −2.01979 −0.0651546
\(962\) 0 0
\(963\) 6.01387 0.193794
\(964\) 0 0
\(965\) 55.2852 1.77969
\(966\) 0 0
\(967\) −11.1343 −0.358054 −0.179027 0.983844i \(-0.557295\pi\)
−0.179027 + 0.983844i \(0.557295\pi\)
\(968\) 0 0
\(969\) 11.4516 0.367877
\(970\) 0 0
\(971\) −54.6824 −1.75484 −0.877420 0.479723i \(-0.840737\pi\)
−0.877420 + 0.479723i \(0.840737\pi\)
\(972\) 0 0
\(973\) 42.5905 1.36539
\(974\) 0 0
\(975\) 11.4645 0.367158
\(976\) 0 0
\(977\) 4.47111 0.143043 0.0715217 0.997439i \(-0.477214\pi\)
0.0715217 + 0.997439i \(0.477214\pi\)
\(978\) 0 0
\(979\) −31.7409 −1.01444
\(980\) 0 0
\(981\) 11.0166 0.351733
\(982\) 0 0
\(983\) −31.4118 −1.00188 −0.500940 0.865482i \(-0.667012\pi\)
−0.500940 + 0.865482i \(0.667012\pi\)
\(984\) 0 0
\(985\) 35.2787 1.12407
\(986\) 0 0
\(987\) 18.3778 0.584972
\(988\) 0 0
\(989\) −8.18346 −0.260219
\(990\) 0 0
\(991\) 39.0390 1.24011 0.620057 0.784557i \(-0.287110\pi\)
0.620057 + 0.784557i \(0.287110\pi\)
\(992\) 0 0
\(993\) −34.4015 −1.09170
\(994\) 0 0
\(995\) −70.4773 −2.23428
\(996\) 0 0
\(997\) 12.9729 0.410855 0.205428 0.978672i \(-0.434141\pi\)
0.205428 + 0.978672i \(0.434141\pi\)
\(998\) 0 0
\(999\) −5.07603 −0.160598
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8004.2.a.h.1.12 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8004.2.a.h.1.12 13 1.1 even 1 trivial